1
|
Zhang K, Yang Z, Yang Z, Du L, Zhou Y, Fu S, Wang X, Liu D, He X. Targeting microglial GLP1R in epilepsy: A novel approach to modulate neuroinflammation and neuronal apoptosis. Eur J Pharmacol 2024; 981:176903. [PMID: 39154823 DOI: 10.1016/j.ejphar.2024.176903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Epilepsy is a prevalent disorder of the central nervous system. Approximately, one-third of patients show resistance to pharmacological interventions. The pathogenesis of epilepsy is complex, and neuronal apoptosis plays a critical role. Aberrantly reactive astrocytes, induced by cytokine release from activated microglia, may lead to neuronal apoptosis. This study investigated the role of glucagon-like peptide 1 receptor (GLP1R) in microglial activation in epilepsy and its impact on astrocyte-mediated neurotoxicity. METHODS We used human hippocampal tissue from patients with temporal lobe epilepsy and a pilocarpine-induced epileptic mouse model to assess neurobiological changes in epilepsy. BV2 microglial cells and primary astrocytes were used to evaluate cytokine release and astrocyte activation in vitro. The involvement of GLP1R was explored using the GLP1R agonist, Exendin-4 (Ex-4). RESULTS Our findings indicated that reduced GLP1R expression in hippocampal microglia in both epileptic mouse models and human patients, correlated with increased cytokine release and astrocyte activation. Ex-4 treatment restored microglial homeostasis, decreased cytokine secretion, and reduced astrocyte activation, particularly of the A1 phenotype. These changes were associated with a reduction in neuronal apoptosis. In addition, Ex-4 treatment significantly decreased the frequency and duration of seizures in epileptic mice. CONCLUSIONS This study highlights the crucial role of microglial GLP1R in epilepsy pathophysiology. GLP1R downregulation contributes to microglial- and astrocyte-mediated neurotoxicity, exacerbating neuronal death and seizures. Activation of GLP1R with Ex-4 has emerged as a promising therapeutic strategy to reduce neuroinflammation, protect neuronal cells, and control seizures in epilepsy. This study provides a foundation for developing novel antiepileptic therapies targeting microglial GLP1R, with the potential to improve outcomes in patients with epilepsy.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liangchao Du
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
2
|
Wang C, Feng GG, Takagi J, Fujiwara Y, Sano T, Note H. Catecholamines Attenuate LPS-Induced Inflammation through β2 Adrenergic Receptor Activation- and PKA Phosphorylation-Mediated TLR4 Downregulation in Macrophages. Curr Issues Mol Biol 2024; 46:11336-11348. [PMID: 39451555 PMCID: PMC11506017 DOI: 10.3390/cimb46100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammation is a tightly regulated process involving immune receptor recognition, immune cell migration, inflammatory mediator secretion, and pathogen elimination, all essential for combating infection and restoring damaged tissue. However, excessive inflammatory responses drive various human diseases. The autonomic nervous system (ANS) is known to regulate inflammatory responses; however, the detailed mechanisms underlying this regulation remain incompletely understood. Herein, we aimed to study the anti-inflammatory effects and mechanism of action of the ANS in RAW264.7 cells. Quantitative PCR and immunoblotting assays were used to assess lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) expression. The anti-inflammatory effects of catecholamines (adrenaline, noradrenaline, and dopamine) and acetylcholine were examined in LPS-treated cells to identify the receptors involved. Catecholamines inhibited LPS-induced TNFα expression by activating the β2 adrenergic receptor (β2-AR). β2-AR activation in turn downregulated the expression of Toll-like receptor 4 (TLR4) by stimulating protein kinase A (PKA) phosphorylation, resulting in the suppression of TNFα levels. Collectively, our findings reveal a novel mechanism underlying the inhibitory effect of catecholamines on LPS-induced inflammatory responses, whereby β2-AR activation and PKA phosphorylation downregulate TLR4 expression in macrophages. These findings could provide valuable insights for the treatment of inflammatory diseases and anti-inflammatory drug development.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Guo-Gang Feng
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Junko Takagi
- Division of Endocirnology and Metabolism, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Yoshihiro Fujiwara
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, 3-6-10 Otobashi, Nakagawaku, Nagoya 454-8509, Aichi, Japan;
| | - Tsuyoshi Sano
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Hideaki Note
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| |
Collapse
|
3
|
Hao M, He Y, Song T, Guo H, Rayman MP, Zhang J. Dopamine and its precursor levodopa inactivate SARS-CoV-2 main protease by forming a quinoprotein. Free Radic Biol Med 2024; 220:167-178. [PMID: 38718952 DOI: 10.1016/j.freeradbiomed.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Herrera ML, Champarini LG, Basmadjian OM, Bellini MJ, Hereñú CB. IGF-1 gene therapy prevents spatial memory deficits and modulates dopaminergic neurodegeneration and inflammation in a parkinsonism model. Brain Behav Immun 2024; 119:851-866. [PMID: 38750702 DOI: 10.1016/j.bbi.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024] Open
Abstract
Cognitive impairment in Parkinson's disease is considered an indicator of the prodromal stages of this condition, occurring prior to the onset of classic and pathognomonic motor symptoms. Among other factors, neuroinflammation is increasingly recognized as a potential mediator of this neurodegenerative process, and glial cells are directly involved. However, the use of neurotrophic factors is associated with neuroprotection and cognitive improvements. Among all those factors, insulin-like growth factor 1 (IGF-1) has attracted considerable attention. In this study, we aimed to investigate the effect of IGF-1 gene therapy in an early animal model of 6-hydroxidopamine (6-OHDA)- induced parkinsonism. For this purpose, we employed male Wistar rats. The animals were first divided into two groups according to the bilateral injection into de Caudate Putamen unit (CPu):(a) VEH group (vehicle solution) and (b) 6-OHDA group (neurotoxic solution). After that, the animals in each group were divided, according to the bilateral injection into the dorsal hippocampus, in a control group (who received a control virus RAd-DSRed) and an experimental group (who received a therapeutic virus (RAd-IGF1). After three weeks of exposure to 6-OHDA, our study showed that IGF-1 gene therapy improved cognitive deficits related to short-term and spatial working memory, it also increased expression levels of tyrosine hydroxylase in the CPu. In addition, the therapy resulted in significant changes in several parameters (area, perimeter, roundness, ramification, and skeleton ́s analyses) related to microglia and astrocyte phenotypes, particularly in the CPu and dorsal hippocampal areas. Our data support the use of IGF-1 as a therapeutic molecule for future gene transfer interventions, that will contribute to a better understanding of the mechanisms correlating cognitive function and inflammatory process.
Collapse
Affiliation(s)
- Macarena Lorena Herrera
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina; Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (INIBIOLP-CONICET-UNLP), Buenos Aires, Argentina
| | - Leandro Gabriel Champarini
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Osvaldo Martín Basmadjian
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-UNC, Córdoba, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (INIBIOLP-CONICET-UNLP), Buenos Aires, Argentina.
| | - Claudia Beatriz Hereñú
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Córdoba, Argentina.
| |
Collapse
|
5
|
Yamamuro-Tanabe A, Oshima Y, Iyama T, Ishimaru Y, Yoshioka Y. Proteasome inhibitors induce apoptosis by superoxide anion generation via NADPH oxidase 5 in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 2024; 155:52-62. [PMID: 38677786 DOI: 10.1016/j.jphs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yu Oshima
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takumi Iyama
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
6
|
Yamamuro-Tanabe A, Mukai Y, Kojima W, Zheng S, Matsumoto N, Takada S, Mizuhara M, Kosuge Y, Ishimaru Y, Yoshioka Y. An Increase in Peroxiredoxin 6 Expression Induces Neurotoxic A1 Astrocytes in the Lumbar Spinal Cord of Amyotrophic Lateral Sclerosis Mice Model. Neurochem Res 2023; 48:3571-3584. [PMID: 37556038 DOI: 10.1007/s11064-023-04003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with selective degeneration of motor neurons. It has been reported that an increase in the levels of inflammatory cytokines and glial cells such as reactive astrocytes is closely involved in the pathological progression of ALS. Recently, the levels of neuropathic cytotoxic (A1) astrocytes among reactive astrocytes have reportedly increased in the central nervous system of ALS mice, which induce motor neuron degeneration through the production of inflammatory cytokines and secretion of neuropathic factors. Hence, elucidating the induction mechanism of A1 astrocytes in ALS is important to understand the mechanism of disease progression in ALS. In this study, we observed that the expression of peroxiredoxin 6 (PRDX6), a member of the peroxiredoxin family, was markedly upregulated in astrocytes of the lumbar spinal cord of SOD1G93A mice model for ALS. Additionally, when PRDX6 was transiently transfected into the mouse astrocyte cell line C8-D1A and human astrocytoma cell line U-251 MG, the mRNA expression of complement C3 (a marker for A1 astrocyte phenotype) and inflammatory cytokines was increased. Furthermore, the mRNA expression of C3 and inflammatory cytokine was increased in C8-D1A and U-251 MG cells stably expressing PRDX6, and the increased mRNA expression was significantly suppressed by MJ33 (lithium[1-hexadecoxy-3-(2,2,2-trifluoroethoxy) propan-2-yl] methyl phosphate), an inhibitor of the phospholipase A2 activity of PRDX6. Our results suggest that the expression of PRDX6 in astrocytes plays an important role in the induction of A1 astrocytes and expression of inflammatory cytokines in the ALS mice model.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yurika Mukai
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Wataru Kojima
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Siyuan Zheng
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Naoko Matsumoto
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Shoho Takada
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Mao Mizuhara
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
7
|
Yamamuro-Tanabe A, Kosuge Y, Ishimaru Y, Yoshioka Y. Schwann cell derived-peroxiredoxin protects motor neurons against hydrogen peroxide-induced cell death in mouse motor neuron cell line NSC-34. J Pharmacol Sci 2023; 153:73-83. [PMID: 37640472 DOI: 10.1016/j.jphs.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Schwann cells and oligodendrocytes secrete proteins that promote neuron survival, but their role in amyotrophic lateral sclerosis (ALS) is unclear. To address this question, we evaluated the effect of molecules secreted by Schwann cells on reactive oxygen species (ROS)-induced motor neuronal cell death. We observed that in motor neuron cell line NSC-34 cultures, the conditioned medium (CM) from Schwann cell line YST-1 (YST-1 CM) cultures had a protective effect against hydrogen peroxide-induced cell death. However, this protective effect of YST-1 CM was abolished by removing peroxiredoxin 1-4 (PRDX1-4) from the CM. We found that the expression of PRDX1 mRNA was markedly downregulated in the lumbar spinal cord of the superoxide dismutase 1 (SOD1)G93A mouse model of ALS. We also found that transient transfection of YST-1 cells with G93A SOD1 resulted in reduced PRDX1 mRNA expression. Additionally, in the mutant transfected cells, YST-1 CM showed decreased neuroprotective effect against hydrogen peroxide-induced NSC-34 cell death compared to those transfected with WT SOD1. Our results suggest that Schwann cells protect motor neurons from oxidative stress by secreting PRDX1 and that the reduction of PRDX secreted from Schwann cells contributes to increased ROS and associated motor neuronal death in ALS.
Collapse
Affiliation(s)
- Akiko Yamamuro-Tanabe
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
8
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
9
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
10
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
11
|
Liu K, Dong X, Wang Y, Wu X, Dai H. Dopamine-modified chitosan hydrogel for spinal cord injury. Carbohydr Polym 2022; 298:120047. [DOI: 10.1016/j.carbpol.2022.120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
12
|
Hou B, Wen Y, Zhu X, Qi M, Cai W, Du B, Sun H, Qiu L. Preparation and characterization of vaccarin, hypaphorine and chitosan nanoparticles and their promoting effects on chronic wounds healing. Int J Biol Macromol 2022; 221:1580-1592. [PMID: 35961560 DOI: 10.1016/j.ijbiomac.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Chronic wounds have become an important factor hindering human health, affecting tens of millions of people worldwide, especially diabetic wounds. Based on the antibacterial properties of chitosan, the angiogenesis promoting effect of vaccarin (VAC) and the anti-inflammatory effect of hypaphorine (HYP), nanoparticles with high bioavailability were prepared. VAC, HYP and chitosan nanoparticles (VAC + HYP-NPS) were used to the treatment of chronic wounds. Transmission electron microscopy (TEM) images showed the nanoparticles were spherical. ZetaPALS showed the potential of nanoparticles were -12.8 ± 5.53 mV and the size were 166.8 ± 29.95 nm. Methyl thiazolyl tetrazolium (MTT) assay showed that VAC + HYP-NPS had no toxicity and the biocompatibility was satisfactory. In the treatment of chronic wounds in diabetic rats, VAC + HYP-NPS significantly promoted the re-epithelialization of chronic wounds and accelerated the healing of chronic wounds. In the process of chronic wounds healing, VAC + HYP-NPS played the antibacterial effect of chitosan, the angiogenic effect of VAC and the anti-inflammatory effect of HYP, and finally promoted the chronic wounds healing. Overall, the developed VAC + HYP-NPS have potential application in chronic wounds healing. In view of the complexity of the causes of chronic wounds, multi-target drug administration may be an effective way to treat chronic wounds.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Xuerui Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Mengting Qi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China.
| |
Collapse
|
13
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Shao Y, Dong Y, Wang W, Chen Z, Hao C, Yang Y, Zhang J. The Function and Mechanism of Dopamine in the Activation of CD4 + T Cell. Immunopharmacol Immunotoxicol 2022; 44:410-420. [PMID: 35285388 DOI: 10.1080/08923973.2022.2052894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Yongli Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Wenwen Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| |
Collapse
|
15
|
Melnikov M, Sviridova A, Rogovskii V, Boyko A, Pashenkov M. The role of macrophages in the development of neuroinflammation in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-56. [DOI: 10.17116/jnevro202212205151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Yoshioka Y, Sugino Y, Yamamuro A, Ishimaru Y, Maeda S. Dopamine inhibits the expression of proinflammatory cytokines of microglial cells through the formation of dopamine quinone in the mouse striatum. J Pharmacol Sci 2022; 148:41-50. [PMID: 34924128 DOI: 10.1016/j.jphs.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
We previously reported that dopamine (DA) attenuated lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines through the formation of DA quinone (DAQ) in murine microglial cell line BV-2 and primary murine microglial cells. To reveal whether DA inhibits the expression of proinflammatory cytokines of microglial cells through the formation of DAQ in the central nervous system (CNS), in this study, we examined the effect of DAQ on LPS-induced mRNA expression of proinflammatory cytokines in C57BL/6 mouse brain under two experimental conditions: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and l-dopa/carbidopa administration. Acute MPTP administration reduced the number of tyrosine hydroxylase-positive cells in the substantia nigra, and decreased the level of quinoprotein, an indicator of DAQ formation, in the striatum. Real-time RT-PCR analysis revealed that intraperitoneal administration of LPS increased the mRNA levels of proinflammatory cytokines, including tumor-necrosis factor-α and interleukin-1β, in the striatum. These increases were enhanced in MPTP-treated mice. On the other hand, l-dopa/carbidopa administration increased the level of quinoprotein, attenuated the LPS-induced mRNA expression of proinflammatory cytokines, and reduced the LPS-induced increase in the number of microglial cells in the striatum. These results suggest that DA attenuate the expression of proinflammatory cytokines in microglia through the formation of DAQ in the CNS.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuta Sugino
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Akiko Yamamuro
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Sadaaki Maeda
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
17
|
Putnins EE, Goebeler V, Ostadkarampour M. Monoamine Oxidase-B Inhibitor Reduction in Pro-Inflammatory Cytokines Mediated by Inhibition of cAMP-PKA/EPAC Signaling. Front Pharmacol 2021; 12:741460. [PMID: 34867348 PMCID: PMC8635787 DOI: 10.3389/fphar.2021.741460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal epithelial cell integrity is an important component of innate immunity and it protects the host from an environment rich in microorganisms. Virulence factors from Gram-negative bacteria [e.g. lipopolysaccharide (LPS)] induce significant pro-inflammatory cytokine expression. Monoamine oxidase (MAO) inhibitors reduce cytokine expression in a variety of inflammatory models and may therefore have therapeutic potential for a number of inflammatory diseases. We tested the anti-inflammatory therapeutic potential of a recently developed reversible MAO-B inhibitor (RG0216) with reduced transport across the blood–brain barrier. In an epithelial cell culture model, RG0216 significantly decreased LPS-induced interleukin (IL)-6 and IL-1β gene and protein expression and was as effective as equimolar concentrations of deprenyl (an existing irreversible MAO-B inhibitor). Hydrogen peroxide and modulating dopamine receptor signaling had no effect on cytokine expression. We showed that LPS-induced expression of IL-6 and IL-1β was cAMP dependent, that IL-6 and IL-1β expression were induced by direct cAMP activation (forskolin) and that RG0216 and deprenyl effectively reduced cAMP-mediated cytokine expression. Targeted protein kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) activation regulated IL-6 and IL-1β expression, albeit in different ways, but both cytokines were effectively decreased with RG0216. RG0216 reduction of LPS-induced cytokine expression occurred by acting downstream of the cAMP-PKA/EPAC signaling cascade. This represents a novel mechanism by which MAO-B selective inhibitors regulate LPS-induced IL-6 and IL-1β expression.
Collapse
Affiliation(s)
- Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Verena Goebeler
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Li M, Zhou L, Sun X, Yang Y, Zhang C, Wang T, Fu F. Dopamine, a co-regulatory component, bridges the central nervous system and the immune system. Biomed Pharmacother 2021; 145:112458. [PMID: 34847478 DOI: 10.1016/j.biopha.2021.112458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dopamine (DA) is a crucial neurotransmitter that plays an important role in maintaining physiological function in human body. In the past, most studies focused on the relationship between the dopaminergic system and neurological-related diseases. However, it has been found recently that DA is an immunomodulatory mediator and many immune cells express dopamine receptors (DRs). Some immune cells can synthesize and secrete DA and then participate in regulating immune function. DRs agonists or antagonists can improve the dysfunction of immune system through classical G protein signaling pathways or other non-receptor-dependent pathways. This article will discuss the relationship between the dopaminergic system and the immune system. It will also review the use of DRs agonists or antagonists to treat chronic and acute inflammatory diseases and corresponding immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunqi Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
19
|
Carlton CN, Garcia KM, Sullivan-Toole H, Stanton K, McDonnell CG, Richey JA. From childhood maltreatment to adult inflammation: Evidence for the mediational status of social anxiety and low positive affect. Brain Behav Immun Health 2021; 18:100366. [PMID: 34704081 PMCID: PMC8526764 DOI: 10.1016/j.bbih.2021.100366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Prior work has established a robust association between childhood maltreatment and systemic inflammatory activation later in life; however, the mechanisms involved in this process remain incompletely understood. The purpose of this investigation was to examine potential mechanistic roles for social anxiety (SA) symptoms and low positive affect (PA) in the path from childhood maltreatment to elevations in circulating interleukin (IL)-6, a common biomarker of inflammatory activation. In addition, building on prior work establishing linkages between mindful awareness and reductions in systemic inflammation, we examined the potential role of trait mindfulness as a moderator of the relationships among childhood maltreatment, SA, low PA, and IL-6. A serial mediation model utilizing a large epidemiologic dataset (final N = 527) supported our central hypothesis that the direct effect of childhood maltreatment on IL-6 was fully serially statistically mediated by SA symptoms and low PA (but not high negative affect). Additionally, results indicated that individuals falling in the upper versus lower quartiles of SA symptoms demonstrated significantly elevated concentrations of IL-6, a finding that has not been previously reported. Trait mindfulness moderated the association between low PA and IL-6, to the exclusion of any paths related to negative affect. Additionally, results indicated that the effect of child maltreatment on IL-6 bypasses SA to indirectly impact IL-6 via negative affect. Overall, we conclude that childhood maltreatment and SA symptoms have a significant influence on IL-6, albeit indirectly via low PA, and the influence of PA on IL-6 may be uniquely susceptible to influence by individual differences in mindfulness.
Collapse
Affiliation(s)
| | | | - Holly Sullivan-Toole
- Virginia Tech, Department of Psychology, USA
- Temple University, Department of Psychology, USA
| | | | | | | |
Collapse
|
20
|
Yang C, Gong S, Chen X, Wang M, Zhang L, Zhang L, Hu C. Analgecine regulates microglia polarization in ischemic stroke by inhibiting NF-κB through the TLR4 MyD88 pathway. Int Immunopharmacol 2021; 99:107930. [PMID: 34229178 DOI: 10.1016/j.intimp.2021.107930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Therapeutic strategies used to attenuate inflammation and to increase recovery of neurons after a stroke include microglia anti-inflammatory (M2) polarization and repression of proinflammatory (M1). Extracts isolated from Vaccina variola-inoculated rabbit skin, for example analgecine (AGC), have been used as a therapy for patients experiencing lower back pain associated with degenerative diseases of the spine for about twenty years. In the study presented here, neuroprotective effect associated with AGC was analyzed as well as the anti-inflammatory mechanism linked to AGC in terms of attenuating microglia-mediated neuronal damage. Rats were intravenously injected with AGC after middle cerebral artery occlusion (MCAO), which showed to suppress neuronal loss and reduce neurological deficits. In addition, AGC inhibited pro-inflammatory cytokine release and increased anti-inflammatory cytokines. Furthermore, this study revealed that treatment with AGC supported microglia transition from M1 to M2 in both oxygen-glucose deprivation/reperfusion (OGD/R) and LPS/IFN-γ induced microglia cells, as well as indirectly inhibited LPS/IFN-γ-induced neuronal damage through the modulation of microglial polarization. It is also important to note that AGC inhibited NF-κB p65 phosphorylation through repressing TLR4/Myd88/TRAF6 signaling pathway. In addition, we found that TLR4 inhibition by AGC depended on Myd88. Altogether, this work supports that AGC inhibits M1 microglial polarization and promotes anti-inflammation independently and dependently on TLR4/MyD88. Since it is shown to have neuroprotective effects in this study, AGC has great potential to be used in the clinic to reduce inflammation and aid in recovery after stroke.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Shili Gong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiaoping Chen
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Mingyang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
21
|
Yue S, Wang T, Yang Y, Fan Y, Zhou L, Li M, Fu F. Lipopolysaccharide/D-galactosamine-induced acute liver injury could be attenuated by dopamine receptor agonist rotigotine via regulating NF-κB signaling pathway. Int Immunopharmacol 2021; 96:107798. [PMID: 34162160 DOI: 10.1016/j.intimp.2021.107798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
The pathological of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury is similar to what is seen clinically, and be mediated by the release of pro-inflammatory mediators. A growing body of studies have shown that dopamine (DA) and DA receptor agonist are associated with inflammation and immune response. Rotigotine, a non-ergoline dopamine receptor agonist, is a drug for the treatment of Parkinson's disease. Rotigotine-loaded microspheres (RoMS) is an intramuscular extended-release agent, which can steadily release rotigotine for more than 7 days after a single administration. The present study aimed to investigate the effects of rotigotine and RoMS on inflammation and acute liver injury induced by LPS/D-Gal in mice. The LPS/D-Gal-induced liver injury was evidenced by increases of serum aminotransferases activities and liver histological lesions. Pretreatment with rotigotine or RoMS not only ameliorated the liver histologic lesions, but also reduced the activities of serum aminotransferases and the production of TNF-α. It also showed that rotigotine and RoMS increased DA receptor 2 (DRD2) expression in LPS/D-Gal-exposed mice. Rotigotine and RoMS activated β-arrestin 2, inhibited the phosphorylation of Akt, IκB and the transposition of NF-κB. In line with the above findings, the protective effects of rotigotine and RoMS were abrogated by haloperidol, a DA receptor antagonist. In conclusion, dopamine receptor agonist can regulate NF-κB inflammatory signaling pathway and exert protective effects in LPS/D-Gal-induced liver injury.
Collapse
Affiliation(s)
- Shumin Yue
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunqi Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yiqian Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
22
|
Melnikov M, Pashenkov M, Boyko A. Dopaminergic Receptor Targeting in Multiple Sclerosis: Is There Therapeutic Potential? Int J Mol Sci 2021; 22:ijms22105313. [PMID: 34070011 PMCID: PMC8157879 DOI: 10.3390/ijms22105313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dopamine is a neurotransmitter that mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.
Collapse
MESH Headings
- Animals
- Dopamine/immunology
- Dopamine/physiology
- Dopamine Agents/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Humans
- Mice
- Models, Immunological
- Models, Neurological
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/immunology
- Neuroimmunomodulation/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/immunology
- Receptors, Dopamine/physiology
- Th17 Cells/drug effects
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, 117997 Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, 115522 Moscow, Russia;
- Correspondence: ; Tel.: +7-926-331-8946
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, 115522 Moscow, Russia;
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, 117997 Moscow, Russia
| |
Collapse
|
23
|
Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front Pharmacol 2021; 12:676239. [PMID: 33995107 PMCID: PMC8120032 DOI: 10.3389/fphar.2021.676239] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammatory diseases are debilitating, affect patients' quality of life, and are a significant financial burden on health care. Inflammation is regulated by pro-inflammatory cytokines and chemokines that are expressed by immune and non-immune cells, and their expression is highly controlled, both spatially and temporally. Their dysregulation is a hallmark of chronic inflammatory and autoimmune diseases. Significant evidence supports that monoamine oxidase (MAO) inhibitor drugs have anti-inflammatory effects. MAO inhibitors are principally prescribed for the management of a variety of central nervous system (CNS)-associated diseases such as depression, Alzheimer's, and Parkinson's; however, they also have anti-inflammatory effects in the CNS and a variety of non-CNS tissues. To bolster support for their development as anti-inflammatories, it is critical to elucidate their mechanism(s) of action. MAO inhibitors decrease the generation of end products such as hydrogen peroxide, aldehyde, and ammonium. They also inhibit biogenic amine degradation, and this increases cellular and pericellular catecholamines in a variety of immune and some non-immune cells. This decrease in end product metabolites and increase in catecholamines can play a significant role in the anti-inflammatory effects of MAO inhibitors. This review examines MAO inhibitor effects on inflammation in a variety of in vitro and in vivo CNS and non-CNS disease models, as well as their anti-inflammatory mechanism(s) of action.
Collapse
Affiliation(s)
- Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Akyuva Y, Nazıroğlu M, Yıldızhan K. Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis 2021; 36:285-298. [PMID: 33044639 DOI: 10.1007/s11011-020-00624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Microglia as the primary immune cells of brain act protective effects against injuries and infections in the central nervous system. Inflammation via excessive Ca2+ influx and oxygen radical species (ROS) generation is a known factor in many neurodegenerative disorders. Importantly, the Ca2+ permeable TRPM2 channel is activated by oxidative stress. Thus, TRPM2 could provide the excessive Ca2+ influx in the microglia. Although TRPM2 expression level is high in inflammatory cells, the interplay between mouse microglia and TRPM2 channel during inflammation is not fully identified. Thus, it is important to understand the mechanisms and factors involved in order to enhance neuronal regeneration and repair. The data presented here indicate that TRPM2 channels were activated in microglia cells by interferon-gamma (IFNγ). The IFNγ treatment further increased apoptosis (early and late) and cytokine productions (TNF-α, IL-1β, and IL-6) which were due to increased lipid peroxidation and ROS generations as well as increased activations of caspase -3 (Casp-3) and - 9 (Casp-9). However, selenium treatment diminished activations of TRPM2, cytokine, Casp-3, and Casp-9, and levels of lipid peroxidation and mitochondrial ROS production in the microglia that were treated with IFNγ. Moreover, addition of either PARP1 inhibitors (PJ34 or DPQ) or TRPM2 blockers (2-APB or ACA) potentiated the modulator effects of selenium. These results clearly suggest that IFNγ leads to TRPM2 activation in microglia cells; whereas, selenium prevents IFNγ-mediated TRPM2 activation and cytokine generation. Together the interplay between IFNγ released from microglia cells is importance in brain inflammation and may affect oxidative cytotoxicity in the microglia. Graphical abstract Summary of pathways involved in IFNγ-induced TRPM2 activation and microglia death through excessive reactive oxygen species (ROS): Modulator role of selenium (Se). The IFNγ causes the microglia activation. Nudix box domain of TRPM2 is sensitive to ROS. The ROS induces DNA damage and ADPR-ribose (ADPR) production in the nucleus via PARP1 enzyme activation. ADPR and ROS-induced TRPM2 activation stimulates excessive Ca2+ influx. ROS are produced in the mitochondria through the increase of free cytosolic Ca2+ (via TRPM2 activation) by the IFNγ treatment, although they are diminished by the TRPM2 channel blocker (ACA and 2-APB) and PARP1 inhibitor treatments. The main mechanism in the cell death and inflammatory effects of IFNγ is mediated by stimulation of ROS-mediated caspase (caspase -3 and - 9) activations and cytokine production (TNF-α, IL-1β, and IL-6) via TRPM2 activation, respectively. The apoptotic, inflammatory, and oxidant actions of IFNγ are modulated through TRPM2 inhibition by the Se treatment.
Collapse
Affiliation(s)
- Yener Akyuva
- Departmant of Neurosurgery, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey.
- Neuroscience Research Center (NÖROBAM), Suleyman Demirel University, TR-32260, Isparta, Turkey.
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
25
|
Nie PY, Tong L, Li MD, Fu CH, Peng JB, Ji LL. miR-142 downregulation alleviates rat PTSD-like behaviors, reduces the level of inflammatory cytokine expression and apoptosis in hippocampus, and upregulates the expression of fragile X mental retardation protein. J Neuroinflammation 2021; 18:17. [PMID: 33407653 PMCID: PMC7788709 DOI: 10.1186/s12974-020-02064-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Background FMRP is a selective mRNA-binding protein that regulates protein synthesis at synapses, and its loss may lead to the impairment of trace fear memory. Previously, we found that FMRP levels in the hippocampus of rats with post-traumatic stress disorder (PTSD) were decreased. However, the mechanism underlying these changes remains unclear. Methods Forty-eight male Sprague-Dawley rats were randomly divided into four groups. The experimental groups were treated with the single-prolonged stress (SPS) procedure and injected with a lentivirus-mediated inhibitor of miR-142-5p. Behavior test as well as morphology and molecular biology experiments were performed to detect the effect of miR-142 downregulation on PTSD, which was further verified by in vitro experiments. Results We found that silence of miRNA-142 (miR-142), an upstream regulator of FMRP, could alleviate PTSD-like behaviors of rats exposed to the SPS paradigm. MiR-142 silence not only decreased the levels of proinflammatory mediators, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α, but also increased the expressive levels of synaptic proteins including PSD95 and synapsin I in the hippocampus, which was one of the key brain regions associated with PTSD. We further detected that miR-142 silence also downregulated the transportation of nuclear factor kappa-B (NF-κB) into the nuclei of neurons and might further affect the morphology of neurons. Conclusions The results revealed miR-142 downregulation could alleviate PTSD-like behaviors through attenuating neuroinflammation in the hippocampus of SPS rats by binding to FMRP.
Collapse
Affiliation(s)
- Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Da Li
- Department of 1st Clinical Medicine, China Medical University, Shenyang, China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|
27
|
Yıldızhan K, Nazıroğlu M. Glutathione Depletion and Parkinsonian Neurotoxin MPP +-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol 2020; 57:3508-3525. [PMID: 32535761 DOI: 10.1007/s12035-020-01974-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is one of most common neurodegenerative diseases. Environmental stressors such as oxidative stress (OS), calcium ion influx, apoptosis, and inflammation mechanisms are linked to activated microglia in patients with PD. The OS-dependent activated transient receptor potential melastatin 2 (TRPM2) channel is modulated in several neurons by glutathione (GSH). However, the cellular and molecular effects of GSH alteration on TRPM2 activation, OS, apoptosis, and inflammation in the microglia remain elusive. The microglia of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, PD model (MPP), L-buthionine sulfoximine (BSO), MPP + BSO and MPP + BSO + GSH groups. MPP-induced increases in apoptosis, death, OS, lipid peroxidation, PARP1, caspase-3 and caspase-9, inflammatory cytokines (IL-1β, TNF-α, IL-6), and intracellular free Zn2+ and Ca2+ levels in the microglia of TRPM2-WT mice were further increased by the BSO treatment, although they were diminished by the GSH treatment. Their levels were further reduced by PARP1 inhibitors (PJ34 and DPQ) and TRPM2 blockers (ACA and 2-APB). However, the effects of MPP and BSO were not observed in the microglia of TRPM2-KO mice. Taken together, our data demonstrate that maintaining GSH homeostasis is not only important for quenching OS in the microglia of patients with PD but also equally critical to modulating TRPM2, thus suppressing inflammatory responses elicited by environmental stressors.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey. .,Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey. .,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd,, Göller Bölgesi Teknokenti, Isparta, Turkey.
| |
Collapse
|