1
|
Nawar NF, Beltagy DM, Tousson E, El-Keey MM, Mohamed TM. Coenzyme Q10 alleviates AlCl 3 and D-galactose induced Alzheimer via modulating oxidative burden and TLR-4/MAPK pathways and regulation microRNA in rat brain. Toxicol Res (Camb) 2025; 14:tfaf031. [PMID: 40052020 PMCID: PMC11881693 DOI: 10.1093/toxres/tfaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Alzheimer's disease (ad) is the most progressive form of neurodegenerative disease resulting in cognitive and non-cognitive deficits. Coenzyme Q10 (CoQ10) is an anti-inflammatory and anti-oxidative stress supplement that can improve inflammation and oxidative stress associated with ad. This study aimed to explore the protective potential of coenzyme Q10 (CoQ10). It also sought to uncover any synergistic effects when combined with donepezil, an acetylcholinesterase inhibitor, in treating Alzheimer's disease in rats, focusing on the modulation of the TLR-4/MAPK pathway and regulation of microRNA. The experiment involved seventy rats categorized into different groups: control, Reference group (donepezil 10 mg/kg/P.O.), CoQ10 alone (1,200 mg/kg/P.O.), ad-model (D-galactose (120 mg/kg/i.p) + Alcl3 (50 mg/kg/P.O.)), donepezil co-treatment, CoQ10 co-treatment, and CoQ10 + donepezil co-treatment. Behavioral parameter was defined using the Morris-Maze test (MMT) and various assessments, such as GABA, oxidative stress, Aβ1-42, ion homeostasis, toll-like receptor-4 (TLR-4), mitogen-activated protein kinase-1 (MAPK-1), micro-RNA (mir-106b, mir-107, and mir-9) were measured. Immunohistological staining was used to assess structural abnormalities in hippocampus. CoQ10 treatment demonstrated memory improvement, enhanced locomotion, and increased neuronal differentiation, mainly through the activation of the TLR-4/MAPK pathway and regulation of mir-106b, mir-107, and mir-9. Highlights Coenzyme Q10 (CoQ10) improved the rats' passive avoidance memory impairment caused by D-gal and AlCl3. ad led to the alteration of the TLR-4/MAPK pathways.CoQ10 as a protective agent, diminishes oxidative burden, improve ion homeostasis.CoQ10 counteracts Alzheimer's disease by enhancing neurotransmitter parameter and regulating the MicroRNA.CoQ10 lowered accumulation of Aβ plaque in the hippocampal neurons of D-Gal and AlCl3-treated rats.One promising therapeutic method was the combination of donepezil and CoQ10 therapy.
Collapse
Affiliation(s)
- Nagat F Nawar
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| | - Doha M Beltagy
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Damanhour University, 22514, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, 31527, Egypt
| | - Mai M El-Keey
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| | - Tarek M Mohamed
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| |
Collapse
|
2
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
3
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Zidan A, Elnady M, Khalifa BN. Donepezil protects against cyclophosphamide-induced premature ovarian failure in mice: A focus on proinflammatory cytokines and NLRP3/TLR-4/NF-κB interplay. Toxicol Appl Pharmacol 2024; 488:116989. [PMID: 38825044 DOI: 10.1016/j.taap.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND AND AIM Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt.
| | - Manar Elnady
- Department of Pathology, Faculty of medicine, Tanta University, Egypt
| | - Basma N Khalifa
- Department of Pharmacology, Faculty of medicine, Tanta University, Egypt
| |
Collapse
|
5
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
6
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW, Ambati J. Alzheimer Disease Treatment With Acetylcholinesterase Inhibitors and Incident Age-Related Macular Degeneration. JAMA Ophthalmol 2024; 142:108-114. [PMID: 38175625 PMCID: PMC10767642 DOI: 10.1001/jamaophthalmol.2023.6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Importance Age-related macular degeneration (AMD) is a serious and common ophthalmologic disorder that is hypothesized to result, in part, from inflammatory reactions in the macula. Alzheimer disease (AD) treatment, acetylcholinesterase inhibitors (AChEIs), have anti-inflammatory effects and it remains unclear if they modify the risk of AMD. Objective To investigate the association between AChEI medications and the incidence of AMD. Design, Setting, and Participants This propensity score-matched retrospective cohort study took place at health care facilities within the US Department of Veterans Affairs (VA) health care system from January 2000 through September 2023. Participants included patients diagnosed with AD between ages 55 and 80 years with no preexisting diagnosis of AMD in the VA database. Exposure AChEIs prescription dispensed as pharmacologic treatments for AD. Main Outcomes and Measure The first diagnosis of AMD. Results A total of 21 823 veterans with AD (mean [SD] age, 72.3 [6.1] years; 21 313 male participants [97.7%] and 510 female participants [2.3%]) were included. Propensity score-matched Cox model reveals each additional year of AChEI treatment was associated with a 6% lower hazard of AMD (hazard ratio, 0.94; 95% CI, (0.89-0.99). Conclusions and Relevance This observational study reports a small reduction in the risk of AMD among veterans with AD receiving AChEIs. Randomized clinical trials would be needed to determine if there is a cause-and-effect relationship and further research is required to validate these findings across diverse populations.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - Tammy H. Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia
| | - James W. Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, South Carolina
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville
- Department of Pathology, University of Virginia School of Medicine, Charlottesville
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
7
|
Zhao X, Hu X, Xie Q, Qi S, Xiang Z, Sun X, Xie Z, Dang R, Zhou L, Liu W, Cheng X, Wang C. Ameliorative effect of scopolamine-induced cognitive dysfunction by Fufangmuniziqi formula: The roles of alkaloids, saponins, and flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116792. [PMID: 37356745 DOI: 10.1016/j.jep.2023.116792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufangmuniziqi formula (FFMN), a traditional Uyghur medicine used in China, is derived from an ancient Uyghur medical book and consists of 13 herbs. The herbs of FFMN, such as Peganum harmala L., Glycyrrhiza uralensis Fisch., and Nigella glandulifera, have been demonstrated to have acetylcholinesterase (AChE) inhibitory, anti-neuroinflammatory, or antioxidant effects. Therefore, FFMN may have a good anti-Alzheimer's disease (AD) effect, but its specific action and mechanism need to be further proven. AIM OF THE STUDY This study aims to investigate the anti-AD effects of FFMN and the role played by alkaloids, flavonoids, and saponins in anti-AD. MATERIALS AND METHODS The alkaloids, flavonoids, and saponins fractions of FFMN were prepared by macroporous resin chromatography. The absorbed ingredients in the drug-containing serum were identified by UPLC⁃Q⁃TOF⁃MS. An AD mouse model was established by intraperitoneal injection of scopolamine (SCO). The role of different fractions of FFMN in the anti-AD process was examined by Morris water maze (MWM), in-vitro cell, and AChE inhibition assay. RESULTS A total of 20 ingredients were identified in the serum samples collected after oral administration of FFMN, and seven compounds were selected as candidate active compounds. MWM experiments showed that different fractions of FFMN could significantly improve SCO-induced learning memory impairment in mice. The alkaloids fraction (ALK) regulated cholinergic function by inhibiting AChE activity, activating choline acetyltransferase activity, and protein expression. Flavonoids and saponins were more potent than the ALK in downregulating pro-inflammatory factors or inflammatory mediators, such as TNF-α, MPO, and nitric oxide. Western blot results further confirmed that flavonoids and saponins attenuated neuroinflammation by inhibiting the phosphorylation of IκB and NF-κB p65. This result was also verified by in-vitro cellular assays. FFMN enhanced antioxidant defense by increasing the activity of superoxide dismutase and reducing the production of MDA. Combined with cellular experiments, flavonoids and saponins were proven more protective against oxidative damage. CONCLUSION FFMN improved cognitive and memory impairment in the SCO-induced AD mouse model. ALK mainly enhanced the function of the cholinergic system. Flavonoid and saponin fractions mainly attenuated neuroinflammation and oxidative stress by modulating the NF-κB pathway. All these findings strongly suggested that the combination of alkaloid, flavonoid, and saponin fractions derived from FFMN is a promising anti-AD agent that deserves further development.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Shenglan Qi
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Zedong Xiang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Xin Sun
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Limei Zhou
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| |
Collapse
|
8
|
Liu T, Zhang B, Gao Y, Zhang X, Tong J, Li Z. Identification of ACHE as the hub gene targeting solasonine associated with non-small cell lung cancer (NSCLC) using integrated bioinformatics analysis. PeerJ 2023; 11:e16195. [PMID: 37842037 PMCID: PMC10573390 DOI: 10.7717/peerj.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Background Solasonine, as a major biological component of Solanum nigrum L., has demonstrated anticancer effects against several malignancies. However, little is understood regarding its biological target and mechanism in non-small cell lung cancer (NSCLC). Methods We conducted an analysis on transcriptomic data to identify differentially expressed genes (DEGs), and employed an artificial intelligence (AI) strategy to predict the target protein for solasonine. Subsequently, genetic dependency analysis and molecular docking were performed, with Acetylcholinesterase (ACHE) selected as a pivotal marker for solasonine. We then employed a range of bioinformatic approaches to explore the relationship between ACHE and solasonine. Furthermore, we investigated the impact of solasonine on A549 cells, a human lung cancer cell line. Cell inhibition of A549 cells following solasonine treatment was analyzed using the CCK8 assay. Additionally, we assessed the protein expression of ACHE, as well as markers associated with apoptosis and inflammation, using western blotting. To investigate their functions, we employed a plasmid-based ACHE overexpression system. Finally, we performed dynamics simulations to simulate the interaction mode between solasonine and ACHE. Results The results of the genetic dependency analysis revealed that ACHE could be identified as the pivotal target with the highest docking affinity. The cell experiments yielded significant findings, as evidenced by the negative regulatory effect of solasonine treatment on tumor cells, as demonstrated by the CCK8 assay. Western blotting analysis revealed that solasonine treatment resulted in the downregulation of the Bcl-2/Bax ratio and upregulation of cleaved caspase-3 protein expression levels. Moreover, we observed that ACHE overexpression promoted the expression of the Bcl-2/Bax ratio and decreased cleaved caspase-3 expression in the OE-ACHE group. Notably, solasonine treatment rescued the Bcl-2/Bax ratio and cleaved caspase-3 expression in OE-ACHE cells compared to OE-ACHE cells without solasonine treatment, suggesting that solasonine induces apoptosis. Besides, solasonine exhibited its anti-inflammatory effects by inhibiting P38 MAPK. This was supported by the decline in protein levels of IL-1β and TNF-α, as well as the phosphorylated forms of JNK and P38 MAPK. The results from the molecular docking and dynamics simulations further confirmed the potent binding affinity and effective inhibitory action between solasonine and ACHE. Conclusions The findings of the current investigation show that solasonine exerts its pro-apoptosis and anti-inflammatory effects by suppressing the expression of ACHE.
Collapse
Affiliation(s)
- Tong Liu
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
| | - Boke Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xingxing Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, Anhui, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, Anhui, China
| |
Collapse
|
9
|
Liu GZ, Niu TT, Yu Q, Xu BL, Li XQ, Yuan BY, Yuan GB, Yang TT, Li HQ, Sun Y. Ginkgolide attenuates memory impairment and neuroinflammation by suppressing the NLRP3/caspase-1 pathway in Alzheimer's disease. Aging (Albany NY) 2023; 15:10237-10252. [PMID: 37793010 PMCID: PMC10599747 DOI: 10.18632/aging.205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 10/06/2023]
Abstract
The NLRP3 inflammasome is involved in the neuroinflammatory pathway of Alzheimer's disease (AD). The aim of this study is to explore the roles and underlying mechanisms of ginkgolide (Baiyu®) on amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and a murine microglial cell line, BV-2. In the present study, the APP/PS1 mice were administered with ginkgolide, followed by a Morris water maze test. The mice were then euthanized to obtain brain tissue for histological and Aβ analysis. Additionally, BV-2 cells were pretreated with ginkgolide and then incubated with Aβ1-42 peptide. NLRP3, ASC, and caspase-1 mRNA and protein expression in brain tissue of mice and BV-2 cells were quantified by real-time PCR and western blotting, as well as reactive oxygen species (ROS) production, interleukin (IL)-1β and IL-18 levels by lucigenin technique and ELISA. Compared with the APP/PS1 mice, ginkgolide-treated mice demonstrated the shortened escape latency, reduced plaques, less inflammatory cell infiltration and neuron loss in the hippocampi of APP/PS1 mice. The levels of NLRP3, ASC, caspase-1, ROS, IL-1β, and IL-18 were also decreased in the brain tissue of APP/PS1 mice or Aβ1-42-treated BV-2 cells following ginkgolide treatment. Ginkgolide exerted protective effects on AD, at least partly by inactivating the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tian-Tong Niu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Yu
- Beijing D.A. Medical Laboratory, Beijing 102600, China
| | - Bao-Lei Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hui-Qin Li
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| | - Yi Sun
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| |
Collapse
|
10
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
11
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
13
|
Wongpun J, Chanmanee T, Tocharus J, Chokchaisiri R, Chaichompoo W, Suksamrarn A, Tocharus C. The potential effects of festidinol treatment against the NLRP3 inflammasome and pyroptosis in D-galactose and aluminum chloride-induced Alzheimer's-like pathology in mouse brain. Int Immunopharmacol 2023; 119:110181. [PMID: 37119679 DOI: 10.1016/j.intimp.2023.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes cognitive and memory decline. Neuroinflammation is currently considered as being an important pathology in AD. NLRP3, the nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a critical component of the innate immune response, which plays a key role in the development and progression of AD. Therefore, the NLRP3 inflammasome is one of the target treatments for AD. This study aimed to investigate the effect of festidinol, a flavanol isolated from Dracaena conferta, against NLRP3 inflammasome and blood-brain barrier damage in D-galactose and aluminum chloride-induced mice. The induced mice received D-galactose (150 mg/kg) and aluminum chloride (10 mg/kg) intraperitoneally for 90 days to generate cognitive impairment. Festidinol (30 mg/kg) and donepezil (5 mg/kg) were given by oral gavage for 90 days along with the induction. Then, learning and memory behavior, and molecular and morphological changes in the brain, which related to NLRP3 inflammasome, pyroptosis and the blood-brain barrier were measured. The results indicated that festidinol markedly decreased the escape latency and increased the time in the target quadrant in the Morris water maze test. Furthermore, festidinol significantly decreased the ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Festidinol also markedly decreased the NLRP3 inflammasome pathway, interleukin 1 beta (IL-1β), gasdermin-D, N-terminal (GSDMD-N) and caspase-3. Pertinent to the blood-brain barrier, festidinol only decreased tumor necrosis factor-α and matrix metallopeptidase-9, but did not restore the tight junction components. In conclusion, festidinol can restore learning and memory and provide a protective effect against the NLRP3 inflammasome and pyroptosis.
Collapse
Affiliation(s)
- Jittiporn Wongpun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teera Chanmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
14
|
Elbaz EM, Essam RM, Ahmed KA, Safwat MH. Donepezil halts acetic acid-induced experimental colitis in rats and its associated cognitive impairment through regulating inflammatory/oxidative/apoptotic cascades: An add-on to its anti-dementia activity. Int Immunopharmacol 2023; 116:109841. [PMID: 36764270 DOI: 10.1016/j.intimp.2023.109841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory bowel disease (IBD) that is regarded as a risk factor for cognitive impairment. Donepezil (DON), a centrally acting acetylcholinesterase inhibitor (AChEI), is approved for the management of Alzheimer's disease (AD). We aimed to scrutinize the impact of DON on acetic acid (AA)-induced UC in rats and to evaluate its ability to attenuate inflammatory response, oxidative strain, and apoptosis in this model and its associated cognitive deficits. Rats were categorized into: normal, DON, AA, and AA + DON groups. DON (5 mg/kg/day) was administered orally for 14 days either alone or beginning with the day of UC induction. Colitis was evoked by a single transrectal injection of 1 ml of 4 % acetic acid. Results revealed that DON significantly improved the behavioral abnormalities with the mitigation of inflammation, apoptosis, and histopathological changes in the hippocampi of the colitis group. Moreover, DON significantly alleviated the macroscopic and microscopic changes associated with colitis. Interestingly, DON inhibited pro-inflammatory cytokines via suppression of AA-induced activation of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in the colon, along with serum IL-1β. DON inhibited colon lipid peroxidation, restored the antioxidants with a significant amelioration of the degree of neutrophil infiltration, and repressed colitis-induced matrix metalloproteinases-9 (MMP-9) production. Furthermore, DON decreased the Bax/Bcl-2 ratio and caspase-3 protein expressions. Eventually, in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells, DON suppressed nitric oxide (NO) release, demonstrating the ability of DON to significantly curtail inflammation in immune cells. Taken together, DON ameliorated experimental colitis and its linked cognitive dysfunction, possibly via its antioxidant effect and modulation of pro-inflammatory cytokines and apoptosis. Thereby, DON could be a therapeutic nominee for UC and associated neurological disorders.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Wang NN, Zhang XX, Shen P, Huang CS, Deng HF, Zhou L, Yue LX, Shen BY, Zhou W, Gao Y. Pinelliae rhizoma alleviated acute lung injury induced by lipopolysaccharide via suppressing endoplasmic reticulum stress-mediated NLRP3 inflammasome. Front Pharmacol 2022; 13:883865. [PMID: 36046826 PMCID: PMC9421150 DOI: 10.3389/fphar.2022.883865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pinelliae rhizoma (PR), one kind of commonly-used Chinese herbs, is generally prescribed to treat various respiratory diseases, including acute lung injury (ALI). However, the accurate bioactive ingredients of PR and the underlying pharmacological mechanism have both not been fully elucidated. Therefore, this study aimed to identify the bioactive ingredients that could alleviate lipopolysaccharide (LPS)-induced ALI and explore the possible mechanism involved. Our results confirmed that LPS infection indeed caused acute inflammatory damage in mice lung, accompanying with the enhancement of IL-1β contents and the activation of the NLRP3 inflammasome in lung tissue and macrophagocyte, all of which were remarkably ameliorated by PR treatment. Next, mechanistically, LPS was found to trigger endoplasmic reticulum (ER) stress and downstream cellular calcium ions (Ca2+) release via activating Bip/ATF4/CHOP signaling pathway. Like PR, 4-PBA (a specific inhibitor of ER stress) not only obviously reversed Bip/ATF4/CHOP-mediated ER stress, but also significantly attenuated LPS-induced activation of the NLRP3 inflammasome. Furthermore, the bioactive ingredients of PR, which generated the anti-inflammatory effects, were screened by metabolomics and network pharmacology. In vitro experiments showed that chrysin, dihydrocapsaicin, and 7,8-dihydroxyflavone (7,8-DHF) notably suppressed LPS-induced ER stress and following NLRP3 inflammasome activation. In conclusion, our findings suggested that PR alleviated LPS-induced ALI by inhibiting ER stress-mediated NLRP3 inflammasome activation, which is mainly relevant with these three bioactive ingredients. This study provided a theoretical basis for the clinical application of PR to treat ALI, and these bioactive ingredients of PR would be promising therapeutic drugs for the treatment of ALI.
Collapse
Affiliation(s)
- Ning-ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xian-xie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Cong-shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan-xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bao-ying Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| |
Collapse
|
16
|
Todaka H, Arikawa M, Noguchi T, Ichikawa A, Sato T. Donepezil, an anti-Alzheimer's disease drug, promotes differentiation and regeneration in injured skeletal muscle through the elevation of the expression of myogenic regulatory factors. Eur J Pharmacol 2021; 911:174528. [PMID: 34582845 DOI: 10.1016/j.ejphar.2021.174528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that donepezil, an anti-Alzheimer's disease drug, improved skeletal muscle atrophy by enhancing the angiogenesis of endothelial cells and activating the proliferation of satellite cells in a mouse model of peripheral arterial disease. However, the effect of donepezil on muscle differentiation during regeneration remains unclear. Therefore, we measured the expressions of myogenic regulatory factors and late muscle differentiation markers in donepezil-treated C2C12 myoblast cells before and after the induction of cell differentiation. The results indicate that the expressions of myogenin, troponin T (TnT) and myosin heavy chain (MyHC) were significantly increased and myotube formation was accelerated in donepezil-treated cells under the differentiation condition. However, the promotive effect of donepezil on muscle differentiation could not be reproduced by the addition of acetylcholine (ACh) and was not disrupted after treatment with ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to promote muscle differentiation in C2C12 cells. These results indicate that the specific characteristics of donepezil in the promotion of muscle differentiation are independent of its acetylcholinesterase-inhibitory action. We further found that donepezil induced an incremental shift of the cross-sectional area of myofibers and elevated the expressions of myogenin, TnT and MyHC in a mouse model of cardiotoxin injury. These results suggest that donepezil promotes the differentiation of muscle regeneration upon injury via the elevation of the expressions of myogenic regulatory factors and late muscle differentiation markers. Our findings suggest that donepezil can be a useful therapeutic agent for injured skeletal muscle treatment.
Collapse
Affiliation(s)
- Hiroshi Todaka
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan.
| | - Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Akebono, Kochi, Japan
| | - Tatsuya Noguchi
- Department of Cardiology and Geriatrics, Kochi Medical School, Nankoku, Kochi, Japan
| | - Atsushi Ichikawa
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| | - Takayuki Sato
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| |
Collapse
|
17
|
Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ. Ficus deltoidea: Potential inhibitor of pro-inflammatory mediators in lipopolysaccharide-induced activation of microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114309. [PMID: 34119609 DOI: 10.1016/j.jep.2021.114309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown. AIM OF THE STUDY To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells. METHODS Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively. RESULTS The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS. CONCLUSION The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.
Collapse
Affiliation(s)
- Siti Zaidathul Iman Zolkiffly
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil Regulates LPS and Aβ-Stimulated Neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 Signaling. Int J Mol Sci 2021; 22:10637. [PMID: 34638977 PMCID: PMC8508964 DOI: 10.3390/ijms221910637] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The acetylcholinesterase inhibitors donepezil and rivastigmine have been used as therapeutic drugs for Alzheimer's disease (AD), but their effects on LPS- and Aβ-induced neuroinflammatory responses and the underlying molecular pathways have not been studied in detail in vitro and in vivo. In the present study, we found that 10 or 50 μM donepezil significantly decreased the LPS-induced increases in the mRNA levels of a number of proinflammatory cytokines in BV2 microglial cells, whereas 50 μM rivastigmine significantly diminished only LPS-stimulated IL-6 mRNA levels. In subsequent experiments in primary astrocytes, donepezil suppressed only LPS-stimulated iNOS mRNA levels. To identify the molecular mechanisms by which donepezil regulates LPS-induced neuroinflammation, we examined whether donepezil alters LPS-stimulated proinflammatory responses by modulating LPS-induced downstream signaling and the NLRP3 inflammasome. Importantly, we found that donepezil suppressed LPS-induced AKT/MAPK signaling, the NLRP3 inflammasome, and transcription factor NF-kB/STAT3 phosphorylation to reduce neuroinflammatory responses. In LPS-treated wild-type mice, a model of neuroinflammatory disease, donepezil significantly attenuated LPS-induced microglial activation, microglial density/morphology, and proinflammatory cytokine COX-2 and IL-6 levels. In a mouse model of AD (5xFAD mice), donepezil significantly reduced Aβ-induced microglial and astrocytic activation, density, and morphology. Taken together, our findings indicate that donepezil significantly downregulates LPS- and Aβ-evoked neuroinflammatory responses in vitro and in vivo and may be a therapeutic agent for neuroinflammation-associated diseases such as AD.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Soojung Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Heeyong Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Eunyoung Seol
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
19
|
Pohanka M. Pharmacological Influencing of The Cholinergic Anti-inflammatory Pathway in Infectious Diseases and Inflammatory Pathologies. Mini Rev Med Chem 2021; 21:660-669. [PMID: 33208075 DOI: 10.2174/1389557520666201117111715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
The cholinergic anti-inflammatory pathway is a part of the parasympathetic nervous system and it can also be entitled as an anti-inflammatory reflex. It consists of terminations of the vagal nerve into blood, acetylcholine released from the terminations, macrophages and other cells having α7 nicotinic acetylcholine receptor (α7 nAChR), calcium ions crossing through the receptor and interacting with nuclear factors, and erythrocytes with acetylcholinesterase (AChE) terminating the neurotransmission. Stopping of inflammatory cytokines production is the major task for the cholinergic antiinflammatory pathway. The cholinergic anti-inflammatory pathway can be stimulated or suppressed by agonizing or antagonizing α7 nAChR or by inhibition of AChE. This review is focused on cholinergic anti-inflammatory pathway regulation by drugs. Compounds that inhibit cholinesterases (for instance, huperzine, rivastigmine, galantamine), and their impact on the cholinergic anti-inflammatory pathway are discussed here and a survey of actual literature is provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
20
|
Benenati S, Canale C, De Marzo V, Della Bona R, Rosa GM, Porto I. Atrial fibrillation and Alzheimer's disease: A conundrum. Eur J Clin Invest 2021; 51:e13451. [PMID: 33219514 DOI: 10.1111/eci.13451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022]
Abstract
During ageing, the prevalence of Alzheimer's disease (AD) and of cardiovascular disease CVD) increases. Our aim is to investigate the relationship between AD and CVD and its risk factors, with a view to explaining the underlying mechanisms of this association. This review is based on the material obtained via MEDLINE (PubMed), Embase and Clinical Trials databases, from January 1980 until May 2019. The search term used was "Alzheimer's disease", combined with "cardiovascular disease", "hypertension", "dyslipidaemia", "diabetes mellitus", "atrial fibrillation", "coronary artery disease", "heart valve disease", "heart failure". Out of the 1328 papers initially retrieved, 431 duplicates and 216 records in languages other than English were removed; thus, only 98 papers were included in our research material. We have found that AD and CVD are frequently associated, while both of them, alone may be considered deleterious to health, the study of their combination constitutes a clinical challenge. Further research will help to clarify the real impact of CVD and its risk factors on AD, in order to better comprehend the effects of subclinical and clinical cardiovascular diseases on the brain. It may be hypothesized that there are various mechanisms underlying the association between AD and CVD, the main ones being: hypoperfusion and emboli, atherosclerosis, furthermore in both the heart and brain of AD patients, amyloid deposits may be present, thus causing damage to these organs. We need to clarify the real impact of these underlying hypothesized mechanisms and to investigate gender issues.
Collapse
Affiliation(s)
- Stefano Benenati
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Claudia Canale
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Vincenzo De Marzo
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Roberta Della Bona
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy
| | - Gian Marco Rosa
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Policlinic Hospital San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genoa, Genova, Italy
| |
Collapse
|
21
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
22
|
Benfante R, Di Lascio S, Cardani S, Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res 2021; 33:823-834. [PMID: 31583530 DOI: 10.1007/s40520-019-01359-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
Neuroinflammation and cholinergic dysfunction, leading to cognitive impairment, are hallmarks of aging and neurodegenerative disorders, including Alzheimer's disease (AD). Acetylcholinesterase inhibitors (AChEI), the symptomatic therapy in AD, attenuate and delay the cognitive deficit by enhancing cholinergic synapses. The α7 nicotinic acetylcholine (ACh) receptor has shown a double-edged sword feature, as it binds with high affinity Aβ1-42, promoting intracellular accumulation and Aβ-induced tau phosphorylation, but also exerts neuroprotection by stimulating anti-apoptotic pathways. Moreover, it mediates peripheral and central anti-inflammatory response, being the effector player of the activation of the cholinergic anti-inflammatory pathway (CAIP), that, by decreasing the release of TNF-α, IL-1β, and IL-6, it may have a role in improving cognition. The finding in preclinical models that, in addition to their major function (choline esterase inhibition) AChEIs have neuroprotective properties mediated via α7nAChR and modulate innate immunity, possibly as a result of the increased availability of acetylcholine activating the CAIP, pave the way for new pharmacological intervention in AD and other neurological disorders that are characterized by neuroinflammation. CHRFAM7A is a human-specific gene acting as a dominant negative inhibitor of α7nAChR function, also suggesting a role in affecting human cognition and memory by altering α7nAChR activities in the central nervous system (CNS). This review will summarize the current knowledge on the cholinergic anti-inflammatory pathway in aging-related disorders, and will argue that the presence of the human-restricted CHRFAM7A gene might play a fundamental role in the regulation of CAIP and in the response to AChEI.
Collapse
Affiliation(s)
- Roberta Benfante
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy.
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Simona Di Lascio
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Cardani
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Diego Fornasari
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| |
Collapse
|
23
|
Qiu H, Zhang Y, Li Z, Jiang P, Guo S, He Y, Guo Y. Donepezil Ameliorates Pulmonary Arterial Hypertension by Inhibiting M2-Macrophage Activation. Front Cardiovasc Med 2021; 8:639541. [PMID: 33791350 PMCID: PMC8005547 DOI: 10.3389/fcvm.2021.639541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The beneficial effects of parasympathetic stimulation in pulmonary arterial hypertension (PAH) have been reported. However, the specific mechanism has not been completely clarified. Donepezil, an oral cholinesterase inhibitor, enhances parasympathetic activity by inhibiting acetylcholinesterase, whose therapeutic effects in PAH and its mechanism deserve to be investigated. Methods: The PAH model was established by a single intraperitoneal injection of monocrotaline (MCT, 50 mg/kg) in adult male Sprague-Dawley rats. Donepezil was administered via intraperitoneal injection daily after 1 week of MCT administration. At the end of the study, PAH status was confirmed by echocardiography and hemodynamic measurement. Testing for acetylcholinesterase activity and cholinergic receptor expression was used to evaluate parasympathetic activity. Indicators of pulmonary arterial remodeling and right ventricular (RV) dysfunction were assayed. The proliferative and apoptotic ability of pulmonary arterial smooth muscle cells (PASMCs), inflammatory reaction, macrophage infiltration in the lung, and activation of bone marrow-derived macrophages (BMDMs) were also tested. PASMCs from the MCT-treated rats were co-cultured with the supernatant of BMDMs treated with donepezil, and then, the proliferation and apoptosis of PASMCs were evaluated. Results: Donepezil treatment effectively enhanced parasympathetic activity. Furthermore, it markedly reduced mean pulmonary arterial pressure and RV systolic pressure in the MCT-treated rats, as well as reversed pulmonary arterial remodeling and RV dysfunction. Donepezil also reduced the proliferation and promoted the apoptosis of PASMCs in the MCT-treated rats. In addition, it suppressed the inflammatory response and macrophage activation in both lung tissue and BMDMs in the model rats. More importantly, donepezil reduced the proliferation and promoted the apoptosis of PASMCs by suppressing M2-macrophage activation. Conclusion: Donepezil could prevent pulmonary vascular and RV remodeling, thereby reversing PAH progression. Moreover, enhancement of the parasympathetic activity could reduce the proliferation and promote the apoptosis of PASMCs in PAH by suppressing M2-macrophage activation.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yibo Zhang
- Department of Ultrasound, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Zhongyu Li
- Laboratory Medicine Center, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Shuhong Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yi He
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
25
|
Kakinuma Y. Characteristic Effects of the Cardiac Non-Neuronal Acetylcholine System Augmentation on Brain Functions. Int J Mol Sci 2021; 22:ijms22020545. [PMID: 33430415 PMCID: PMC7826949 DOI: 10.3390/ijms22020545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
26
|
Erdogan M, Kilic B, Sagkan RI, Aksakal F, Ercetin T, Gulcan HO, Dogruer DS. Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer's disease. Eur J Med Chem 2020; 212:113124. [PMID: 33395623 DOI: 10.1016/j.ejmech.2020.113124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
In this study, four series of compounds with benzoxazolone and benzothiazolone cores were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease (AD). Additionally, in order to shed light on the effect of the carbonyl groups of benzoxazolone/benzothiazolone, benzoxazole/benzothiazole-containing analogues were also synthesized and evaluated. Inhibition potency of all final compounds towards cholinesterase enzymes and their antioxidant activity were tested. Subsequently, the anti-inflammatory activity, cytotoxicity, apoptosis, and Aβ aggregation inhibition tests were also performed for selected compounds. The results indicated that compounds 11c, a pentanamide derivative with benzothiazolone core, and 14b, a keton derivative with benzothiazolone core, were considered as promising multi-functional agents for further investigation against AD. The reversibility, kinetic and molecular docking studies were also performed for the compounds with the highest AChE 14b (eeAChE IC50 = 0.34 μM, huAChE IC50 = 0.46 μM) and BChE 11c (eqBChE IC50 = 2.98 μM, huBChE IC50 = 2.56 μM) inhibitory activities.
Collapse
Affiliation(s)
- Merve Erdogan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Rahsan Ilıkcı Sagkan
- Department of Medical Biology, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Tugba Ercetin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagosa, Cyprus
| | - Hayrettin O Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagosa, Cyprus
| | - Deniz S Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
27
|
Sun G, Wang J, Wang P, Ren H, Yue Y, Song Z, Fu X. Donepezil protects glycerol-induced acute renal failure through the cholinergic anti-inflammatory and nitric oxide pathway in rats. Immunopharmacol Immunotoxicol 2020; 42:625-631. [PMID: 33183119 DOI: 10.1080/08923973.2020.1835950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Inflammation as well as oxygen metabolite play important roles in renal injury during pathogenesis of rhabdomyolysis induced myoglobinuric acute renal failure (ARF). The aim of this study was to investigate the protective effects of donepezil on immune responses in rats with glycerol-induced ARF. METHODS Sixty male rats were randomly divided into six groups, the rats were given normal saline (10 ml/kg, i.m.), glycerol (50%, 10 ml/kg, i.m.), glycerol plus dexamethasone (0.1 mg/kg, i.g.), and glycerol plus donepezil (1, 5 and 10 mg/kg, i.g.) respectively. After two weeks of glycerol injections, the kidney tissues and blood samples were harvested for future biochemical and pathology analysis. The levels of creatinine (Cr) and urea nitrogen (BUN) in plasma, the content of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity, total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS), endothelial NO synthase (eNOS) were evaluated in renal tissues. In addition, interleukin-6 (IL-6), tumor necrosis factors-α (TNF-α) in renal tissues were also determined. RESULTS Donepezil treatment protected rats from renal dysfunction in a dose-dependent manner and through the cholinergic anti-inflammatory pathway. Additionally, donepezil significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the IL-6, TNF-α, nitric oxide content and oxidative damage. CONCLUSIONS These data indicate that donepezil exerts a protective anti-inflammatory effect during ARF through the cholinergic pathway and Nitric oxide pathway. In addition, this study could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation and other injury.
Collapse
Affiliation(s)
- Guodong Sun
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Jialei Wang
- Department of Urology, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Pan Wang
- Department of Nephrology, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong, P. R. China
| | - Huimin Ren
- Department of Eastern Operating Room, Liao Cheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Yuedong Yue
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Zhengmin Song
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| | - Xiaobin Fu
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, P. R. China
| |
Collapse
|
28
|
Yamawaki H, Futagami S, Sakasegawa N, Murakami M, Agawa S, Ikeda G, Noda H, Kirita K, Gudis K, Higuchi K, Kodaka Y, Ueki N, Iwakiri K. Acotiamide attenuates central urocortin 2-induced intestinal inflammatory responses, and urocortin 2 treatment reduces TNF-α productions in LPS-stimulated macrophage cell lines. Neurogastroenterol Motil 2020; 32:e13813. [PMID: 32030855 DOI: 10.1111/nmo.13813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To determine whether central and in vitro administration of urocortin 2 (Ucn 2) affected intestinal inflammatory responses in LPS-stimulated rat models and macrophage cell lines and acotiamide modified mucosal inflammation in this model. METHODS Rats were divided into four groups. LPS-stimulated group (n = 4); LPS- and urocortin 2-treated group (n = 4); LPS- and acotiamide-treated group (n = 4); and LPS-, urocortin 2-, and acotiamide-treated group (n = 4). CD68-, CCR2-, and corticotropin-releasing hormone receptor type 2 (CRHR2)-positive cells were assessed by immunostaining. Myeloperoxidase (MPO) activity was measured. TNF-α, IL-6, and IL-4 levels were measured by ELISA method. Gastric emptying and small intestinal transit time were determined using Evans blue. KEY RESULTS Central administration of Ucn 2 significantly aggravated infiltrations of CD68- and CCR2-positive cells in the intestinal mucosa of LPS-stimulated rat models compared to those in LPS treatment alone. Interestingly, acotiamide treatment significantly reduced the migrations of both CD68- and CCR2-positive cells in the jejunum of central Ucn 2-treated LPS-stimulated rat models. Acotiamide significantly reduced the expression levels of IkB-α phosphorylation in LPS- and MCP-1-stimulated NR8383 cells. Central administration of Ucn 2 significantly delayed gastric emptying. In contrast, Ucn 2 stimulation significantly reduced TNF-α and IL-6 productions in LPS-stimulated NR8383 cells and astressin B reversed the inhibition of TNF-α production in stimulated NR8383 cells. Acotiamide (30 μmol/L) significantly reduced TNF-α and IL-6 productions in LPS- and MCP-1-stimulated NR8383 cells. CONCLUSIONS AND INFERENCES Central and in vitro treatments of Ucn 2 affected intestinal inflammatory responses, respectively, and acotiamide improved them.
Collapse
Affiliation(s)
- Hiroshi Yamawaki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Seiji Futagami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Murakami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Shuhei Agawa
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Go Ikeda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Hiroto Noda
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Kumiko Kirita
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Katya Gudis
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | | - Yasuhiro Kodaka
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Nobue Ueki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
29
|
Astragalus membranaceus Injection Suppresses Production of Interleukin-6 by Activating Autophagy through the AMPK-mTOR Pathway in Lipopolysaccharide-Stimulated Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1364147. [PMID: 32724488 PMCID: PMC7364262 DOI: 10.1155/2020/1364147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Astragalus membranaceus (AM), used in traditional Chinese medicine, has been shown to enhance immune functions, and recently, its anti-inflammatory effects were identified. However, the mechanisms of action remain unclear. Most studies have shown that autophagy might be involved in the immune response of the body, including inflammation. Here, we developed an inflammatory model by stimulating macrophages with lipopolysaccharides (LPS) to explore the anti-inflammatory effect and mechanisms of AM injection from the perspective of the regulation of autophagy. Immunoblot, immunofluorescence, and ELISA were used to determine the effects of AM injection on the production of interleukin-6 (IL-6) and alterations of autophagy markers. It was found that AM injection reduced the expression of IL-6 in LPS-stimulated macrophages and reversed the LPS-induced inhibition of cellular autophagy. After treatment with inhibitors of signaling pathways, it was shown that LPS downregulated autophagy and upregulated the production of IL-6 in macrophages via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. AM injection reversed the effects of LPS by activating the AMP-activated protein kinase (AMPK) instead of inhibiting Akt. These results were further confirmed by testing activators and siRNA silencing of AMPK. Hence, these 2 distinct signaling molecules appear to exert opposite effects on mTOR, which integrates information from multiple upstream signaling pathways, negatively regulating autophagy. In addition, we demonstrated that autophagy might play a key role in regulating the production of IL-6 by testing activators and inhibitors of autophagy and siRNA silencing of ATG5. These findings showed that AM injection might enhance autophagy by activating AMPK and might further play a repressive effect on the LPS-stimulated expression of IL-6. This study explored the relationship between autophagy, signaling pathways, and the production of inflammatory factors in a model of endotoxin infection and treatment with AM injection.
Collapse
|
30
|
Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol Neurobiol 2020; 57:3424-3438. [DOI: 10.1007/s12035-020-01976-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
31
|
Liu Q, Liu JP, Mei JH, Li SJ, Shi LQ, Lin ZH, Xie BY, Sun WG, Wang ZY, Yang XL, Zou Y, Fang W. Betulin isolated from Pyrola incarnata Fisch. inhibited lipopolysaccharide (LPS)-induced neuroinflammation with the guidance of computer-aided drug design. Bioorg Med Chem Lett 2020; 30:127193. [DOI: 10.1016/j.bmcl.2020.127193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/04/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
|
32
|
Zhu Z, Zhang L, Cui Y, Li M, Ren R, Li G, Sun X, Li Q. Functional Compensation and Mechanism of Choline Acetyltransferase in the Treatment of Cognitive Deficits in Aged Dementia Mice. Neuroscience 2020; 442:41-53. [PMID: 32497760 DOI: 10.1016/j.neuroscience.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (Ach). Exogenous supplementation with ChAT can functionally compensate for decreased Ach levels and ameliorate memory and cognitive deficits. In this paper, the treatment efficacy of recombinant ChAT (peptide transduction domain (PTD)-ChAT) and donepezil were compared in aged dementia mice, and their mechanisms were explored by performing the gene function annotation and enrichment analysis of differentially expressed genes. The Morris water maze test showed that the swimming times of PTD-ChAT-treated (4 mg/kg) and donepezil-treated (0.5 mg/kg) mice with mild and moderate dementia were significantly shortened (P < 0.01 vs aged dementia mice), and no significant changes were observed between the PTD-ChAT- and donepezil-treated groups. In contrast, the swimming times of PTD-ChAT-treated mice with severe dementia were noticeably shorter than those of donepezil-treated mice with severe dementia (P < 0.01), indicating that the treatment efficacy of PTD-ChAT is superior to that of donepezil. The effect of PTD-ChAT was further confirmed in transgenic dementia mice (C57BL/6J-TgN (APP/PS1) ZLFILAS). Gene function annotation and enrichment analysis showed that PTD-ChAT improved cognitive deficits through Ach and was implicated in neuroprotection, synaptic plasticity, neuronal survival, and cerebrovascular remodeling through ACh and vascular endothelial growth factor (VEGF) pathway activation. Donepezil was significantly correlated with the immune inflammatory response and the insulin and IGF-1 signaling pathways. Therefore, although PTD-ChAT and donepezil were both effective in the treatment of aged dementia mice, their mechanisms were significantly different. Our research indicated that PTD-ChAT has potential promise for research on new drugs for AD treatment.
Collapse
Affiliation(s)
- Zhenxia Zhu
- Capital Medical University Electric Power Teaching Hospital, No 1 Taipingqiaoxili, Beijing 100073, China
| | - Lulu Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Yali Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rutong Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Guoxing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Xin Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Qian Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
33
|
Alzheimer's Disease and Cardiovascular Disease: A Particular Association. Cardiol Res Pract 2020; 2020:2617970. [PMID: 32454996 PMCID: PMC7222603 DOI: 10.1155/2020/2617970] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Methods This review is based on the material obtained via MEDLINE (PubMed), EMBASE, and Clinical Trials databases, from January 1980 until May 2019. The search term used was "Alzheimer's disease," combined with "cardiovascular disease," "hypertension," "dyslipidaemia," "diabetes mellitus," "atrial fibrillation," "coronary artery disease," "heart valve disease," and "heart failure." Out of the 1,328 papers initially retrieved, 431 duplicates and 216 records in languages other than English were removed. Among the 681 remaining studies, 98 were included in our research material on the basis of the following inclusion criteria: (a) the community-based studies; (b) using standardized diagnostic criteria; (c) reporting raw prevalence data; (d) with separate reported data for sex and age classes. Results While AD and CVD alone may be considered deleterious to health, the study of their combination constitutes a clinical challenge. Further research will help to clarify the real impact of vascular factors on these diseases. It may be hypothesized that there are various mechanisms underlying the association between AD and CVD, the main ones being hypoperfusion and emboli, atherosclerosis, and the fact that, in both the heart and brain of AD patients, amyloid deposits may be present, thus causing damage to these organs. Conclusions AD and CVD are frequently associated. Further studies are needed in order to understand the effect of CVD and its risk factors on AD in order to better comprehend the effects of subclinical and clinical CVD on the brain. Finally, we need to clarify the impact of the underlying hypothesized mechanisms of this association and to investigate gender issues.
Collapse
|
34
|
Zhou S, Li Z, Liu P, Wang S, Zhao J, Zhang G. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol 2020; 33:975-981. [PMID: 32174113 DOI: 10.1021/acs.chemrestox.9b00509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)- induced endothelial insults plays an important role in the pathogenesis of atherosclerosis. Donepezil is a well-known acetylcholinesterase inhibitor with its primary application being the treatment of Alzheimer's disease. More recently, there has been increased interest in donepezil as an antiatherosclerosis treatment as it possesses a host of relevant and potentially beneficial properties. In the present study, we found that donepezil could reduce the expression of lectin-type oxidized low-density lipoprotein receptor-1 (LOX-1) in human aortic endothelial cells (HAECs). We found that donepezil could suppress the expression of intercellular adhesion molecule-1 (ICAM-1), which recruits monocytes to adhere to the endothelium, by more than half. Another key finding of our study is that donepezil could reduce the expression of tumor necrosis factor receptor-α (TNF-α) and interleukin-6 (IL-6) by more than half at both the mRNA and protein transcriptional levels. Donepezil also reduced the expression of tissue factor (TF), which is considerably upregulated in atherosclerotic lesions, by more than half. Finally, we turned our attention to the early growth response protein-1 (Egr-1) for its potential role in mediating the effects of donepezil. Through our Egr-1 overexpression experiment, we found that overexpression of Egr-1 almost completely abolished the effects of donepezil described above. Thus, the effects of donepezil are likely mediated through downregulation of Egr-1. These findings provide evidence that donepezil may exert protective effects against atherosclerosis.
Collapse
Affiliation(s)
- Shengkai Zhou
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Zhao Li
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Sheng Wang
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Jian Zhao
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Guobao Zhang
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| |
Collapse
|
35
|
Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf) 2020; 228:e13396. [PMID: 31595611 DOI: 10.1111/apha.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality worldwide. Cardiovascular diseases such as acute myocardial infarction, ischaemia/reperfusion injury and heart failure are associated with cardiac autonomic imbalance characterized by sympathetic overactivity and parasympathetic withdrawal from the heart. Increased parasympathetic activity by electrical vagal nerve stimulation has been shown to provide beneficial effects in the case of cardiovascular diseases in both animals and patients by improving autonomic function, cardiac remodelling and mitochondrial function. However, clinical limitations for electrical vagal nerve stimulation exist because of its invasive nature, costly equipment and limited clinical validation. Therefore, novel therapeutic approaches which moderate parasympathetic activities could be beneficial for in the case of cardiovascular disease. Acetylcholinesterase inhibitors inhibit acetylcholinesterase and hence increase cholinergic transmission. Recent studies have reported that acetylcholinesterase inhibitors improve autonomic function and cardiac function in cardiovascular disease models. Despite its potential clinical benefits for cardiovascular disease patients, the role of acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation remains unclear. This article comprehensively reviews the effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure scenarios from in vitro and in vivo studies to clinical reports. The mechanisms involved are also discussed in this review.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
36
|
Cui X, Guo YE, Fang JH, Shi CJ, Suo N, Zhang R, Xie X. Donepezil, a drug for Alzheimer's disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol Sin 2019; 40:1386-1393. [PMID: 30918344 DOI: 10.1038/s41401-018-0206-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
Myelin sheaths play important roles in neuronal functions. In the central nervous system (CNS), the myelin is formed by oligodendrocytes (OLs), which are differentiated from oligodendrocyte precursor cells (OPCs). In CNS demyelinating disorders such as multiple sclerosis (MS), the myelin sheaths are damaged and the remyelination process is hindered. Small molecule drugs that promote OPC to OL differentiation and remyelination may provide a new way to treat these demyelinating diseases. Here we report that donepezil, an acetylcholinesterase inhibitor (AChEI) developed for the treatment of Alzheimer's disease (AD), significantly promotes OPC to OL differentiation. Interestingly, other AChEIs, including huperzine A, rivastigmine, and tacrine, have no such effect, indicating that donepezil's effect in promoting OPC differentiation is not dependent on the inhibition of AChE. Donepezil also facilitates the formation of myelin sheaths in OPC-DRG neuron co-culture. More interestingly, donepezil also promotes the repair of the myelin sheaths in vivo and provides significant therapeutic effect in a cuprizone-mediated demyelination animal model. Donepezil is a drug that has been used to treat AD safely for many years; our findings suggest that it might be repurposed to treat CNS demyelinating diseases such as MS by promoting OPC to OL differentiation and remyelination.
Collapse
|
37
|
Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Front Pharmacol 2019; 10:1295. [PMID: 31749703 PMCID: PMC6842955 DOI: 10.3389/fphar.2019.01295] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Natural Product research and Drug Discovery (CENAR), Wellness Research Cluster, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Giacconi R, Giuli C, Casoli T, Balietti M, Costarelli L, Provinciali M, Basso A, Piacenza F, Postacchini D, Galeazzi R, Fattoretti P, Nisi L, Fabbietti P, Papa R, Malavolta M. Acetylcholinesterase inhibitors in Alzheimer's disease influence Zinc and Copper homeostasis. J Trace Elem Med Biol 2019; 55:58-63. [PMID: 31345366 DOI: 10.1016/j.jtemb.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common age-related neurodegenerative disease. An altered homeostasis of Zinc (Zn) and Copper (Cu), as well as a dysregulated expression of Zn-regulatory proteins have been previously described in AD. Acetylcholinesterase inhibitors (AChEI) are commonly used as AD treatment to improve cognitive function, but their effect on Zn homeostasis is still unexplored. OBJECTIVES The aims of this study were to define the metal dyshomeostasis in AD patients, to investigate AChEI influence on Zn homeostasis and inflammation, and to analyze the relationship between cognitive impairment at two-year follow-up and metal concentrations, considering AChEI use. METHODS AND RESULTS 84 Healthy Elderly (HE) and 95 AD patients were enrolled (62 AchEI user and 33 AchEI naïve). HE showed similar plasma Zn and Cu concentrations and Cu/Zn ratio in comparison to AChEI users, but significantly higher Zn level, as well as lower Cu amount and Cu/Zn ratio than AChEI naïve patients. Moreover, AChEI users had increased Zn plasma level, reduced Cu amount, Cu/Zn ratio, and IL1β concentration and lower Zip2 lymphocytic expression vs. naïve patients. A multiple linear regression analysis showed that the MMSE score decline after two-year follow-up was reduced by AChEI therapy and was positively associated with plasma Zn decrease over time. CONCLUSION Our data revealed that AChEI use may affect peripheral Zn and Cu homeostasis in AD patients, decrease Cu/Zn ratio demonstrating a general reduction of inflammatory status in patients under AChEI treatment. Finally, AChEI influence on circulating Zn could be implicated in the drug-related slowdown of cognitive decline.
Collapse
Affiliation(s)
- R Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - C Giuli
- Geriatrics Operative Unit, IRCCS INRCA, Fermo, Italy
| | - T Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - M Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - L Costarelli
- Clinical Laboratory & Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - M Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - A Basso
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - F Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - D Postacchini
- Geriatrics Operative Unit, IRCCS INRCA, Fermo, Italy
| | - R Galeazzi
- Clinical Laboratory & Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - P Fattoretti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - L Nisi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - P Fabbietti
- Unit of Geriatric Pharmacoepidemiology, IRCCS INRCA, Ancona, Italy
| | - R Papa
- Centre of Socio-Economic Gerontological Research, IRCCS INRCA, Ancona, Italy
| | - M Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
39
|
Su J, Guo K, Huang M, Liu Y, Zhang J, Sun L, Li D, Pang KL, Wang G, Chen L, Liu Z, Chen Y, Chen Q, Huang L. Fucoxanthin, a Marine Xanthophyll Isolated From Conticribra weissflogii ND-8: Preventive Anti-Inflammatory Effect in a Mouse Model of Sepsis. Front Pharmacol 2019; 10:906. [PMID: 31555126 PMCID: PMC6722224 DOI: 10.3389/fphar.2019.00906] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Fucoxanthin (FX), a xanthophyll pigment which occurs in marine brown algae with remarkable biological properties, has been proven to be safe for consumption by animals. Although FX has various pharmacological effects including anti-inflammatory, anti-tumor, anti-obesity, antioxidant, anti-diabetic, anti-malarial, and anti-lipid, in vivo protective effect against sepsis has not been reported. In this study, we aimed at evaluation the efficacy of the FX in a model of sepsis mouse. Methods: FX was successfully isolated from Conticribra weissflogii ND-8 for the first time. The FX was identified by thin-layer chromatography (TLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), and nuclear magnetic resonance (NMR). Animals were randomly divided into 9 groups, including Sham group (mouse received an intraperitoneal injection of normal saline 1.0 ml/kg), FX-treated (0.1-1.0 ml/kg), Lipopolysaccharide (LPS)-treated (20 mg/kg), FX+LPS-treated (0.1-10.0 mg/kg and 20 mg/kg, respectively), and urinastatin groups (104 U/kg). Nuclear factor (NF)-κB activation could be potential treatment for sepsis. NF-κB signaling components were determined by western-blotting. IL-6, IL-1β, TNF-α production, and NF-κB activation were evaluated by ELISA and immunofluorescent staining in vitro. Results: FX was found to decrease the expression of inflammatory cytokines including IL-6, IL-1β, and TNF-α, in a prophylactic manner in the LPS-induced sepsis mouse model. Meanwhile, FX significantly inhibits phosphorylation of the NF-κB signaling pathway induced by LPS at the cellular level and reduces the nuclear translocation of NF-κB. The IC50 for suppressing the expression of NF-κB was 11.08 ± 0.78 μM in the THP1-Lucia™ NF-κB cells. Furthermore, FX also inhibits the expression of inflammatory factors in a dose-dependent manner with the IC50 inhibition of IL-6 production was 2.19 ± 0.70 μM in Raw267.4 macrophage cells. It is likely that the molecules with the ability of targeting NF-κB activation and inflammasome assembly, such as fucoxanthin, are interesting subjects to be used for treating sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kai Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Min Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yixuan Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jie Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Lijun Sun
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guangce Wang
- Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long Chen
- Division of Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Cultivation and High value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
40
|
Maroli A, Di Lascio S, Drufuca L, Cardani S, Setten E, Locati M, Fornasari D, Benfante R. Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J Neuroimmunol 2019; 332:155-166. [PMID: 31048268 DOI: 10.1016/j.jneuroim.2019.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
The α7 nicotinic acetylcholine receptor (CHRNA7) modulates the inflammatory response by activating the cholinergic anti-inflammatory pathway. CHRFAM7A, the human-restricted duplicated form of CHRNA7, has a negative effect on the functioning of α7 receptors, suggesting that CHRFAM7A expression regulation may be a key step in the modulation of inflammation in the human setting. The analysis of the CHRFAM7A gene's regulatory region reveals some of the mechanisms driving its expression and responsiveness to LPS in human immune cell models. Moreover, given the immunomodulatory potential of donepezil we show that it differently modulates CHRFAM7A and CHRNA7 responsiveness to LPS, thus contributing to its therapeutic potential.
Collapse
Affiliation(s)
- Annalisa Maroli
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Simona Di Lascio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Lorenzo Drufuca
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Silvia Cardani
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Elisa Setten
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Massimo Locati
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Diego Fornasari
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy
| | - Roberta Benfante
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
41
|
Wang Y, Xia J, Shen M, Zhou Y, Wu Z, Shi Y, Xu J, Hou L, Zhang R, Qiu Z, Xie Q, Chen H, Zhang Y, Wang H. Effects of BIS-MEP on Reversing Amyloid Plaque Deposition and Spatial Learning and Memory Impairments in a Mouse Model of β-Amyloid Peptide- and Ibotenic Acid-Induced Alzheimer's Disease. Front Aging Neurosci 2019; 11:3. [PMID: 30723404 PMCID: PMC6349730 DOI: 10.3389/fnagi.2019.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the main type of dementia and is characterized by progressive memory loss and a notable decrease in cholinergic neuron activity. As classic drugs currently used in the clinic, acetylcholinesterase inhibitors (AChEIs) restore acetylcholine levels and relieve the symptoms of AD, but are insufficient at delaying the onset of AD. Based on the multi-target-directed ligand (MTDL) strategy, bis-(-)-nor-meptazinol (BIS-MEP) was developed as a multi-target AChEI that mainly targets AChE catalysis and the β-amyloid (Aβ) aggregation process. In this study, we bilaterally injected Aβ oligomers and ibotenic acid (IBO) into the hippocampus of ICR mice and then subcutaneously injected mice with BIS-MEP to investigate its therapeutic effects and underlying mechanisms. According to the results from the Morris water maze test, BIS-MEP significantly improved the spatial learning and memory impairments in AD model mice. Compared with the vehicle control, the BIS-MEP treatment obviously inhibited the AChE activity in the mouse brain, consistent with the findings from the behavioral tests. The BIS-MEP treatment also significantly reduced the Aβ plaque area in both the hippocampus and cortex, suggesting that BIS-MEP represents a direct intervention for AD pathology. Additionally, the immunohistochemistry and ELISA results revealed that microglia (ionized calcium-binding adapter molecule 1, IBA1) and astrocyte (Glial fibrillary acidic protein, GFAP) activation and the secretion of relevant inflammatory factors (TNFα and IL-6) induced by Aβ were decreased by the BIS-MEP treatment. Furthermore, BIS-MEP showed more advantages than donepezil (an approved AChEI) as an Aβ intervention. Based on our findings, BIS-MEP improved spatial learning and memory deficits in AD mice by regulating acetylcholinesterase activity, Aβ deposition and the inflammatory response in the brain.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xia
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Shen
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhou
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Wu
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhuan Shi
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Neuroprotective effects of 1`δ-1`-acetoxyeugenol acetate on Aβ(25-35) induced cognitive dysfunction in mice. Biomed Pharmacother 2019; 109:1454-1461. [DOI: 10.1016/j.biopha.2018.10.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
|
43
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
44
|
Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:803-817. [DOI: 10.1007/s00210-018-1509-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
|
45
|
Haraguchi Y, Mizoguchi Y, Ohgidani M, Imamura Y, Murakawa-Hirachi T, Nabeta H, Tateishi H, Kato TA, Monji A. Donepezil suppresses intracellular Ca 2+ mobilization through the PI3K pathway in rodent microglia. J Neuroinflammation 2017; 14:258. [PMID: 29273047 PMCID: PMC5741946 DOI: 10.1186/s12974-017-1033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Microglia are resident innate immune cells which release many factors including proinflammatory cytokines or nitric oxide (NO) when they are activated in response to immunological stimuli. Pathophysiology of Alzheimer’s disease (AD) is related to the inflammatory responses mediated by microglia. Intracellular Ca2+ signaling is important for microglial functions such as release of NO and cytokines. In addition, alteration of intracellular Ca2+ signaling underlies the pathophysiology of AD, while it remains unclear how donepezil, an acetylcholinesterase inhibitor, affects intracellular Ca2+ mobilization in microglial cells. Methods We examined whether pretreatment with donepezil affects the intracellular Ca2+ mobilization using fura-2 imaging and tested the effects of donepezil on phagocytic activity by phagocytosis assay in rodent microglial cells. Results In this study, we observed that pretreatment with donepezil suppressed the TNFα-induced sustained intracellular Ca2+ elevation in both rat HAPI and mouse primary microglial cells. On the other hand, pretreatment with donepezil did not suppress the mRNA expression of both TNFR1 and TNFR2 in rodent microglia we used. Pretreatment with acetylcholine but not donepezil suppressed the TNFα-induced intracellular Ca2+ elevation through the nicotinic α7 receptors. In addition, sigma 1 receptors were not involved in the donepezil-induced suppression of the TNFα-mediated intracellular Ca2+ elevation. Pretreatment with donepezil suppressed the TNFα-induced intracellular Ca2+ elevation through the PI3K pathway in rodent microglial cells. Using DAF-2 imaging, we also found that pretreatment with donepezil suppressed the production of NO induced by TNFα treatment and the PI3K pathway could be important for the donepezil-induced suppression of NO production in rodent microglial cells. Finally, phagocytosis assay showed that pretreatment with donepezil promoted phagocytic activity of rodent microglial cells through the PI3K but not MAPK/ERK pathway. Conclusions These suggest that donepezil could directly modulate the microglial function through the PI3K pathway in the rodent brain, which might be important to understand the effect of donepezil in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-017-1033-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Toru Murakawa-Hirachi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiromi Nabeta
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
46
|
Bezerra OC, França CM, Rocha JA, Neves GA, Souza PRM, Teixeira Gomes M, Malfitano C, Loleiro TCA, Dourado PM, Llesuy S, de Angelis K, Irigoyen MCC, Ulloa L, Consolim-Colombo FM. Cholinergic Stimulation Improves Oxidative Stress and Inflammation in Experimental Myocardial Infarction. Sci Rep 2017; 7:13687. [PMID: 29057895 PMCID: PMC5651932 DOI: 10.1038/s41598-017-14021-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
We previously reported that cholinergic stimulation with pyridostigmine (PY) induces anti-inflammatory cell recruitment soon after myocardial infarction (MI). In this study, we evaluated the anti-inflammatory effects of PY during the proliferative phase of cardiac repair by analyzing the infiltration of macrophages, Treg lymphocytes, oxidative stress and inflammatory cytokines. Wistar rats underwent control sham surgery or ligation of the left coronary artery and were randomly allocated to remain untreated (untreated infarcted group, I) or to receive PY (30 mg·kg(−1)·day(−1)) in the supplied water (infarcted treated group, I + PY). Blood pressure and heart rate variability were registered at day 5 post-MI. The animals were euthanized 7 days after thoracotomy, when the hearts were removed and processed for immunohistochemistry (CD68, CD206, FOXP3), cytokines (IL-1β, IL-6, IL-10, TNF-α) and oxidative stress (superoxide dismutase, catalase, glutathione peroxidase, lipidic and protein peroxidation). PY treatment increased parasympathetic modulation, M2 macrophages and the anti-oxidant enzyme activity but reduced protein oxidation (carbonyls) and the concentration of IL-1β, IL-6, TNF-α and IL-10. Cholinergic stimulation induces parasympathetic neuro-immune modulation and anti-inflammatory cell enrollment as well as prevents oxidative stress and cytokine production after MI.
Collapse
Affiliation(s)
| | - Cristiane Miranda França
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil. .,Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97229, USA.
| | - Juraci Aparecida Rocha
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gizele A Neves
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | - Christiane Malfitano
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Tatiane C Alba Loleiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Magno Dourado
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Susana Llesuy
- Universidad de Buenos Aires, Buenos Aires, Argentina, Facultad de Farmácia y Bioquímica, Buenos Aires, Argentina
| | | | - Maria Claudia C Irigoyen
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Ulloa
- Center of Immunology and Inflammation, Rutgerts - New Jersey Medical School, Newark, NJ, 07101, USA
| | - Fernanda M Consolim-Colombo
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.,Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|