1
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
2
|
Chen D, Liang H, Huang L, Zhou H, Wang Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024; 14:1365-1377. [PMID: 36271684 PMCID: PMC11301266 DOI: 10.1002/2211-5463.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
Collapse
Affiliation(s)
- Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hongxin Liang
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic SurgeryCharité Universitätsmedizin BerlinGermany
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Guo J, Chen X, Wang C, Ruan F, Xiong Y, Wang L, Abdel-Razek O, Meng Q, Shahbazov R, Cooney RN, Wang G. LIRAGLUTIDE ALLEVIATES ACUTE LUNG INJURY AND MORTALITY IN PNEUMONIA-INDUCED SEPSIS THROUGH REGULATING SURFACTANT PROTEIN EXPRESSION AND SECRETION. Shock 2024; 61:601-610. [PMID: 38150354 PMCID: PMC11009087 DOI: 10.1097/shk.0000000000002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Glucagon-like peptide 1 (GLP-1) analogs are used to treat type 2 diabetes, and they can regulate insulin secretion, energy homeostasis, inflammation, and immune cell function. This study sought to determine whether the GLP-1 analog liraglutide exerts a beneficial action in an acute lung injury model of pneumonia-induced sepsis. Methods: Wild-type FVB/NJ mice (n = 114) were infected by intratracheal injection with Pseudomonas aeruginosa Xen5 (4 × 10 4 CFU/mouse) or an equal volume (50 μL) of saline (control) with or without a subcutaneous injection of liraglutide (2 mg/kg, 30 min after infection). Mice were killed 24 h after infection. Lung tissues and BALF were analyzed. In separate experiments, the dynamic growth of bacteria and animal mortality was monitored using in vivo imaging system within 48 h after infection. In addition, primary lung alveolar type II cells isolated from mice were used to study the mechanism of liraglutide action. Result: Liraglutide improved survival ( P < 0.05), decreased bacterial loads in vivo , and reduced lung injury scores ( P < 0.01) in septic mice. Liraglutide-treated mice showed decreased levels of inflammatory cells ( P < 0.01) and proinflammatory cytokines (TNF-α and IL-6) ( P < 0.01) in the lung compared with septic controls. Liraglutide significantly increased pulmonary surfactant proteins (SP-A and SP-B) expression/secretion ( P < 0.01) and phospholipid secretion ( P < 0.01) in vivo . Primary alveolar type II cells pretreated with liraglutide improved SP-A and SP-B expression after LPS exposure ( P < 0.01). Conclusion: Liraglutide attenuates mortality and lung inflammation/injury in pneumonia-induced sepsis. The increased surfactant expression/secretion and anti-inflammatory effects of liraglutide represent potential mechanisms by GLP-1 agonists potentiate host defense and maintain alveolar respiratory function in acute lung injury.
Collapse
Affiliation(s)
- Junping Guo
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Xinghua Chen
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Nephrology, Wuhan University, Renmin Hospital, Wuhan 430060, China
| | - Cole Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Feng Ruan
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yunhe Xiong
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lijun Wang
- Department of Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Osama Abdel-Razek
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rauf Shahbazov
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Liu B, Li Y, Xiang J, Li Y, Zhou M, Ren Y, Fu Z, Ding F. Significance of Pyroptosis in Immunoregulation and Prognosis of Patients with Acute Respiratory Distress Syndrome: Evidence from RNA-Seq of Alveolar Macrophages. J Inflamm Res 2023; 16:3547-3562. [PMID: 37636276 PMCID: PMC10455887 DOI: 10.2147/jir.s422585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective This study aimed to investigate the role of pyroptosis in alveolar macrophages regarding the immune microenvironment of acute respiratory distress syndrome (ARDS) and its prognosis. Methods ARDS Microarray data were downloaded from Gene Expression Omnibus (GEO). Support vector machine (SVM) and random forest (RF) models were applied to identify hub pyroptosis-related genes (PRGs) with prognostic significance in ARDS. RT-PCR was used to detect the relative expression of PRGs mRNA in alveolar macrophages of ARDS mice. Consensus clustering analysis was conducted based on the expression of the PRGs to identify pyroptosis modification patterns. Bioinformatic algorithms were used to study the immune traits and biological functions of the pyroptosis patterns. Finally, protein-protein interaction (PPI) networks were established to identify hub regulatory proteins with implications for the pyroptosis patterns. Results In our study, a total of 12 PRGs with differential expression were obtained. Four hub PRGs, including GPX4, IL6, IL18 and NLRP3, were identified and proven to be predictive of ventilator-free days (VFDS) in ARDS patients. The AUC values of the 4 PRGs were 0.911 (GPX4), 0.879 (IL18), 0.851 (IL6) and 0.841 (NLRP3), respectively. In ARDS mice, GPX4 mRNA decreased significantly, while IL6, IL18, and NLRP3 mRNA increased. Functional analysis revealed that IL6 had the strongest positive correlation with the CCR pathway, while GPX4 exhibited the strongest negative correlation with the T co-inhibition pathway. Based on the expression of the 4 PRGs, three pyroptosis modification patterns representing different immune states were obtained, and pattern C might represent immune storm. Conclusion The results showed that pyroptosis plays an important regulatory role in the immune microenvironment of ARDS. This finding provides new insights into the pathogenesis, diagnosis, and treatment of ARDS.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiothoracic Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yan Li
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jinying Xiang
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuehan Li
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mi Zhou
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinying Ren
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhou Fu
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fengxia Ding
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
7
|
Li S, Li Y, Liu Y, Wu Y, Wang Q, Jin L, Zhang D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. Int J Mol Sci 2023; 24:ijms24108642. [PMID: 37239989 DOI: 10.3390/ijms24108642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Various lung diseases endanger people's health. Side effects and pharmaceutical resistance complicate the treatment of acute lung injury, pulmonary fibrosis, and lung cancer, necessitating the development of novel treatments. Antimicrobial peptides (AMPs) are considered to serve as a viable alternative to conventional antibiotics. These peptides exhibit a broad antibacterial activity spectrum as well as immunomodulatory properties. Previous studies have shown that therapeutic peptides including AMPs had remarkable impacts on animal and cell models of acute lung injury, pulmonary fibrosis, and lung cancer. The purpose of this paper is to outline the potential curative effects and mechanisms of peptides in the three types of lung diseases mentioned above, which may be used as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Shujiao Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yuying Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qiuyu Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Wang Y, Deng F, Zhong X, Du Y, Fan X, Su H, Pan T. Dulaglutide provides protection against sepsis-induced lung injury in mice by inhibiting inflammation and apoptosis. Eur J Pharmacol 2023; 949:175730. [PMID: 37062504 DOI: 10.1016/j.ejphar.2023.175730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Sepsis is a dangerous condition with a high mortality rate. In addition to promoting insulin secretion in a glucose-dependent manner, glucagon-like peptide-1 (GLP-1) also exhibits anti-inflammatory properties. Dulaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1 RA). In this study, we investigated the effects and mechanism of action of dulaglutide (Dul) in lipopolysaccharide (LPS) induced lung injury in mice with sepsis. In mice with LPS (15 mg/kg, ip, qd)-induced acute lung injury, the administration of dulaglutide (0.6 mg/kg, ip, qd) improved weight loss, reduced lung injury, reversed the increase in IL-1β, TNF-α, IL-6, CXCL1, CCL2 and CXCL2 expression in the lung, and reduced the infiltration of neutrophils and macrophages in the lung tissues. The decline in caspase-3, cleaved caspase-3, caspase-8, and Bcl-2/Bax expression and the increase in the number of TUNEL positive cells in the lung were reversed, suggesting that GLP-1RA could play a protective role in the lung by inhibiting inflammation and apoptosis. In addition, GLP-1RA could reduce the expression of P-STAT3 and NLRP3, suggesting that P-STAT3 and NLRP3 may be potential targets against lung injury in sepsis. Collectively, our data demonstrated that GLP-1RA exerts a protective effect against sepsis-induced lung injury through mechanisms related to the inhibition of inflammation, apoptosis, and STAT3 signaling.
Collapse
Affiliation(s)
- Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China
| | - Fengyi Deng
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China
| | - Xingyu Fan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230031, Anhui Province, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, 230061, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230061, Hefei, 230061, Anhui Province, China.
| |
Collapse
|
9
|
Wang X, Zhou L, Ye S, Liu S, Chen L, Cheng Z, Huang Y, Wang B, Pan M, Wang D, Wang L, Lei Z, Im YJ, Li X. rFGF4 alleviates lipopolysaccharide-induced acute lung injury by inhibiting the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 117:109923. [PMID: 36842235 DOI: 10.1016/j.intimp.2023.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
Acute lung injury (ALI) is a serious and common clinical disease. Despite significant progress in ALI treatment, the morbidity and mortality rates remain high. However, no effective drug has been discovered for ALI. FGF4, a member of the FGF family, plays an important role in the regulation of various physiological and pathological processes. Therefore, in the present study, we aimed to study the protective effects of FGF4 against LPS-induced lung injury in vivo and in vitro. We found that rFGF4 treatment improved the lung W/D weight ratio, the survival rate, immune cell infiltration and protein concentrations in mice with LPS-induced ALI. Histological analysis revealed that rFGF4 significantly attenuated lung tissue injury and cell apoptosis. Furthermore, rFGF4 inhibited the activation of the TLR4/NF-κB signaling pathway and the production of pro-inflammatory mediators in LPS-injured lung tissues, murine alveolar macrophages (MH-S) and murine pulmonary epithelial (MLE-12) cells. The results of cell experiments further verified that rFGF4 inhibited the production of inflammatory mediators in MH-S cells and MLE-12 cells by regulating the TLR4/NF-κB signaling pathway. These results revealed that rFGF4 protected lung tissues and inhibited inflammatory mediators in mice with LPS-induced ALI by inhibiting the TLR4/NF-κB signaling pathway in MH-S and MLE-12 cells.
Collapse
Affiliation(s)
- Xianshi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Liya Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sidan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lin Chen
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Zizhao Cheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuli Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Beibei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Minling Pan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Dezhong Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Luhai Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenli Lei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Balk-Møller E, Hebsgaard MMB, Lilleør NB, Møller CH, Gøtze JP, Kissow H. Glucagon-like peptide-1 stimulates acute secretion of pro-atrial natriuretic peptide from the isolated, perfused pig lung exposed to warm ischemia. FRONTIERS IN TRANSPLANTATION 2022; 1:1082634. [PMID: 38994393 PMCID: PMC11235333 DOI: 10.3389/frtra.2022.1082634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 07/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) has proven to be protective in animal models of lung disease but the underlying mechanisms are unclear. Atrial natriuretic peptide (ANP) is mainly produced in the heart. As ANP possesses potent vaso- and bronchodilatory effects in pulmonary disease, we hypothesised that the protective functions of GLP-1 could involve potentiation of local ANP secretion from the lung. We examined whether the GLP-1 receptor agonist liraglutide was able to improve oxygenation in lungs exposed to 2 h of warm ischemia and if liraglutide stimulated ANP secretion from the lungs in the porcine ex vivo lung perfusion (EVLP) model. Pigs were given a bolus of 40 µg/kg liraglutide or saline 1 h prior to sacrifice. The lungs were then left in vivo for 2 h, removed en bloc and placed in the EVLP machinery. Lungs from the liraglutide treated group were further exposed to liraglutide in the perfusion buffer (1.125 mg). Main endpoints were oxygenation capacity, and plasma and perfusate concentrations of proANP and inflammatory markers. Lung oxygenation capacity, plasma concentrations of proANP or concentrations of inflammatory markers were not different between groups. ProANP secretion from the isolated perfused lungs were markedly higher in the liraglutide treated group (area under curve for the first 30 min in the liraglutide group: 635 ± 237 vs. 38 ± 38 pmol/L x min in the saline group) (p < 0.05). From these results, we concluded that liraglutide potentiated local ANP secretion from the lungs.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde M. B. Hebsgaard
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj B. Lilleør
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian H. Møller
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens P. Gøtze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Noman M, Qazi NG, Rehman NU, Khan AU. Pharmacological investigation of brucine anti-ulcer potential. Front Pharmacol 2022; 13:886433. [PMID: 36059979 PMCID: PMC9429807 DOI: 10.3389/fphar.2022.886433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Gastric ulcer is one of the most common chronic gastrointestinal diseases characterized by a significant defect in the mucosal barrier. The current study has been conducted to evaluate the brucine anti-ulcer effect. Brucine has binding energy values ranging from −2.99 to −8.11 kcal/mol against chosen targets, according to in silico research. Brucine exhibits an inhibitory effect against Helicobacter pylori. In vivo findings revealed that brucine (3 mg/kg) showed effective results in healing ethanol-induced ulcer lesions of the gastric region in rats. Brucine showed an inhibitory effect against H+/K+-ATPase. Levels of glutathione, glutathione-s-transferase, and catalase were enhanced in the gastric rat tissue with the use of brucine, while a significant decrease in lipid peroxide levels was seen. Histopathological evaluation showed improvement in cellular architecture and a decrease in inflammatory indicators like cyclooxygenase, tumor necrosis factor, and nuclear factor kappa B expression, validated through immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot techniques. In the reverse transcription–polymerase chain reaction, brucine decreased H+/K+-ATPase mRNA levels. This study reveals that brucine possesses stable binding affinities against selected targets. Brucine exhibits an anti-ulcer effect, mediated via anti-H. pylori, H+/K+-ATPase inhibition, and antioxidant and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad Noman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Arif-ullah Khan,
| |
Collapse
|
12
|
Li J, Pan C, Tang C, Tan W, Liu H, Guan J. The Reaction Pathway of miR-30c-5p Activates Lipopolysaccharide Promoting the Course of Traumatic and Hemorrhagic Shock Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3330552. [PMID: 35463979 PMCID: PMC9021990 DOI: 10.1155/2022/3330552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory failure caused by diffuse inflammatory injury in alveolar epithelial cells during severe infection, trauma, and shock. Among them, trauma/hemorrhagic shock (T/HS) is the main type of indirect lung injury. Despite a great number of clinical studies, indirect factor trauma/hemorrhagic shock to the function and the mechanism in acute lung injury is not clear yet. Therefore, it is still necessary to carry on relevant analysis in order to thoroughly explore its molecular and cellular mechanisms and the pathway of disease function. In our research, we aimed to identify potential pathogenic genes and do modular analysis by downloading disease-related gene expression profile data. And our dataset is from the NCBI-GEO database. Then, we used the Clusterprofiler R package, GO function, and KEGG pathway enrichment analysis to analyze the core module genes. In addition, we also identified key transcription factors and noncoding RNAs. Based on the high degree of interaction of potential pathogenic genes and their involved functions and pathways, we identified 17 dysfunction modules. Among them, up to 9 modules significantly regulate the response to bacterial-derived molecules, and the response to lipopolysaccharide and other related functional pathways that mediate disease development. In addition, miR-290, miR-30c-5p, miR-195-5p, and miR-1-3p-based ncRNA and Jun, Atf1, and Atf3-based transcription factors have a total of 80 transcription drivers for functional modules. In summary, this study confirmed that miR-30c-5p activates lipopolysaccharide response pathway to promote the pathogenesis of ALI induced by hemorrhagic shock. This result can be an important direction for further research on related deepening diseases such as acute respiratory distress syndrome (ARDS). It further provides a piece of scientific medical evidence for revealing the pathogenic principle and cure difficulty of acute lung injury and also provides important guidance for the design of therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
| | - Chanyuan Pan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
| | - Chao Tang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
| | - Wenwen Tan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
| | - Hui Liu
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
| | - Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410008 Hunan, China
| |
Collapse
|
13
|
Wu AY, Cahill KN, Toki S, Peebles RS. Evaluating the glucagon-like peptide-1 receptor in managing asthma. Curr Opin Allergy Clin Immunol 2022; 22:36-41. [PMID: 34772827 PMCID: PMC8842827 DOI: 10.1097/aci.0000000000000797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the role of glucagon-like peptide-1 (GLP-1) receptor signalling in reducing lung inflammation and potential use for GLP-1 receptor agonists (GLP-1RAs) in management of asthma. RECENT FINDINGS Although GLP-1RA are currently used for the treatment of type 2 diabetes (T2D) and weight loss in obesity, there is much interest in expanding the indications for use in other diseases, including inflammatory pulmonary disease. In animal models of both acute and chronic pulmonary disease, use of GLP-1RA reduces airway inflammation, obstruction and fibrosis. In particular, GLP-1 receptor (GLP-1R) signalling seems to inhibit allergen-induced type 2 inflammation, making it an attractive agent for asthma. Results are especially promising in disease processes with disturbed metabolic regulation, such as T2D or metabolic syndrome. Retrospective clinical studies demonstrate promising evidence for the use of GLP-1RAs in comorbid diabetes and asthma, although prospective human studies are limited. SUMMARY Here, we discuss the biology of GLP-1 and GLP-1R signalling, review the preclinical and mechanistic evidence for how GLP-1R signalling may reduce pulmonary inflammation, and summarize recent and upcoming clinical studies. Ultimately, targeting GLP-1R signalling may represent a novel approach for asthma therapy that is glucocorticoid sparing and possibly disease modifying.
Collapse
Affiliation(s)
| | - Katherine N Cahill
- Department of Medicine
- Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Shinji Toki
- Department of Medicine
- Division of Allergy, Pulmonary, and Critical Care Medicine
| | - R Stokes Peebles
- Department of Medicine
- Division of Allergy, Pulmonary, and Critical Care Medicine
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine
- Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Wei J, Wang R, Ye H, Wang Y, Wang L, Zhang X. Effects of GLP-1 receptor agonists on arrhythmias and its subtypes in patients with type 2 diabetes: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:910256. [PMID: 36034440 PMCID: PMC9403613 DOI: 10.3389/fendo.2022.910256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE An update of a systematic review and meta-analysis of the risk of arrhythmias and their subtypes in type 2 diabetic patients receiving glucagon-like peptide 1 receptor agonist (GLP-1RA) medication according to data from the Cardiovascular Outcome Trial(CVOT). METHODS Randomized controlled trials (RCT) on GLP-1RA therapy and cardiovascular outcomes in type 2 diabetes mellitus patients published in full-text journal databases such as MEDLINE (via PubMed), Embase, Clinical Trials.gov, and the Cochrane Library from establishment to March 1, 2022 were searched. We assessed the quality of individual studies by the Cochrane risk-of-bias algorithm. RevMan 5.4.1 software was use for calculating meta-analysis. RESULTS A total of 60,081 randomized participants were included in the data of these 8 GLP-1RA cardiovascular outcomes trials. Pooled analysis reported no significant effect on total arrhythmia [RR=0.96, 95% CI (0.96, 1.05), p =0.36], and its subtypes such as atrial fibrillation [RR=0.96, 95% CI (0.86, 1.07), p =0.43], atrial flutter [RR= 0.82, 95% CI (0.57, 1.19), p =0.30], atrial tachycardia [RR=0.64, 95% CI (0.20, 2.01), p =0.44)], sinoatrial node dysfunction [RR=0.74, 95% CI (0.44, 1.25), p =0.26], ventricular preterm systole [RR=1.42, 95% CI (0.62, 3.26), p =0.41], second degree AV block [RR=0.96, 95% CI (0.53, 1.72), p =0.88], complete AV block [RR=0.75, 95% CI (0.49, 1.17), p =0.21], ventricular fibrillation [RR=1.00, 95% CI (0.50, 2.02), p =1.00], ventricular tachycardia [RR=1.37, 95% CI (0.91, 2.08), p =0.13] from treatment with GLP-1RA versus placebo. However, the risk of hypoglycemia was reduced by about 30% [RR=0.70, 95% CI (0.57, 0.87), p=0.001] and the risk of pneumonia by about 25% [RR=0.85, 95% CI (0.75, 0.97), p=0.01], both statistically significant differences. CONCLUSION In type 2 diabetic patients, treatment with GLP-1RA has no significant effect on the risk of major arrhythmias but significantly reduces the risk of hypoglycemia and pneumonia.
Collapse
Affiliation(s)
- Jinjing Wei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaofang Zhang, ; Lihong Wang,
| | - Xiaofang Zhang
- Department Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaofang Zhang, ; Lihong Wang,
| |
Collapse
|
15
|
Lee JH. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Med Hypotheses 2021; 158:110739. [PMID: 34916733 PMCID: PMC8654461 DOI: 10.1016/j.mehy.2021.110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious diseases caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Now, it is pandemic over the world. SARS-CoV-2 often causes a “cytokine storm” in people with COVID-19, causing inflammatory lung damage and pneumonia, which eventually leads to death. Glucagon like peptide-1 (GLP-1) is well known as an incretin hormone responsible for regulation of blood glucose through its receptor. Beyond glycemic control, GLP-1 receptor agonists (GLP-1RAs) have promising anti-inflammatory actions in human and rodent pathological models. Recent studies proved that GLP-1RAs attenuate pulmonary inflammation, reduce cytokine production, and preserve lung function in mice and rats with experimental lung injury. Moreover, a thickened pulmonary vascular wall, an important characteristic of pulmonary arterial hypertension (PAH) was observed in the autopsy lung tissue of a COVID-19 patient. Thus GLP-1RAs may be a novel therapeutic strategy for combating this pandemic specifically for patient characteristics of PHA after COVID-19 infection.
Collapse
Affiliation(s)
- Jong Han Lee
- Department of Marine Bio and Medical Science, Hanseo University, Seosan, South Korea
| |
Collapse
|
16
|
Sharifi Y, Payab M, Mohammadi-Vajari E, Aghili SMM, Sharifi F, Mehrdad N, Kashani E, Shadman Z, Larijani B, Ebrahimpur M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. J Diabetes Metab Disord 2021; 20:1743-1765. [PMID: 34222055 PMCID: PMC8233632 DOI: 10.1007/s40200-021-00822-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, which began spreading from China Wuhan and gradually spreaded to most countries, led to the announcement by the World Health Organization on March 11, 2020, as a new pandemic. The most important point presented by the World Health Organization about this disease is to better understand the risk factors that exacerbate the course of the disease and worsen its prognosis. Due to the high majority of cardio metabolic risk factors like obesity, hypertension, diabetes, and dyslipidemia among the population over 60 years old and higher, these cardio metabolic risk factors along with the age of these people could worsen the prognosis of the coronavirus disease of 2019 (COVID-19) and its mortality. In this study, we aimed to review the articles from the beginning of the pandemic on the impression of cardio metabolic risk factors on COVID-19 and the effectiveness of COVID-19 on how to manage these diseases. All the factors studied in this article, including hypertension, diabetes mellitus, dyslipidemia, and obesity exacerbate the course of Covid-19 disease by different mechanisms, and the inflammatory process caused by coronavirus can also create a vicious cycle in controlling these diseases for patients.
Collapse
Affiliation(s)
- Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Yaas Diabetes and Metabolic Diseases Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 US
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Mohammadi-Vajari
- Student of Medicine, School of Medicine, Gilan University of Medical Sciences, Rasht, Iran
| | - Seyed Morsal Mosallami Aghili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kashani
- Department of Obstetrics and Gynecology, Golestan University of Medical Sciences, Golestan, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Wu AY, Peebles RS. The GLP-1 receptor in airway inflammation in asthma: a promising novel target? Expert Rev Clin Immunol 2021; 17:1053-1057. [PMID: 34425713 PMCID: PMC8487967 DOI: 10.1080/1744666x.2021.1971973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashley Y Wu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R Stokes Peebles
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
18
|
Wang X, Yang B, Li Y, Luo J, Wang Y. AKR1C1 alleviates LPS‑induced ALI in mice by activating the JAK2/STAT3 signaling pathway. Mol Med Rep 2021; 24:833. [PMID: 34590152 PMCID: PMC8503743 DOI: 10.3892/mmr.2021.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is a respiratory tract disease characterized by increased alveolar/capillary permeability, lung inflammation and structural damage to lung tissues, which can progress and transform into acute respiratory distress syndrome (ARDS). Although there are several treatment strategies available to manage this condition, there is still no specific cure for ALI. Aldo-keto reductase family 1 member C1 (AKR1C1) is a member of the aldo-keto reductase superfamily, and is a well-known Nrf2 target gene and an oxidative stress gene. The aim of the present study was to investigate the effects of AKR1C1 on a lipopolysaccharide (LPS)-induced ALI model. After mice received LPS treatment, the mRNA expression levels of AKR1C1 in the bronchoalveolar lavage fluid and serum were measured using reverse transcription-quantitative PCR and its relationship with the inflammatory factors and malondialdehyde levels were determined using correlation analysis. Next, AKR1C1 was overexpressed or knocked out in mice, and subsequently ALI was induced in mice using LPS. The severity of ALI, oxidative stress and inflammation in the lungs were measured, and the potential involvement of the Janus kinase 2 (JAK2)/signal transduction activator of transcription 3 (STAT3) signaling pathway was assessed by measuring the changes of lung injury parameters after the agonists of JAK2/STAT3 pathway, including interleukin (IL)-6 and colivelin, were administrated to mice. The results revealed that AKR1C1 expression was decreased in the LPS-induced ALI mouse model. AKR1C1 expression was inversely correlated with serum tumor necrosis factor-α, IL-6 and malondialdehyde levels, and positively correlated with serum IL-10 levels. AKR1C1 overexpression significantly attenuated lung injury, as shown by the changes in Evans blue leakage in the lung, lung wet/dry weight ratio, PaO2/FIO2 ratio, survival rate of mice and histological lung changes. In addition, the JAK2/STAT3 signaling pathway was significantly deactivated by AKR1C1+/+. When AKR1C1+/+ mice were treated with JAK2/STAT3 agonists, the effects of AKR1C1 overexpression on lung injury and oxidative stress were abolished. In conclusion, AKR1C1 may protect against oxidative stress and serve as a negative regulator of inflammation in ALI/ARDS. In addition, the JAK2/STAT3 signaling pathway could participate in the protective effects of AKR1C1 against ALI.
Collapse
Affiliation(s)
- Xianjun Wang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Baocheng Yang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yuyu Li
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Jiye Luo
- Emergency Medicine Department, The First People's Hospital of Lianyungang; 3Emergency Medicine Department, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222002, P.R. China
| | - Yanli Wang
- Emergency Medicine Department, The First People's Hospital of Lianyungang; 3Emergency Medicine Department, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
19
|
Lu X, Xu C, Yang R, Zhang G. Ganoderic Acid A Alleviates OVA-Induced Asthma in Mice. Inflammation 2021; 44:1908-1915. [PMID: 34037898 PMCID: PMC8460586 DOI: 10.1007/s10753-021-01468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effects of ganoderic acid A (GAA) on OVA-induced asthma in mice. Mouse asthma model was established by ovalbumin (OVA) in vitro. Diff-Quik staining was used to observe the total numbers of cells and the number of classification cells in each group, and HE staining was used to observe lung inflammation in lung tissue sections. ELISA was used to detect the effect of GAA on the levels of interleukin-4 (IL-4), IL-5, and IL-13 in serum and lung tissue. The expression levels of TLR/NF-κB were detected by Western blot. Immunohistochemistry was used to observe the expression changes of TLR4 and P-P65. Compared with the normal group, the inflammatory cell count, IL-4, IL-5, and IL-13 expression in the model group increased, and TLR/NF-kB signal protein expression increased. Compared with the model group, in GAA group, the number of inflammatory cells, the expression of IL-4, IL-5, and IL-13 decreased, and the expression of TLR/NF-kB signaling protein decreased. GAA regulated lung inflammation in asthmatic mice by inhibiting TLR/NF-kB signaling pathway.
Collapse
Affiliation(s)
- Xinhua Lu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Xu
- Henan Luoyang Orthopedic-Traumatological Hospital, Luoyang, 471000, China
| | - Rui Yang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guojun Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
Hariyanto TI, Intan D, Hananto JE, Putri C, Kurniawan A. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (Covid-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract 2021; 179:109031. [PMID: 34461139 PMCID: PMC8397482 DOI: 10.1016/j.diabres.2021.109031] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
AIMS GLP-1RA has many beneficial properties, including anti-inflammatory, anti-obesogenic, pulmonary protective effects as well as beneficial impact on gut microbiome. However, the evidence regarding the benefit of GLP-1RA in Covid-19 patients with diabetes is still unclear. This study sought to analyze the benefit of pre-admission use of GLP-1RA in altering the mortality outcomes of coronavirus disease 2019 (Covid-19) patients with diabetes mellitus. METHODS Using specific keywords, we comprehensively searched the potential articles on PubMed, Europe PMC, and medRxiv database until June 12th, 2021. All published studies on Covid-19 and GLP-1RA were retrieved. Statistical analysis was conducted using Review Manager 5.4 and Comprehensive Meta-Analysis version 3 software. RESULTS A total of 9 studies with 19,660 diabetes mellitus patients who were infected by SARS-CoV-2 were included in the meta-analysis. Our data suggested that pre-admission use of GLP-1RA was associated with reduction in mortality rate from Covid-19 in patients with diabetes mellitus (OR 0.53; 95 %CI: 0.43-0.66, p < 0.00001, I2 = 0%, random-effect modelling). Further analysis showed that the associations were not influenced by age (p = 0.213), gender (p = 0.421), hypertension (p = 0.131), cardiovascular disease (p = 0.293), nor the use of metformin (p = 0.189) and insulin (p = 0.117). CONCLUSIONS Our study suggests that pre-admission use of GLP-1RA may offer beneficial effects on Covid-19 mortality in patients with diabetes mellitus. However, more randomized clinical trials are required to confirm this conclusion.
Collapse
Affiliation(s)
| | - Denny Intan
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Joshua Edward Hananto
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia.
| |
Collapse
|
21
|
Alshanwani A, Kashour T, Badr A. Anti-Diabetic Drugs GLP-1 Agonists and DPP-4 Inhibitors may Represent Potential Therapeutic Approaches for COVID-19. Endocr Metab Immune Disord Drug Targets 2021; 22:571-578. [PMID: 34370655 DOI: 10.2174/1871530321666210809153558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023]
Abstract
The fast spread of coronavirus 2019 (COVID-19) calls for immediate action to counter the associated significant loss of human life and deep economic impact. Certain patient populations like those with obesity and diabetes are at higher risk for acquiring severe COVID-19 disease and have a higher risk of COVID-19 associated mortality. In the absence of an effective and safe vaccine, the only immediate promising approach is to repurpose an existing approved drug. Several drugs have been proposed and tested as adjunctive therapy for COVID-19. Among these drugs are the glucagon-like peptide-1 (GLP-1) 2 agonists and the dipeptidylpeptidase-4 (DPP-4) inhibitors. Beyond their glucose-lowering effects, these drugs have several pleiotropic protective properties, which include cardioprotective effects, anti-inflammatory and immunomodulatory activities, antifibrotic effects, antithrombotic effects, and vascular endothelial protective properties. This narrative review discusses these protective properties and addresses their scientific plausibility for their potential use as adjunctive therapy for COVID-19 disease.
Collapse
Affiliation(s)
- Aliah Alshanwani
- College of Medicine, Physiology Department, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Kashour
- King Fahd Cardiac Centre, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front Endocrinol (Lausanne) 2021; 12:649525. [PMID: 34220706 PMCID: PMC8247904 DOI: 10.3389/fendo.2021.649525] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
The relationship between COVID-19 and diabetes mellitus is complicated and bidirectional. On the one hand, diabetes mellitus is considered one of the most important risk factors for a severe course of COVID-19. Several factors that are often present in diabetes mellitus are likely to contribute to this risk, such as older age, a proinflammatory and hypercoagulable state, hyperglycemia and underlying comorbidities (hypertension, cardiovascular disease, chronic kidney disease and obesity). On the other hand, a severe COVID-19 infection, and its treatment with steroids, can have a specific negative impact on diabetes itself, leading to worsening of hyperglycemia through increased insulin resistance and reduced β-cell secretory function. Worsening hyperglycemia can, in turn, adversely affect the course of COVID-19. Although more knowledge gradually surfaces as the pandemic progresses, challenges in understanding the interrelationship between COVID-19 and diabetes remain.
Collapse
Affiliation(s)
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Duan Q, Jia Y, Qin Y, Jin Y, Hu H, Chen J. Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered 2021; 11:801-810. [PMID: 32693689 PMCID: PMC8291818 DOI: 10.1080/21655979.2020.1795424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disorder related to serious pulmonary inflammation. Narciclasine exhibits strong anti-inflammation activity and attenuates the reactive oxygen species (ROS) production. The present study aims to investigate the underlying mechanism related to the effect of narciclasine on the pathogenesis of neonatal acute lung injury (ALI). Narciclasine attenuated LPS-induced pathological injury and pulmonary edema. In addition, narciclasine suppressed the secretion of inflammatory cytokines, including necrosis factor-α (TNF-α), Interleukin (IL-6), IL-1β, monocyte chemotactic protein-1 (MCP-1) in serum, and inhibited the expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in lung tissues of neonatal ALI rats. Furthermore, narciclasine alleviated oxidative stress and apoptosis in lung tissues. Importantly, narciclasine exerted an inhibition effect on NF-κB nuclear translocation and activation of Toll-like Receptor 4 (TLR4)/Nuclear factor (NF)-κB/Cyclooxygenase 2 (Cox2) signaling pathway. Taken together, narciclasine protected against lung injury via inhibition effect on excessive inflammation, oxidative stress and apoptosis, hence, narciclasine may be considered as an effective and novel agent for clinical therapeutic strategy of ALI Treatment.
Collapse
Affiliation(s)
- Qingning Duan
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yin Jia
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yan Qin
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Yingji Jin
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Haozhong Hu
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| | - Jiebin Chen
- Department of Pediatrics, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, Jiangsu, PR China
| |
Collapse
|
24
|
Proteomic Analysis and In Vivo Studies Reveal the Potential Gastroprotective Effects of CHCl 3 and Aqueous Extracts of Ficus palmata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6613140. [PMID: 34194521 PMCID: PMC8184346 DOI: 10.1155/2021/6613140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
Ficus palmata is rich in several phytochemicals such as chromone, isoflavones, terpenes, lignans, coumarins, glycosides, and furanocoumarins and have been traditionally used for the management of different gastrointestinal disorders. This research reveals the effects of Ficus palmata fruit extracts-Ficus palmata chloroform (Fp.CHCl3) and Ficus palmata aqueous (Fp.Aq)-on gut activity through in vivo and in vitro analyses. Antidiarrheal and enteropooling assays were analyzed with castor oil-induced diarrhea and intestinal fluid accumulation. Jejunum tissues of rabbits were isolated (antispasmodic) for in vitro experiments. Antimotility was carried out by charcoal meal for determining transient time, and ethanol-induced ulcer assay was used to measure the ulceration of stomach; molecular pathways were assessed through proteomic approach. Fp.CHCl3 and Fp.Aq extracts attributed dose-dependently protection against diarrhea, and intestinal fluid secretions were inhibited dose dependently. Extracts of Fp.CHCl3 and Fp.Aq produced reduction in spontaneous and K+ (at 80 Mm)-induced contractions in isolated jejunum tissues, along with the decreased length covered by charcoal in charcoal meal transient time activity. The extract exhibited gastroprotective outcome in rats and reduced tumor necrotic factor (TNF-α) levels and IL-18, measured by proteomic approach. Morphological studies' results showed that ethanol induced significant gastritis, apoptosis, swelling of mucosa, and hydropic degeneration leading to cellular degeneration and necrosis, observed through staining techniques. Furthermore, ethanol activated the inflammation pathway in all gastric zones by elevating the levels of cyclooxygenase-2, TNF-α, and nuclear factor kappa light-chain enhancer of activated B-cells. Overall results expressed the antidiarrheal, antispasmodic, enteropooling, antimotility, and antiulcer activities of Ficus palmata fruit extract.
Collapse
|
25
|
Jiang P, Jin Y, Sun M, Jiang X, Yang J, Lv X, Wen Z. Extracellular histones aggravate inflammation in ARDS by promoting alveolar macrophage pyroptosis. Mol Immunol 2021; 135:53-61. [PMID: 33873094 DOI: 10.1016/j.molimm.2021.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/03/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Extracellular histones have been discovered to play a pathogenic role in ARDS, but the underlying mechanisms are yet to be fully defined. Alveolar macrophage (AM) is essential for the initiation and progression of lung inflammation; of note, AM pyroptosis has been suggested contributing to ARDS-associated inflammation. Here we aimed to investigate whether extracellular histones promote ARDS by triggering AM pyroptosis. The BALF samples of ARDS patients were collected and AMs were further isolated. Extracellular histones, AM pyroptosis, and pyroptosis-associated mediators were measured. Furthermore, the effects of extracellular histones on AM pyroptosis and the underlying mechanisms were investigated. It showed that extracellular histones were markedly elevated in the BALF of ARDS patients and correlated with the increased AM pyroptosis. ARDS patient's BALF induced pronounced pyroptosis in cultured human monocytes, which could be prevented by neutralizing extracellular histones with heparin. In addition, exogenous histones induced pyroptosis of MH-S cells in a dose- and time-dependent manner, which acted through the NLRP3 inflammasome signaling pathway. Inhibition of NLRP3 inflammasome signaling substantially reduced cell pyroptosis. In a murine model of LPS-induced ARDS, extracellular histones were increased in the BALF and its increase was associated with enhanced AM pyroptosis and exaggerated lung inflammation. Blockade of extracellular histones or NLPR3 inflammasome equally inhibited macrophage pyroptosis, whereas targeting histones appeared more effective in alleviating lung inflammation. This study suggested that extracellular histones promote AM pyroptosis through NLRP3 inflammasome pathway, which in turn aggravates lung inflammation in ARDS. Pharmacological manipulation of extracellular histones or AM pyroptosis may become promising strategies for the treatment of ARDS.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Yang Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Meng Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Jie Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China.
| |
Collapse
|
26
|
Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11:e12439. [PMID: 33423388 PMCID: PMC7995087 DOI: 10.1111/cob.12439] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical PharmacologyUniversity Hospital Centre RijekaRijekaCroatia
| | - Andrea Kresović
- Division of Gastroenterology, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| | - Marija Troskot Dijan
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
27
|
Berlie HD, Kale-Pradhan PB, Orzechowski T, Jaber LA. Mechanisms and Potential Roles of Glucose-Lowering Agents in COVID-19: A Review. Ann Pharmacother 2021; 55:1386-1396. [PMID: 33657863 DOI: 10.1177/1060028021999473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To explore mechanistic benefits of glucose-lowering agents that extend beyond glycemic control with the potential to mitigate coronavirus disease 2019 (COVID-19) complications. DATA SOURCES The following PubMed literature search terms were used from July 2020 to January 2, 2021: diabetes, COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), glucose-lowering agents, and pharmacology. STUDY SELECTION AND DATA EXTRACTION English-language studies reporting on the association between diabetes, COVID-19 adverse outcomes, and the potential roles of glucose-lowering agents were reviewed. DATA SYNTHESIS Selected glucose-lowering agents have benefits beyond glycemic control, with the potential to reduce the risks of severe complications during SARS-CoV-2 infection. Key benefits include anti-inflammatory, anticoagulant, immune modulating, and enzyme/receptor effects. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review summarizes the current knowledge of glucose-lowering agents and their potential roles in COVID-19 outcomes. Considering beneficial mechanisms on COVID-19 outcomes that extend beyond glycemic control as well as safety profiles, current data suggest that dipeptidyl peptidase-IV (DPP-IV) inhibitors and metformin may have the most promise and warrant further investigation. CONCLUSIONS Certain glucose-lowering agents may offer additional benefits beyond glucose control-namely, by modulating the mechanisms contributing to adverse outcomes related to COVID-19 in patients with diabetes. DPP-IV inhibitors and metformin appear to have the most promise. However, current published literature on diabetes medications and COVID-19 should be interpreted with caution. Most published studies are retrospective and consist of convenience samples, and some lack adequate analytical approaches with confounding biases. Ongoing trials aim to evaluate the effects of glucose-lowering agents in reducing the severity of COVID-19 outcomes.
Collapse
Affiliation(s)
- Helen D Berlie
- Wayne State University, Detroit, MI, USA.,Health Centers Detroit Medical Group, Detroit, MI, USA
| | | | | | | |
Collapse
|
28
|
Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne) 2021; 12:731974. [PMID: 34690930 PMCID: PMC8527093 DOI: 10.3389/fendo.2021.731974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide epidemic. It spreads very fast and hits people of all ages, especially patients with underlying diseases such as diabetes. In this review, we focus on the influences of diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms including lung dysfunction, immune disorder, abnormal expression of angiotensin-converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR) signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger the development of diabetes. It causes the damage of pancreatic β cells, which is probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may aggravate insulin resistance through attacking other metabolic organs. Of note, certain anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor γ (PPARγ) activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection. However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus (T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection, probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4) inhibitor, may also exert beneficial effects in this respect, probably via a prevention of SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the treatment of diabetes in the context of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qin Yang
- Division of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
29
|
Xiao Q, Cui Y, Zhao Y, Liu L, Wang H, Yang L. Orientin relieves lipopolysaccharide-induced acute lung injury in mice: The involvement of its anti-inflammatory and anti-oxidant properties. Int Immunopharmacol 2021; 90:107189. [PMID: 33214095 DOI: 10.1016/j.intimp.2020.107189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress and inflammatory responses are nearly involved in the pathogenesis of various diseases, including acute lung injury (ALI). Orientin (Ori), a flavonoid component extracted from natural plants, displayed anti-inflammatory and antioxidant properties in our previous studies. In the current study, we aimed to investigate the amelioration effect of Ori on lipopolysaccharide (LPS)-induced ALI, and we further explored the potential molecular mechanisms. The present results indicated that Ori effectively alleviated LPS-induced ALI by improving the histological changes of lung; decreasing the lung W/D ratio and protein levels, the release of inflammatory cells and cytokines into the bronchoalveolar lavage fluid (BALF); inhibiting nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and high mobility group box 1 (HMGB1) protein expression; reducing malondialdehyde (MDA) formation and reactive oxygen species (ROS) generation; and increasing the content of glutathione (GSH) and superoxide dismutase (SOD) contents. Moreover, Ori treatment not only significantly suppressed the LPS-induced nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, and nuclear factor-kappa B (NF-κB) signaling pathway activation, but also obviously restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD (P) H: quinone oxidoreductase (NQO1), glutamate-cysteine ligase catalytic (GCLC), and heme oxygenase 1 (HO-1) expression in the lung; all of which are reduced by LPS. Taken together, these data suggested that Ori plays an important role in the protection against ALI by suppressing inflammation and oxidative stress which may be strongly related to the suppression of NLRP3 inflammasome and NF-κB activation, as well as the upregulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yan Cui
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yongli Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
30
|
Liu D, Chen Y, Li F, Chen C, Wei P, Xiao D, Han B. Sinapultide-Loaded Microbubbles Combined with Ultrasound to Attenuate Lipopolysaccharide-Induced Acute Lung Injury in Mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5611-5622. [PMID: 33376305 PMCID: PMC7764709 DOI: 10.2147/dddt.s282227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/19/2020] [Indexed: 01/11/2023]
Abstract
Purpose Pulmonary surfactants (eg, sinapultide) are widely used for the treatment of lung injury diseases; however, they generally induce poor therapeutic efficacy in clinics. In this study, sinapultide-loaded microbubbles (MBs) were prepared and combined with ultrasound (US) treatment as a new strategy for improved treatment of lung injury diseases. Methods The combination treatment strategy of MBs combined with ultrasound was tested in a lipopolysaccharide (LPS)-induced mouse model of alveolar epithelial cells (AT II) and acute lung injury. Firstly, cytotoxicity, cytokines, and protein levels in LPS-mediated AT II cells were assessed. Secondly, the pathological morphology of lung tissue, the wet/dry (W/D) weight ratio, cytokines, and protein levels in LPS-mediated acute lung injury mice after treatment with the MBs were evaluated. Moreover, histology examination of the heart, liver, spleen, lung and kidney of mice treated with the MBs was performed to initially evaluate the safety of the sinapultide-loaded MBs. Results Sinapultide-loaded MBs in combination with ultrasound treatment significantly reduced the secretion of inflammatory cytokines and increased the expression of surfactant protein A (SP-A) in AT II cells. Furthermore, the pathological morphology of lung tissue, the wet/dry (W/D) weight ratio, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and SP-A expression level of mice treated with MBs and ultrasound were significantly improved compared to those of non-treated mice. In addition, the histology of the examined organs showed that the MBs had a good safety profile. Conclusion Sinapultide-loaded MBs combined with ultrasonic treatment may be a new therapeutic option for lung injury diseases in the clinic.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China.,School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China
| | - Cunwu Chen
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China
| | - Peipei Wei
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Bangxin Han
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, People's Republic of China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an 237012, People's Republic of China
| |
Collapse
|
31
|
Bai Y, Lian P, Li J, Zhang Z, Qiao J. The active GLP-1 analogue liraglutide alleviates H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 2020; 150:104645. [PMID: 33285220 DOI: 10.1016/j.micpath.2020.104645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Influenza virus is responsible for significant morbidity and mortality worldwide. Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is the major cause of death in influenza virus infected patients. Recent studies indicated that active glucagon like peptide-1 (GLP-1) encoded by glucagon (GCG) gene exerts anti-inflammatory functions. The aim of this study was to determine the potential role of active GLP-1 in H9N2 influenza virus-induced ALI/ARDS in mice. First, we uncovered that GCG mRNA expression levels and GCG precursor protein levels were significantly increased, but total GLP-1 and active GLP-1 levels were decreased in the lungs of H9N2-infected mice. Next, liraglutide, an active GLP-1 analogue, was used to treat infected mice and to observe its effects on H9N2 virus-induced ALI. Liraglutide treatment ameliorated the declined body weight, decreased food intake and mortality observed in infected mice. It also alleviated the severity of lung injury, including lowering lung index, decreasing inflammatory cell infiltration and lowing total protein levels in bronchoalveolar lavage fluid (BALF). In addition, liraglutide did not influence viral titers in infected lungs, but decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-α in BALF. These results indicated that liraglutide alleviated H9N2 virus-induced ALI in mice most likely due to lower levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pengjing Lian
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyun Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
32
|
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. GLP-1 receptor agonist ameliorates experimental lung fibrosis. Sci Rep 2020; 10:18091. [PMID: 33093510 PMCID: PMC7581713 DOI: 10.1038/s41598-020-74912-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease. This disease is characterized by an excessive accumulation of extracellular matrix deposition that modify normal lung physiology. Up to date, there are not efficient therapeutic tools to fight IPF. Glucagon-like peptide-1 receptor (GLP-1R) activation plays an essential role in lung functions in normal and in pathological conditions. The aim of the present study was to study the possible beneficial effects of the administration of the GLP-1R agonist, liraglutide, in the pathogenesis of the fibrotic process in an animal model of pulmonary fibrosis induced by bleomycin. We observed that liraglutide decreased mRNA expression of collagen, hydroxyproline and key enzymes for the synthesis of collagen. In addition, GLP-1R activation restored the ACE2 mRNA levels modulating the activities of the RAS components, increased the production of surfactant proteins (SFTPa1, SFTPb, SFTPc) and promoted an improvement in pulmonary and cardiac functionality, including a partial restoration of lung alveolar structure. Liraglutide effects are shown at both the pro-inflammatory and fibrosis phases of the experimental disease. For these reasons, GLP-1 might be regarded as a promising drug for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Juan Fandiño
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Laura Toba
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain.
| |
Collapse
|
33
|
Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne) 2020; 11:582936. [PMID: 33133024 PMCID: PMC7578412 DOI: 10.3389/fendo.2020.582936] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Covid-19 is a recently-emerged infectious disease caused by the novel severe acute respiratory syndrome coronavirus SARS-CoV2. SARS-CoV2 differs from previous coronavirus infections (SARS and MERS) due to its high infectivity (reproduction value, R0, typically 2-4) and pre- or asymptomatic transmission, properties that have contributed to the current global Covid-19 pandemic. Identified risk factors for disease severity and death from SARS-Cov2 infection include older age, male sex, diabetes, obesity and hypertension. The reasons for these associations are still largely obscure. Evidence is also emerging that SARS-CoV2 infection exacerbates the underlying pathophysiology of hyperglycemia in people with diabetes. Here, we discuss potential mechanisms through which diabetes may affect the risk of more severe outcomes in Covid-19 and, additionally, how diabetic emergencies and longer term pathology may be aggravated by infection with the virus. We consider roles for the immune system, the observed phenomenon of microangiopathy in severe Covid-19 infection and the potential for direct viral toxicity on metabolically-relevant tissues including pancreatic beta cells and targets of insulin action.
Collapse
Affiliation(s)
- Hermine Muniangi-Muhitu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Victoria Salem
- Section of Endocrinology, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Section of Metabolic Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas S. Oliver
- Section of Metabolic Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore, Singapore
| |
Collapse
|
34
|
Wang N, Li Y, Wang X, Ma Z, Wang Y, Zhang C, Yuan Y, Zhao M. Inhibition of TBK1 by amlexanox attenuates paraquat-induced acute lung injury. Toxicology 2020; 443:152555. [DOI: 10.1016/j.tox.2020.152555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
35
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
36
|
Lu X, Xu C, Dong J, Zuo S, Zhang H, Jiang C, Wu J, Wei J. Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma. Transl Oncol 2020; 14:100872. [PMID: 32979685 PMCID: PMC7516274 DOI: 10.1016/j.tranon.2020.100872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammatory IL-6/STAT3 signaling is constitutively activated in diverse cancers and is associated with malignant cell proliferation, invasion and escape of antitumor immunosurveillance. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is commonly used to treat insulin-resistant diabetes. In this study, for the first time, we showed that liraglutide remarkably improved the antitumor immune responses in hepatocellular carcinoma (HCC). Furthermore, we showed that the antitumor activity was mediated by nature killer cells (NKs) but not CD8+ T cells. Finally, we showed that liraglutide enhanced NK-mediated cytotoxicity by suppressing the IL-6/STAT3 signaling pathway in HCC cells. Our findings unveil a novel therapeutic role of liraglutide by manipulating the innate immunity in cancer therapy.
Collapse
Affiliation(s)
- Xian Lu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215300, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Pathology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Shuguang Zuo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; The Affiliated Drum Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
37
|
Shi J, Wang H, Liu J, Zhang Y, Luo J, Li Y, Yang C, Jiang J. Ganoderic acid B attenuates LPS-induced lung injury. Int Immunopharmacol 2020; 88:106990. [PMID: 33182051 DOI: 10.1016/j.intimp.2020.106990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a serious respiratory disease, the mechanism is unclear. This paper revealed the mechanism of ganoderic acid B (BB) on lipopolysaccharide-induced pneumonia in mice. Pneumonia model was induced by LPS in mice and A549 cells. Lung dry/wet weight (W/D) and myeloperoxidase (MPO) activity in lung were examined. Lung histopathological changes was observed by HE staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in mice and A549 cells were detected. Rho/NF-κB pathway in mice and A549 cells were examined by Western Blot. BB significantly reduced W/D and MPO activity, restored lung histopathological changes. BB also increased SOD, decreased MDA, TNF-α, IL-1β and IL-6 in mice and A549 cells. In addition, BB inhibited Rho/NF-κB pathway in mice and A549 cells. BB has protective effect on LPS-induced pneumonia in mice, and its mechanism is related to the regulation of Rho/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Huan Wang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Jumin Liu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Yang Zhang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Junfang Luo
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Yan Li
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Chao Yang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China
| | - Junguang Jiang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| |
Collapse
|
38
|
Abstract
Diabetes has been identified as a pre-existing health condition linked with worse outcomes following coronavirus disease 2019 infection. Here we explore the association between hyperglycaemia and more severe illness, the impact of the pandemic on diabetes service delivery, and the resultant opportunities for innovation.
Collapse
Affiliation(s)
- Jonathan Schofield
- Manchester Diabetes Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| | - Lalantha Leelarathna
- Manchester Diabetes Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Hood Thabit
- Manchester Diabetes Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Shekhar S, Wurth R, Kamilaris CDC, Eisenhofer G, Barrera FJ, Hajdenberg M, Tonleu J, Hall JE, Schiffrin EL, Porter F, Stratakis CA, Hannah-Shmouni F. Endocrine Conditions and COVID-19. Horm Metab Res 2020; 52:471-484. [PMID: 32512611 PMCID: PMC7417289 DOI: 10.1055/a-1172-1352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 was declared a global pandemic by the WHO and has affected millions of patients around the world. COVID-19 disproportionately affects persons with endocrine conditions, thus putting them at an increased risk for severe disease. We discuss the mechanisms that place persons with endocrine conditions at an additional risk for severe COVID-19 and review the evidence. We also suggest precautions and management of endocrine conditions in the setting of global curfews being imposed and offer practical tips for uninterrupted endocrine care.
Collapse
Affiliation(s)
- Skand Shekhar
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Rachel Wurth
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Crystal D. C. Kamilaris
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, and Department
of Medicine III, University Hospital Carl Gustav Carus, Technische
Universität Dresden, Dresden, Germany
| | - Francisco J. Barrera
- Endocrinology Division, Internal Medicine Department, University
Hospital “Dr. Jose E. Gonzalez”, Universidad Autonoma de Nuevo
Leon, Monterrey, Mexico
- Plataforma INVEST-KER Unit Mayo Clinic, School of Medicine, Universidad
Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Michelle Hajdenberg
- College of Arts and Sciences at Washington University in St. Louis,
Saint Louis, Missouri, USA
| | - Joselyne Tonleu
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Janet E. Hall
- Clinical Research Branch, National Institute of Environmental Health
Sciences, NIH, North Carolina, USA
| | - Ernesto L. Schiffrin
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital,
McGill University, Montreal, Quebec, Canada
| | - Forbes Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, NIH, Bethesda, Maryland,
USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
40
|
Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020; 41:5820492. [PMID: 32294179 PMCID: PMC7184382 DOI: 10.1210/endrev/bnaa011] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
Collapse
Affiliation(s)
- Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
41
|
Yang X, Ma X, Don O, Song Y, Chen X, Liu J, Qu J, Feng Y. Mesenchymal stem cells combined with liraglutide relieve acute lung injury through apoptotic signaling restrained by PKA/β-catenin. Stem Cell Res Ther 2020; 11:182. [PMID: 32429994 PMCID: PMC7238586 DOI: 10.1186/s13287-020-01689-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background ARDS and ALI are life-threatening diseases with extremely high mortality in patients. Different sources of MSCs could mitigate the symptoms of ALI from diverse mechanisms. Liraglutide is an activator of glucagon-like peptide-1 receptor (GLP-1R) that activates anti-apoptotic pathways and exerts anti-inflammatory effects. We mainly compared the effects of human chorionic villus-derived mesenchymal stem cells (hCMSCs), human bone marrow-derived mesenchymal stem cells (hBMSCs), and human adipose-derived mesenchymal stem cells (hAMSCs) on the treatment of ALI and explored the apoptosis mechanism of combination MSCs of liraglutide. Methods The proliferation of MSCs was detected by MTT assay. Western blot and RT-qPCR were used to detect the expression of GLP-1R, SPC, Ang-1, and KGF in MSCs stimulated by LPS and liraglutide. By using flow cytometry and TUNEL assay to compare the apoptosis of three MSCs under the action of LPS and liraglutide, we selected hCMSCs as the target cells to study the expression of apoptotic protein through the PKA/β-catenin pathway. In ALI animal models, we observed the effects of liraglutide alone, MSCs alone, and MSCs combined with liraglutide by H&E staining, cell counting, immunohistochemistry, and ELISA assay. Results We demonstrated that LPS attenuates the proliferation of the three MSCs and the expression of GLP-1R. Liraglutide could reverse the effects of LPS; increase the expression of SPC, Ang-1, and KGF; and can reduce the apoptosis of three MSCs through the PKA/β-catenin pathway. In the LPS-induced ALI model, MSCs combined with liraglutide showed a significant therapeutic effect, and hCMSCs combined with liraglutide have advantages in the treatment of ALI. Conclusions The therapeutic effect of combination MSCs of liraglutide on ALI was higher than that of MSCs alone or liraglutide alone, and liraglutide could alleviate the symptoms of ALI by reducing MSCs apoptosis.
Collapse
Affiliation(s)
- Xiaotong Yang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.,State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ocholi Don
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 20003, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China. .,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China. .,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
| |
Collapse
|
42
|
Acupoint Catgut Embedding Improves the Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2394734. [PMID: 32566670 PMCID: PMC7285251 DOI: 10.1155/2020/2394734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Background This study investigated the potential therapeutic effects of acupoint catgut embedding (ACE) at ST36 and BL13 on lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) in rats. Materials and Methods Male Sprague-Dawley rats were randomized into the normal saline (NS group with a sham procedure), lipopolysaccharide (LPS group with a sham procedure), and LPS plus ACE (LPS+ACE with ACE at bilateral BL13 and ST36 acupoints one day before LPS injection) groups. After intratracheal instillation of normal saline or LPS (0.5 mg/kg), all rats were subjected to mechanical ventilation for 4 h. Their blood gas was analyzed before and after lung injury, and their lung pressure-volumes were measured longitudinally. The levels of TNF-α, IL-6, IL-10, and phosphatidylcholine (PC) and total proteins (TP) in bronchial alveolar lavage fluid (BALF) were assessed. Their wet to dry lung weight ratios, histology, myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were measured. Their lung aquaporin 1 (AQP1) and Occludin protein levels were analyzed. Results LPS administration significantly decreased the ratios of PaO2/FiO2 and pressure-volumes and induced lung inflammation and injury by increased concentrations of TNF-α, IL-6, IL-10, and TP in BALF and MPO and MDA in the lung but decreased PC in BALF and SOD activity in the lungs. LPS also reduced AQP1 and Occludin protein levels in the lung of rats. In contrast, ACE significantly mitigated the LPS-induced lung injury, inflammation, and oxidative stress and preserved the AQP1 and Occludin contents in the lung of rats. Conclusions ACE significantly improved respiratory function by mitigating inflammation and oxidative stress and preserving AQP1 and Occludin expression in the lung in a rat model of LPS-induced ARDS.
Collapse
|
43
|
Shekhar S, Copacino CE, Barrera FJ, Hall JE, Hannah-Shmouni F. Insights into the Immunopathophysiology of Severe COVID-19 in Metabolic Disorders. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2020; 56:112-115. [PMID: 33082620 PMCID: PMC7571615 DOI: 10.1055/s-0040-1713346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
COVID-19 has affected millions of people across the world but disproportionately and severely affects persons with metabolic disorders such as obesity, diabetes mellitus and hypertension. In this brief review, we discuss the pathways of immune dysregulation that may lead to severe COVID-19 in persons with metabolic conditions.
Collapse
Affiliation(s)
- Skand Shekhar
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, USA
| | | | - Francisco J. Barrera
- Endocrinology Division, Internal Medicine Department, University Hospital “Dr. Jose E. Gonzalez”, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Plataforma INVEST-KER Unit Mayo Clinic (KER Unit Mexico), School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Knowledge and Evaluation Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet E. Hall
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
44
|
Ma X, Liu X, Feng J, Zhang D, Huang L, Li D, Yin L, Li L, Wang XZ. Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability. Inflammation 2020; 42:1901-1912. [PMID: 31273573 DOI: 10.1007/s10753-019-01052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate-labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| | - Jiali Feng
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Dong Zhang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Dongxiao Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Liang Yin
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lan Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Xiao-Zhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| |
Collapse
|
45
|
Nohara H, Nakashima R, Kamei S, Fujikawa H, Ueno-Shuto K, Kawakami T, Eto Y, Suico MA, Li JD, Kai H, Shuto T. Intratracheal GLP-1 receptor agonist treatment up-regulates mucin via p38 and exacerbates emphysematous phenotype in mucus hypersecretory obstructive lung diseases. Biochem Biophys Res Commun 2020; 524:332-339. [PMID: 31996306 DOI: 10.1016/j.bbrc.2020.01.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/03/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that stimulates glucose-mediated insulin production by pancreatic beta cells. It is also associated with protective effects in multiple tissues. GLP-1 receptor is highly expressed in pulmonary tissue, hinting possible pulmonary delivery of GLP-1 drugs. However, little is known about the role of GLP-1 signaling in the lung, especially in mucus hypersecretory obstructive lung diseases. Here, we showed that treatment with exendin-4, a clinically available GLP-1 receptor agonist, up-regulates mucin expression in normal airway epithelial cells and in the lung of normal mice, indicating mucus stimulatory effect of GLP-1 under physiological condition. Exendin-4 also increased mucin expression in in vitro cellular and in vivo murine models of obstructive lung diseases via the activation of p38 MAP kinase. Notably, mucin induction in vivo exacerbated key pulmonary abnormalities including emphysematous phenotypes, implying that GLP-1 signaling in the lung is detrimental under pulmonary obstructive condition. Another GLP-1 receptor agonist liraglutide had similar induction of mucin. Together, our studies not only demonstrate novel physiological and pathological roles of GLP-1 in the lung but may also caution against the clinical use of inhaled GLP-1 receptor agonists in the patients with obstructive lung diseases.
Collapse
Affiliation(s)
- Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 714 Petit Science Center, 100 Piedmont Ave SE, Atlanta, GA30303, USA
| | - Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Taisei Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuka Eto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, 714 Petit Science Center, 100 Piedmont Ave SE, Atlanta, GA30303, USA
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
46
|
He Y, Zhao Y, Feng Y, Ren A, Zhang Y, Wang Y, Li H. Therapeutic effect and mechanism study of L-cysteine derivative 5P39 on LPS-induced acute lung injury in mice. Eur J Pharmacol 2019; 869:172893. [PMID: 31883915 DOI: 10.1016/j.ejphar.2019.172893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Organosulfur compounds, such as L-cysteine, allicin and other sulfur-containing organic compounds in Allium species, have been proposed to possess many important physiological and pharmacological functions. A novel L-cysteine derivative, t-Butyl S-allylthio-L-cysteinate (5P39), was designed and synthesized by combining L-cysteine derivative and allicin pharmacophore through a disulfide bond. This study aimed to explore the effects and mechanisms of 5P39 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. At the experimental concentration (5, 10 and 20 μM), 5P39 suppressed the excessive secretion of nitric oxide (NO) and interleukin-6 (IL-6) in mice peritoneal macrophages stimulated by LPS. A mouse model of ALI was established by tracheal instillation of LPS for 2 h before 5P39 (30 and 60 mg/kg) administration. The results showed that 5P39 treatment down-regulated the wet/dry weight ratio (W/D ratio) of lungs and reduced the protein concentration, the number of total cells as well as the myeloperoxidase (MPO) activity in bronchoalveolar lavage fluid (BALF). 5P39 administration improved the histopathological changes of lungs in ALI mice with the decreased levels of pro-inflammatory cytokines in BALF. The inhibitory effects of 5P39 on the toll-like receptor 4 (TLR4) expression and macrophages accumulation in lung tissues were observed by immunohistochemistry. Additionally, 5P39 significantly attenuated the LPS-activated high expression of key proteins in TLR4/MyD88 signaling pathway. Taken together, the present study showed that 5P39 effectively alleviate the severity of ALI, and its mechanism might relate to the inhibition of LPS-activated TLR4/MyD88 signaling pathway, demonstrating a promising potential for further development into an anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Yanting He
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yalei Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuchen Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Anqi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
47
|
Balk-Møller E, Windeløv JA, Svendsen B, Hunt J, Ghiasi SM, Sørensen CM, Holst JJ, Kissow H. Glucagon-Like Peptide 1 and Atrial Natriuretic Peptide in a Female Mouse Model of Obstructive Pulmonary Disease. J Endocr Soc 2019; 4:bvz034. [PMID: 32010874 PMCID: PMC6984785 DOI: 10.1210/jendso/bvz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is protective in lung disease models but the underlying mechanisms remain elusive. Because the hormone atrial natriuretic peptide (ANP) also has beneficial effects in lung disease, we hypothesized that GLP-1 effects may be mediated by ANP expression. To study this putative link, we used a mouse model of chronic obstructive pulmonary disease (COPD) and assessed lung function by unrestrained whole-body plethysmography. In 1 study, we investigated the role of endogenous GLP-1 by genetic GLP-1 receptor (GLP-1R) knockout (KO) and pharmaceutical blockade of the GLP-1R with the antagonist exendin-9 to -39 (EX-9). In another study the effects of exogenous GLP-1 were assessed. Lastly, we investigated the bronchodilatory properties of ANP and a GLP-1R agonist on isolated bronchial sections from healthy and COPD mice. Lung function did not differ between mice receiving phosphate-buffered saline (PBS) and EX-9 or between GLP-1R KO mice and their wild-type littermates. The COPD mice receiving GLP-1R agonist improved pulmonary function (P < .01) with less inflammation, but no less emphysema compared to PBS-treated mice. Compared with the PBS-treated mice, treatment with GLP-1 agonist increased ANP (nppa) gene expression by 10-fold (P < .01) and decreased endothelin-1 (P < .01), a peptide associated with bronchoconstriction. ANP had moderate bronchodilatory effects in isolated bronchial sections and GLP-1R agonist also showed bronchodilatory properties but less than ANP. Responses to both peptides were significantly increased in COPD mice (P < .05, P < .01). Taken together, our study suggests a link between GLP-1 and ANP in COPD.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section for Cell Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Ansari SF, Khan AU, Qazi NG, Shah FA, Naeem K. In Vivo, Proteomic, and In Silico Investigation of Sapodilla for Therapeutic Potential in Gastrointestinal Disorders. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4921086. [PMID: 31886219 PMCID: PMC6925776 DOI: 10.1155/2019/4921086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
This study aims to delineate the effects of Manilkara zapota Linn. (Sapodilla) fruit chloroform (Mz.CHCl3) and aqueous (Mz.Aq) extracts tested through different techniques. Antidiarrheal activity and intestinal fluid accumulation were examined by using castor oil-induced diarrhea and castor oil fluid accumulation models. Isolated rabbit jejunum tissues were employed for in vitro experiments. Antimotility and antiulcer were performed through charcoal meal transient time and ethanol-induced ulcer assay, molecular studies were conducted through proteomic analysis, and virtual screening was performed by using a discovery studio visualizer (DSV). Mz.CHCl3 and Mz.Aq extracts attributed dose-dependent (50-300 mg/kg) protection (20-100%) against castor oil-induced diarrhea and dose-dependently (50-300 mg/kg) inhibited intestinal fluid secretions in mice. Mz.CHCl3 and Mz.Aq extracts produce relaxation of spontaneous and K+ (80 Mm) induced contractions in isolated tissue preparations and decreased the distance moved by charcoal in the gastrointestinal transit model in rats. It showed gastroprotective effect in ulcerative stomach of rats and decreased levels of IL-18 quantified by proteomic analysis. Histopathological results showed ethanol-induced significant gastric injury, leading to cloudy swelling, hydropic degeneration, apoptosis, and focal necrosis in all gastric zones using hematoxylin and eosin (H&E) staining. Moreover, ethanol increased the activation and the expression of tumor necrotic factor (TNF-α), cyclooxygenase (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFκB). In silico results were comparative to in vitro results evaluated through virtual screening. Moreover, ethanol increased the activation and expression of tumor necrotic factor, cyclooxygenase, and nuclear factor kappa-light-chain-enhancer of activated B cells. This study exhibits the gastroprotective effect of Manilkara zapota extracts in the peritoneal cavity using a proteomic and in silico approach which reveals different energy values against target proteins, which mediate the gastrointestinal functions.
Collapse
Affiliation(s)
- Sameen Fatima Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Komal Naeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
49
|
Niu X, Zang L, Li W, Xiao X, Yu J, Yao Q, Zhao J, Ye Z, Hu Z, Li W. Anti-inflammatory effect of Yam Glycoprotein on lipopolysaccharide-induced acute lung injury via the NLRP3 and NF-κB/TLR4 signaling pathway. Int Immunopharmacol 2019; 81:106024. [PMID: 31784404 DOI: 10.1016/j.intimp.2019.106024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and β-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1β, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - JinJin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Jinmeng Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China
| | - Zhaobo Ye
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Hu
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China; Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, PR China.
| |
Collapse
|
50
|
Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, Wang YF, Fang WR, Li YM. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFκB Signal Pathway in Rat. Front Pharmacol 2019; 10:1361. [PMID: 31798456 PMCID: PMC6868102 DOI: 10.3389/fphar.2019.01361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 μm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.
Collapse
Affiliation(s)
- Yu-xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi-yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-ying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-hui Ren
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-wen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye-fang Wang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Wei-rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|