1
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
3
|
Chen G, Yang C, Liang M, Yin J, Gao B, Asif Nazir K, Wang J, Xiao J, Shang Q, Qian H, Qiao C, Zhang P, Fang J, Li T, Liu X. LY235959 Attenuates Development Phase of Methamphetamine-Induced Behavioral Sensitization through the PP2A/B - AKT Cascade in the Dorsal Striatum of C57/BL6 mice. Neurosci Lett 2022; 776:136561. [DOI: 10.1016/j.neulet.2022.136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
|
4
|
Richardson B, Swenson S, Hamilton J, Leonard K, Delis F, Gold M, Blum K, Thanos PK. Chronic neuroleptic treatment combined with a high fat diet elevated [3H] flunitrazepam binding in the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110407. [PMID: 34320402 DOI: 10.1016/j.pnpbp.2021.110407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 01/29/2023]
Abstract
Clinical and preclinical studies have shown dysfunctions in genetic expression and neurotransmission of γ-Aminobutyric acid (GABA), GABAA receptor subunits, and GABA-synthesizing enzymes GAD67 and GAD65 in schizophrenia. It is well documented that there is significant weight gain after chronic neuroleptic treatment in humans. While there are limited studies on the effects of diet on GABA signaling directly, a change in diet has been used clinically as an adjunct to treatment for schizophrenic relief. In this study, rats chronically consumed either a chow diet (CD) or a 60% high-fat diet (HFD) and drank from bottles that contained one of the following solutions: water, haloperidol (1.5 mg/kg), or olanzapine (10 mg/kg) for four weeks. Rats were then euthanized and their brains were processed for GABAA in-vitro receptor autoradiography using [3H] flunitrazepam. A chronic HFD treatment yielded significantly increased [3H] flunitrazepam binding in the rat cerebellum independent of neuroleptic treatment. The desynchronization between the prefrontal cortex and the cerebellum is associated with major cognitive and motor dysfunctions commonly found in schizophrenic symptomatology, such as slowed reaction time, motor dyscoordination, and prefrontal activations related to speech fluency and cognitive alertness. These data support the notion that there is a dietary effect on GABA signaling within the cerebellum, as well as the importance of considering nutritional intervention methods as an adjunct treatment for patients chronically treated with neuroleptics. Finally, we indicate that future studies involving the analysis of individual patient's genetic profiles will further assist towards a precision medicine approach to the treatment of schizophrenia.
Collapse
Affiliation(s)
- Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Ken Leonard
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Foteini Delis
- Department of Pharmacology, University at Ioannina, Ioannina, Greece
| | - Mark Gold
- Washington University in St Louis, School of Medicine, St. Louis, MS, USA
| | - Ken Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals (Basel) 2020; 13:ph13110365. [PMID: 33167370 PMCID: PMC7694365 DOI: 10.3390/ph13110365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacological treatment of cognitive impairments associated with schizophrenia is still a major unmet clinical need. Indeed, treatments with available antipsychotics generate highly variable cognitive responses among patients with schizophrenia. This has led to the general assumption that antipsychotics are ineffective on cognitive impairment, although personalized medicine and drug repurposing approaches might scale down this clinical issue. In this scenario, evidence suggests that cognitive improvement exerted by old and new atypical antipsychotics depends on dopaminergic mechanisms. Moreover, the newer antipsychotics brexpiprazole and cariprazine, which might have superior clinical efficacy on cognitive deficits over older antipsychotics, mainly target dopamine receptors. It is thus reasonable to assume that despite more than 50 years of elusive efforts to develop novel non-dopaminergic antipsychotics, dopamine receptors remain the most attractive and promising pharmacological targets in this field. In the present review, we discuss preclinical and clinical findings showing dopaminergic mechanisms as key players in the cognitive improvement induced by both atypical antipsychotics and potential antipsychotics. We also emphasize the concept that these mechanistic advances, which help to understand the heterogeneity of cognitive responses to antipsychotics, may properly guide treatment decisions and address the unmet medical need for the management of cognitive impairment associated with schizophrenia.
Collapse
|
6
|
Koropouli E, Melanitis N, Dimitriou VI, Grigoriou A, Karavasilis E, Nikita KS, Tzavellas E, Paparrigopoulos T. New-Onset Psychosis Associated With a Lesion Localized in the Rostral Tectum: Insights Into Pathway-Specific Connectivity Disrupted in Psychosis. Schizophr Bull 2020; 46:1296-1305. [PMID: 32103274 PMCID: PMC7505199 DOI: 10.1093/schbul/sbaa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate pathway-specific connectivity disrupted in psychosis. METHODS We carried out a case study of a middle-aged patient who presented with new-onset psychosis associated with a space-occupying lesion localized in the right superior colliculus/periaqueductal gray. The study sought to investigate potential connectivity deficits related to the lesion by the use of diffusion tensor imaging and resting-state functional magnetic resonance imaging. To this aim, we generated a functional connectivity map of the patient's brain, centered on the lesion area, and compared this map with the corresponding map of 10 sex- and age-matched control individuals identified from the Max Planck Institute-Leipzig Mind-Brain-Body database. RESULTS Our analysis revealed a discrete area in the right rostral tectum, in the immediate vicinity of the lesion, whose activity is inversely correlated with the activity of left amygdala, whereas left amygdala is functionally associated with select areas of the temporal, parietal, and occipital lobes. Based on a comparative analysis of the patient with 10 control individuals, the lesion has impacted on the connectivity of rostral tectum (superior colliculus/periaqueductal gray) with left amygdala as well as on the connectivity of left amygdala with subcortical and cortical areas. CONCLUSIONS The superior colliculus/periaqueductal gray might play important roles in the initiation and perpetuation of psychosis, at least partially through dysregulation of left amygdala activity.
Collapse
Affiliation(s)
- Eleftheria Koropouli
- First Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- First Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Nikos Melanitis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Vasileios I Dimitriou
- First Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Asimina Grigoriou
- First Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Konstantina S Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Thomas Paparrigopoulos
- First Department of Psychiatry, Aiginition Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
7
|
Lin Y, Ding H, Zhang Y. Multisensory Integration of Emotion in Schizophrenic Patients. Multisens Res 2020; 33:865-901. [PMID: 33706267 DOI: 10.1163/22134808-bja10016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023]
Abstract
Multisensory integration (MSI) of emotion has been increasingly recognized as an essential element of schizophrenic patients' impairments, leading to the breakdown of their interpersonal functioning. The present review provides an updated synopsis of schizophrenics' MSI abilities in emotion processing by examining relevant behavioral and neurological research. Existing behavioral studies have adopted well-established experimental paradigms to investigate how participants understand multisensory emotion stimuli, and interpret their reciprocal interactions. Yet it remains controversial with regard to congruence-induced facilitation effects, modality dominance effects, and generalized vs specific impairment hypotheses. Such inconsistencies are likely due to differences and variations in experimental manipulations, participants' clinical symptomatology, and cognitive abilities. Recent electrophysiological and neuroimaging research has revealed aberrant indices in event-related potential (ERP) and brain activation patterns, further suggesting impaired temporal processing and dysfunctional brain regions, connectivity and circuities at different stages of MSI in emotion processing. The limitations of existing studies and implications for future MSI work are discussed in light of research designs and techniques, study samples and stimuli, and clinical applications.
Collapse
Affiliation(s)
- Yi Lin
- 1Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Minhang District, Shanghai, 200240, China
| | - Hongwei Ding
- 1Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Minhang District, Shanghai, 200240, China
| | - Yang Zhang
- 2Department of Speech-Language-Hearing Sciences & Center for Neurobehavioral Development, University of Minnesota, Twin Cities, MN 55455, USA
| |
Collapse
|
8
|
Mier D, Schirmbeck F, Stoessel G, Esslinger C, Rausch F, Englisch S, Eisenacher S, de Haan L, Meyer-Lindenberg A, Kirsch P, Zink M. Reduced activity and connectivity of left amygdala in patients with schizophrenia treated with clozapine or olanzapine. Eur Arch Psychiatry Clin Neurosci 2019; 269:931-940. [PMID: 30539230 PMCID: PMC6841919 DOI: 10.1007/s00406-018-0965-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
Abstract
Obsessive-compulsive symptoms (OCS) in patients with schizophrenia are a common co-occurring condition, often associated with additional impairments. A subgroup of these patients develops OCS during treatment with second-generation antipsychotics (SGAs), most importantly clozapine and olanzapine. So far, little is known about possible neural mechanism of these SGAs, which seem to aggravate or induce OCS. To investigate the role of SGA treatment on neural activation and connectivity during emotional processing, patients were stratified according to their monotherapy into two groups (group I: clozapine or olanzapine, n = 20; group II: amisulpride or aripiprazole, n = 20). We used an fMRI approach, applying an implicit emotion recognition task. Group comparisons showed significantly higher frequency and severity of comorbid OCS in group I than group II. Task specific activation was attenuated in group I in the left amygdala. Furthermore, functional connectivity from left amygdala to right ventral striatum was reduced in group I. Reduced amygdala activation was associated with OCS severity. Recent literature suggests an involvement of an amygdala-cortico-striatal network in the pathogenesis of obsessive-compulsive disorder. The observed differential activation and connectivity pattern of the amygdala might thus indicate a neural mechanism for the development of SGA-associated OCS in patients with schizophrenia. Further neurobiological research and interventional studies are needed for causal inferences.
Collapse
Affiliation(s)
- Daniela Mier
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany ,Department of Psychology, University of Konstanz, Constance, Germany
| | - Frederike Schirmbeck
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Psychiatry, Arkin Institute for Mental Health, Amsterdam, The Netherlands.
| | - Gabriela Stoessel
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Christine Esslinger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Franziska Rausch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Susanne Englisch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Sarah Eisenacher
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands ,Department of Psychiatry, Arkin Institute for Mental Health, Amsterdam, The Netherlands
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany
| | - Mathias Zink
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany ,Department of Psychiatry, Psychotherapy and Psychosomatics, District Hospital Ansbach, Ansbach, Germany
| |
Collapse
|
9
|
Muraoka H, Oshibuchi H, Kawano M, Kawano T, Tsutsumi T, Yamada M, Ishigooka J, Nishimura K, Inada K. Escitalopram attenuates fear stress-induced increase in amygdalar dopamine following methamphetamine-induced sensitisation: Implications of fine-tuning action of selective serotonin reuptake inhibitors on emotional processing. Eur J Pharmacol 2018; 834:1-9. [PMID: 29981749 DOI: 10.1016/j.ejphar.2018.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
Serotonin reuptake inhibitors modulate the serotonergic pathways of the nervous system and are widely used for treating psychiatric conditions such as anxiety and depression. The dopaminergic system is related to the development of these conditions. Previous studies on methamphetamine-sensitised rats (behavioural models of stress vulnerability) have shown increased release of dopamine in response to conditioned stress in the amygdala. This biochemical abnormality was proposed to underlie the pathophysiology of stress vulnerability. However, the effect of serotonin reuptake inhibitors on dopamine levels and its consequent impact on emotional processing is unclear. Here we examined the acute effect of escitalopram, a highly selective serotonin reuptake inhibitor, on fear-related behaviour, baseline dopamine release and dopamine release in response to conditioned fear stress in the amygdala of model rats. Male Sprague-Dawley rats received 2 mg/kg/day, s.c. of methamphetamine for 10 days to sensitise them to the drug, and a fear conditioning paradigm was instituted to model psychological stress. Dopamine changes in the amygdala in response to systemic administration of escitalopram followed by conditioned fear stress were measured using microdialysis and high-performance liquid chromatography. Baseline dopamine release in the amygdala was increased by escitalopram in non-sensitised rats but not in methamphetamine-sensitised rats. Escitalopram attenuated dopamine release in response to the fear-conditioned stimulus in both sensitised and non-sensitised rats. The extent of suppression in methamphetamine-sensitised rats (- 90%) was greater than that in non-sensitised rats (- 48%). These findings suggest that serotonin reuptake inhibitors indirectly stabilise the dopaminergic pathway and modulate emotional processing in the amygdala.
Collapse
Affiliation(s)
- Hiroyuki Muraoka
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hidehiro Oshibuchi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Masahiko Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Takaaki Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Takahiro Tsutsumi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Jun Ishigooka
- CNS Pharmacological Research Institute, 4-26-11, Sendagaya, Shibuya-ku, Tokyo 151-0051, Japan
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ken Inada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
10
|
Kawano T, Oshibuchi H, Kawano M, Muraoka H, Tsutsumi T, Yamada M, Ishigooka J, Nishimura K, Inada K. Diazepam suppresses the stress-induced dopaminergic release in the amygdala of methamphetamine-sensitized rat. Eur J Pharmacol 2018; 833:247-254. [PMID: 29885289 DOI: 10.1016/j.ejphar.2018.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Although the benzodiazepine class of drugs has proven useful in treating anxiety symptoms, recent studies yield no consistent empirical support for their use in treating psychiatric disorders. However, animal studies using a fear conditioning paradigm have suggested that benzodiazepines facilitate fear memory extinction, dependent on treatment timing and subject conditions. However, we have no data on the effect of subject conditions. The purpose of this study was to investigate whether the effect of benzodiazepines depends on hypersensitivity to fear-memory processing. We examined the effect of diazepam, a benzodiazepine, on the extracellular dopamine level in the left amygdala of methamphetamine-sensitized, fear-conditioned model rats, using microdialysis and high-performance liquid chromatography. In this model, the dopamine level in the amygdala excessively increases in response to a fear-conditioned stimulus; the phenomenon has been proposed as a biological marker for hypersensitivity to fear-memory processing. Diazepam inhibited this excessive increase. The extent of the inhibitory effect was greater in the sensitized condition. Diazepam alone increased amygdalar dopamine levels under physiological conditions but not under sensitized conditions. Diazepam did not shorten freezing time in any group. These results suggest that diazepam modulates amygdala dopamine with state dependence and that amygdalar dopamine fine-tuning accounts for part of the therapeutic effect of benzodiazepines on fear memory processing. Further investigation is required to identify patients suitable for treatment with benzodiazepines. This is the first report on the pharmacodynamic effects of benzodiazepine on the amygdalar dopamine basal level and on fear memory processing.
Collapse
Affiliation(s)
- Takaaki Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Hidehiro Oshibuchi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Masahiko Kawano
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Hiroyuki Muraoka
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takahiro Tsutsumi
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Jun Ishigooka
- CNS Pharmacological Research Institute, 4-26-11, Sendagaya, Shibuya-ku, Tokyo 151-0051, Japan.
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Ken Inada
- Department of Psychiatry, Tokyo Women's Medical University, Kawada-cho 8-1, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
11
|
Pałasz A, Pałka M, Filipczyk Ł, Menezes IC, Rojczyk E, Worthington JJ, Piwowarczyk-Nowak A, Krzystanek M, Wiaderkiewicz R. Effect of long-term treatment with classical neuroleptics on NPQ/spexin, kisspeptin and POMC mRNA expression in the male rat amygdala. J Neural Transm (Vienna) 2018; 125:1099-1105. [PMID: 29488100 PMCID: PMC5999179 DOI: 10.1007/s00702-018-1868-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Neuroleptics modulate the expression level of some regulatory neuropeptides in the brain. However, if these therapeutics influence the peptidergic circuits in the amygdala remains unclear. This study specifies the impact profile of the classical antipsychotic drugs on mRNA expression of the spexin/NPQ, kisspeptin-1 and POMC in the rat amygdala. Animals were treated with haloperidol and chlorpromazine for 28 days prior to transcript quantification via qPCR. Haloperidol and chlorpromazine induced a change in the expression of all neuropeptides analyzed. Both drugs led to the decrease of Kiss-1 expression, whereas in POMC and spexin/NPQ their up-regulation in the amygdala was detected. These modulating effects on may represent alternative, so far unknown mechanisms, of classical antipsychotic drugs triggering pharmacological responses.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Marcelina Pałka
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour, Faculty of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, School of Medicine in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
12
|
Mangelinckx C, Belge JB, Maurage P, Constant E. Impaired facial and vocal emotion decoding in schizophrenia is underpinned by basic perceptivo-motor deficits. Cogn Neuropsychiatry 2017; 22:461-467. [PMID: 28974159 DOI: 10.1080/13546805.2017.1382342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Emotional decoding impairments have been largely demonstrated in schizophrenia for facial and prosodic stimuli, when presented separately. Nevertheless, the exploration of crossmodal integration has been far less considered, despite its omnipresence in daily social interactions. Moreover, the role played by basic visuo-motor impairments in unimodal and crossmodal decoding remains unexplored. METHODS Thirty-two patients were compared with 32 matched controls in an emotional decoding task including unimodal (visual and auditory) and crossmodal (congruent and incongruent) conditions. A control perceptive task was also conducted to take potential low-level perceptual deficits into account. RESULTS Schizoprenic patients presented lower performance and higher reaction times for both unimodal tasks (visual and auditory) and crossmodal conditions. Moreover, reaction times for the visuo-perceptive task were also significantly longer for patients compared to controls. CONCLUSIONS The consistency of the results across unimodal and crossmodal tasks suggests a globalised emotional impairment in schizophrenia, independent of the sensorial modality and crossmodal nature of the stimuli. Centrally, given the results in the visuo-perceptive task, the impairments observed for emotional recognition appears at least partly explained by primary cognitive deficits, namely reduced processing speed.
Collapse
Affiliation(s)
- C Mangelinckx
- a Psychological Sciences Research Institute , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - J B Belge
- a Psychological Sciences Research Institute , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - P Maurage
- b Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute , Université catholique de Louvain , Louvain-la-Neuve , Belgium
| | - E Constant
- c Department of Psychiatry , Saint-Luc University Hospital and Institute of Neuroscience (IoNS), Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|