1
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
4
|
Abd-Alhussain GK, Alatrakji MQYMA, Ahmed SJ, Fawzi HA. Efficacy of oral insulin nanoparticles for the management of hyperglycemia in a rat model of diabetes induced with streptozotocin. J Med Life 2024; 17:217-225. [PMID: 38813352 PMCID: PMC11131628 DOI: 10.25122/jml-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 05/31/2024] Open
Abstract
Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes. We used biodegradable D-α-tocopherol polyethylene glycol succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose of 20 IU/kg body weight, and examined the physical characteristics of NPs in vivo and in vitro. Serum glucose levels were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a potential carrier for oral insulin delivery.
Collapse
Affiliation(s)
- Ghasak Kais Abd-Alhussain
- College of Pharmacy, Uruk University, Baghdad, Iraq
- College of Medicine, Baghdad University, Baghdad, Iraq
| | | | | | | |
Collapse
|
5
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
6
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
7
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
8
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
9
|
Zhang X, Li X, Zhao Y, Zheng Q, Wu Q, Yu Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front Nutr 2022; 9:1050647. [PMID: 36545472 PMCID: PMC9760884 DOI: 10.3389/fnut.2022.1050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with small-molecule synthetic drugs, bioactive peptides have desirable advantages in efficiency, selectivity, safety, tolerance, and side effects, which are accepted by attracting extensive attention from researchers in food, medicine, and other fields. However, unacceptable barriers, including mucus barrier, digestive enzyme barrier, and epithelial barrier, cause the weakening or the loss of bioavailability and biostability of bioactive peptides. The nanocarrier system for bioactive peptide delivery needs to be further probed. We provide a comprehensive update on the application of versatile delivery systems for embedding bioactive peptides, including liposomes, polymer nanoparticles, polysaccharides, hydrogels, and self-emulsifying delivery systems, and further clarify their structural characterization, advantages, and disadvantages as delivery systems. It aims to provide a reference for the maximum utilization of bioactive peptides. It is expected to be an effective strategy for improving the bioavailability and biostability of bioactive peptides.
Collapse
|
10
|
Development and Evaluation of Letrozole-Loaded Hyaluronic Acid/Chitosan-Coated Poly(d,l-lactide-co-glycolide) Nanoparticles. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Al-Domi D, Bozeya A, Al-Fandi M. Development of an Insulin Nano-Delivery System through Buccal Administration. Curr Drug Deliv 2022; 19:889-901. [PMID: 35023456 DOI: 10.2174/1567201819666220112121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
AIM To develop a new nano-delivery system for insulin buccal administration. BACKGROUND Biodegradable polymeric nanoparticles (PNPs) had viewed countless breakthroughs in drug delivery systems. The main objective of PNPs application in delivering and carrying different promising drugs is to make sure that the drugs being delivered to their action sites. As a result maximizing the desired effect and overcoming their limitations and drawbacks. OBJECTIVES The main goals of this study were to produce an insulin consumable nano-delivery system for buccal administration and enhance the mucoadhesive effect in sustaining insulin release. METHODS Water in oil in water (W-O-W) microemulsion solvent evaporation technique was used for the preparation of nanoparticles consisting from positively charged poly (D, L-lactide-co-glycolide) coated with chitosan and loaded with insulin. Later, a consumable buccal film was prepared by the spin coating method and loaded with the previously prepared nanoparticles. RESULTS The newly prepared nanoparticle was assessed in terms of size, charge and surface morphology using a Scanning Electron Microscope (SEM), zeta potential, Atomic Force Microscope (AFM), and Fourier Transform Infra-red (FTIR) spectroscopy. An in-vitro investigation of the insulin release, from nanoparticles and buccal film, demonstrated controlled as well as sustained delivery over 6 hrs. The cumulative insulin release decreased to about (28.9%) with buccal film in comparing with the nanoparticle (50 %). CONCLUSION The buccal film added another barrier for insulin release. Therefore, the release was sustained.
Collapse
Affiliation(s)
- Diaa Al-Domi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayat Bozeya
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
12
|
Yi C, Li Y, Zhang S, Fan H, Cheng Z. CSH/SBE-β-CD nanoparticles: controlled synthesis and application for loading and pH-responsive drug release. NEW J CHEM 2022. [DOI: 10.1039/d2nj01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CSH and SBE-β-CD were assembled via electrostatic interaction and hydrogen bonding for the loading and pH-responsive release of BSA.
Collapse
Affiliation(s)
- Chunrong Yi
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Shuxin Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Hai Fan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018, Shandong, P. R. China
| |
Collapse
|
13
|
Xie H, Ma X, Lin W, Dong S, Liu Q, Chen Y, Gao Q. Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin-Insulin Inclusion Complexes. Polymers (Basel) 2021; 13:polym13234187. [PMID: 34883690 PMCID: PMC8659932 DOI: 10.3390/polym13234187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
In the current study, linear dextrin (LD) was prepared using waxy potato starch debranched with pullulanase, which has attracted immense interest in the food, pharmaceutical, and cosmetic industries as a versatile ingredient. Various LDs were separated on the basis of their differential solubility in aqueous/ethanol solutions of different volumetric ratios. Three LD products—LD Fabrications with 40% ethanol (F-40); LD Fabrications with 50% ethanol (F-50); and LD Fabrications with 60%, 70%, and 80% ethanol (F-M)—were obtained with an average degree of polymerization (DP) values of 31.44, 21.84, and 16.10, respectively. The results of Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the reaction mainly involved hydrogen bonding and a hydrophobic interaction between LD and insulin in the process of inclusion complex formation. X-ray diffraction (XRD) results indicated that insulin was encapsulated in LD. The results of circular dichroism (CD) showed that the changes in the secondary structure of insulin were negligible during the release from the inclusion complexes. The order of encapsulation capacity is as follows: the complex composed of F-M and insulin (F-M-INS) > the complex composed of LD and insulin (LD-INS) > the complex composed of F-50 and insulin (F-50-INS) > and the complex composed of F-40 and insulin (F-40-INS). F-M-INS inclusion complexes showed a better effect on reducing the release of insulin in gastric juice and promoting the release of insulin in intestinal juice and blood plasma than LD-INS.
Collapse
Affiliation(s)
- Huifang Xie
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Xin Ma
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; (X.M.); (W.L.)
| | - Wenbin Lin
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; (X.M.); (W.L.)
| | - Shiting Dong
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Qiang Liu
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Yi Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
- Correspondence: ; Tel.: +86-136-6026-1703; Fax: +86-020-87113848
| |
Collapse
|
14
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
15
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
17
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
18
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
19
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
20
|
Morioka F, Tani N, Ikeda T, Hirokawa T, Ikeda K, Shida A, Aoki Y, Ishikawa T. Morphological and biochemical changes in the pancreas associated with acute systemic hypoxia. Hum Cell 2021; 34:400-418. [PMID: 33532907 PMCID: PMC7900369 DOI: 10.1007/s13577-020-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022]
Abstract
This study aimed to investigate the changes associated with acute systemic hypoxia in the endocrine system, particularly in pancreatic tissues. The investigation was based on macroscopic, pathohistological, biochemical, and molecular biological findings in cell lines and human cadavers. The results showed that cases of death due to asphyxia more frequently showed severe subcapsular/interstitial hemorrhage versus the other causes of death. Histological examination showed that asphyxia cases were associated with severe morphological changes. Although measured insulin levels in the asphyxia were higher compared to other causes of death, no differences were noted for the glucagon and amylase levels with regard to the cause of death. Increased blood insulin levels were not associated with macro- and micromorphological changes, and did not show any association with glucose or cortisol levels. The experiment conducted under hypoxic conditions in cultured cells demonstrated that insulin mRNA expression and insulin protein levels peaked at 10 min after hypoxia exposure. However, there were no changes in either the amylase mRNA or protein levels. Corticosterone level peaked at 120 min after exposure to hypoxic conditions. Overall, acute systemic hypoxic conditions can directly affect the mechanisms involved in pancreatic insulin secretion.
Collapse
Affiliation(s)
- Fumiya Morioka
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.
| | - Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.,Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.,Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Tatsuya Hirokawa
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.,Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Kei Ikeda
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.,Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
21
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Effect of Chitosan Coating on PLGA Nanoparticles for Oral Delivery of Thymoquinone: In Vitro, Ex Vivo, and Cancer Cell Line Assessments. COATINGS 2020. [DOI: 10.3390/coatings11010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.
Collapse
|
23
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
24
|
Darvishi MM, Moazeni M, Alizadeh M, Abedi M, Tamaddon AM. Evaluation of the efficacy of albendazole sulfoxide (ABZ-SO)-loaded chitosan-PLGA nanoparticles in the treatment of cystic echinococcosis in laboratory mice. Parasitol Res 2020; 119:4233-4241. [PMID: 32996050 DOI: 10.1007/s00436-020-06901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Albendazole is known as the drug of choice for medical treatment of cystic echinococcosis (CE). Albendazole sulfoxide (ABZ-SO), as the main active metabolite of albendazole, has low efficacy in the disease due to low water solubility and poor absorptivity. PLGA nanoparticles (NPs) enhance the dissolution of poorly soluble drugs, and chitosan (CS) coating enhances oral drug delivery of NPs. In this study, the efficacy of ABZ-SO-loaded CS-PGLA NPs in the treatment of CE was evaluated in laboratory mice. ABZ-SO-loaded CS-PGLA NPs were prepared by nanoprecipitation and characterized by dynamic light scattering method and scanning electron microscopy. Thirty mice were intraperitoneally infected by 1000 protoscoleces of Echinococcus granulosus. Ten months later, the mice were allocated into 3 groups: groups 1 and 2 were treated with ABZ-SO and ABZ-SO-loaded CS-PGLA NPs, respectively, and the mice in group 3 remained untreated as the control group. The drugs were administered by gavage for 45 days at a daily dose of 10 mg/kg. Finally, all mice were opened and the cysts were collected, counted, weighed, and measured separately. The therapeutic effect of ABZ-SO in the number, weight, and volume of the cysts were not statistically significant compared with those in ABZ-SO-loaded CS-PGLA NPs and the control group. However, the therapeutic effect of ABZ-SO-loaded CS-PGLA NPs in the weight and volume of cysts were statistically significant when compared with that in the control group (p ˂ 0.05). In conclusions, this study revealed that ABZ-SO-loaded CS-PGLA NPs could enhance the therapeutic efficacy of ABZ-SO in the treatment of CE in laboratory mice.
Collapse
Affiliation(s)
- Mohammad Mahdi Darvishi
- Department of Parasitology, Division of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 713451731, Iran
| | - Mohammad Moazeni
- Department of Parasitology, Division of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 713451731, Iran.
| | - Marzieh Alizadeh
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target 2020; 28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
26
|
How Can Biomolecules Improve Mucoadhesion of Oral Insulin? A Comprehensive Insight using Ex-Vivo, In Silico, and In Vivo Models. Biomolecules 2020; 10:biom10050675. [PMID: 32349416 PMCID: PMC7277740 DOI: 10.3390/biom10050675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach’s low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats’ glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.
Collapse
|
27
|
Alshamsan A, Binkhathlan Z, Kalam MA, Qamar W, Kfouri H, Alghonaim M, Lavasanifar A. Mitigation of Tacrolimus-Associated Nephrotoxicity by PLGA Nanoparticulate Delivery Following Multiple Dosing to Mice while Maintaining its Immunosuppressive Activity. Sci Rep 2020; 10:6675. [PMID: 32317681 PMCID: PMC7174389 DOI: 10.1038/s41598-020-63767-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the ability of PLGA nanoparticles (NPs) to reduce the tacrolimus (TAC)-associated nephrotoxicity following multiple dose administration. The mean diameter of prepared NPs was in the range of 227 to 263 nm with an 8.32% drug loading (w/w). Moreover, in vitro release profile of TAC-loaded NPs showed a sustained release of the drug with only less than 30% release within 12 days. Flow cytometry as well as fluorescence microscopy results confirmed the uptake of FITC-labelled PLGA NPs by dendritic cells. The ex vivo study showed that TAC-loaded NPs caused a significant suppression of the proliferation of CD4+ and CD8+ cells, which was comparable to the control formulation (Prograf). In vivo immunosuppressive activity as well as the kidney function were assessed following drug administration to mice. The animals received TAC subcutaneously at a daily dose of 1 mg/kg for 30 days delivered as the control formulation (Prograf) or TAC-loaded NPs. The results revealed significantly lower drug-associated toxicity with an activity comparable to Prograf for TAC-loaded PLGA NPs. These findings show a potential for PLGA NPs in reducing the nephrotoxicity of TAC while preserving the immunosuppressive activity.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia. .,Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Ziyad Binkhathlan
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Mohd Abul Kalam
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Wajhul Qamar
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala Kfouri
- Department of Pathology, College of Medicine, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Alghonaim
- King Salman Bin Abdulaziz Chair for Kidney Disease, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
28
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
29
|
Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target 2020; 28:585-599. [DOI: 10.1080/1061186x.2020.1726356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani. Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
30
|
Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm 2020; 578:119081. [PMID: 32006623 DOI: 10.1016/j.ijpharm.2020.119081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is a major problem in elder people. Etoricoxib-loaded bio-adhesive hybridized nanoparticles were prepared using polylactic acid (PLA) and chitosan hydrochloride (CS-HCl) in presence of Captex®200 as a liquid oil, polyvinyl alcohol (PVA) and Tween®80 as surfactants. The study aimed to present a new intra-articular treatment of osteoarthritis with anti-inflammatory as well as bone rebuilding effects. Hybridized nanoparticles were fabricated applying the emulsion solvent evaporation technique then assessed for particle size, zeta potential, entrapment efficiency and in-vitro drug release. Furthermore, FT-IR and DSC in addition to morphological examination were done. Results revealed that the formulation composed of PLA:Captex®200 in ratio 1:2 (w/w), 1%w/v Tween®80, 0.3% w/v CS-HCl and 3%w/v PVA possessed the smallest particle size and the most sustained drug release, thus was sorted for further analyses. The selected formulation ability to interact with the negatively charged sodium fluroscein was evaluated to predict its binding with the naturally occurring hyaluronic acid in the knee joint where promising results were obtained. Results showed the cytocompatibility of the formulation when tested using MC3T3-E1 normal bone cell line, enhanced ALP activity and increased calcium ion deposition and binding. Results suggested that the presented formulation can be considered as an innovative approach for osteoarthritis.
Collapse
Affiliation(s)
- Alaa H Salama
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Abdelfattah A Abdelkhalek
- Department of Microbiology of Supplementry General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| |
Collapse
|
31
|
Uhl P, Grundmann C, Sauter M, Storck P, Tursch A, Özbek S, Leotta K, Roth R, Witzigmann D, Kulkarni JA, Fidelj V, Kleist C, Cullis PR, Fricker G, Mier W. Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102132. [PMID: 31783138 DOI: 10.1016/j.nano.2019.102132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/20/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
Abstract
Until today, the oral delivery of peptide drugs is hampered due to their instability in the gastrointestinal tract and low mucosal penetration. To overcome these hurdles, PLA (polylactide acid)-nanoparticles were coated with a cyclic, polyarginine-rich, cell penetrating peptide (cyclic R9-CPP). These surface-modified nanoparticles showed a size and polydispersity index comparable to standard PLA-nanoparticles. The zeta potential showed a significant increase indicating successful CPP-coupling to the surface of the nanoparticles. Cryo-EM micrographs confirmed the appropriate size and morphology of the modified nanoparticles. A high encapsulation efficiency of liraglutide could be achieved. In vitro tests using Caco-2 cells showed high viability indicating the tolerability of this novel formulation. A strongly enhanced mucosal binding and penetration was demonstrated by a Caco-2 binding and uptake assay. In Wistar rats, the novel nanoparticles showed a substantial, 4.5-fold increase in the oral bioavailability of liraglutide revealing great potential for the oral delivery of peptide drugs.
Collapse
Affiliation(s)
- P Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - C Grundmann
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - M Sauter
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - P Storck
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - A Tursch
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg, Germany
| | - S Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg, Germany
| | - K Leotta
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - R Roth
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - D Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - J A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - V Fidelj
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Biopharmacy, Ruprecht-Karls University, Heidelberg, Germany
| | - C Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - G Fricker
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Biopharmacy, Ruprecht-Karls University, Heidelberg, Germany
| | - W Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
32
|
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019; 24:E4209. [PMID: 31756981 PMCID: PMC6930606 DOI: 10.3390/molecules24234209] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient's compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Patricia Severino
- Tiradentes Institute, University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju-SE 49010-390, Brazil;
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Angelo A. Izzo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
33
|
Ismail R, Bocsik A, Katona G, Gróf I, Deli MA, Csóka I. Encapsulation in Polymeric Nanoparticles Enhances the Enzymatic Stability and the Permeability of the GLP-1 Analog, Liraglutide, Across a Culture Model of Intestinal Permeability. Pharmaceutics 2019; 11:pharmaceutics11110599. [PMID: 31726699 PMCID: PMC6920980 DOI: 10.3390/pharmaceutics11110599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022] Open
Abstract
The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics and enzymatic degradation studies were conducted, mimicking the gastrointestinal environment. The permeability of liraglutide solution, liraglutide-loaded PLGA NPs, and liraglutide in the presence of the absorption enhancer PN159 peptide was tested on the Caco-2 cell model. Liraglutide release from PLGA NPs showed a biphasic release pattern with a burst effect of less than 15%. The PLGA nanosystem protected the encapsulated liraglutide from the conditions simulating the gastric environment. The permeability of liraglutide encapsulated in PLGA NPs was 1.5-fold higher (24 × 10−6 cm/s) across Caco-2 cells as compared to liraglutide solution. PLGA NPs were as effective at elevating liraglutide penetration as the tight junction-opening PN159 peptide. No morphological changes were seen in the intercellular junctions of Caco-2 cells after treatment with liraglutide-PLGA NPs, confirming the lack of a paracellular component in the transport mechanism. PLGA NPs, by protecting liraglutide from enzyme degradation and enhancing its permeability across intestinal epithelium, hold great potential as carriers for oral GLP-1 analog delivery.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
- Correspondence: ; Tel.: +36-62-546116
| |
Collapse
|
34
|
Wong CY, Luna G, Martinez J, Al-Salami H, Dass CR. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int J Pharm 2019; 572:118720. [PMID: 31715357 DOI: 10.1016/j.ijpharm.2019.118720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic proteins are labile macromolecules that are prone to degradation during production, freeze-drying and storage. Recent studies showed that nanoparticles can enhance the stability and oral bioavailability of encapsulated proteins. Several conventional approaches (enzyme inhibitors, mucoadhesive polymers) and novel strategies (surface modification, ligand conjugation, flash nano-complexation, stimuli-responsive drug delivery systems) have been employed to improve the physiochemical properties of nanoparticles such as size, zeta potential, morphology, polydispersity index, drug release kinetics and cell-targeting capacity. However, clinical translation of protein-based nanoparticle is limited due to poor experimental design, protocol non-compliance and instrumentation set-up that do not reflect the physiological conditions, resulting in difficulties in mass production of nanoparticles and waste in research funding. In order to address the above concerns, we conducted a comprehensive review to examine the experimental designs and conditions for physical characterization of protein-based nanoparticles. Reliable and robust characterization is essential to verify the cellular interactions and therapeutic potential of protein-based nanoparticles. Importantly, there are a number of crucial factors, which include sample treatment, analytical method, dispersants, sampling grid, staining, quantification parameters, temperature, drug concentration and research materials, should be taken into careful consideration. Variations in research protocol and unreasonable conditions that are used in optimization of pharmaceutical formulations can have great impact in result interpretation. Last but not least, we reviewed all novel instrumentations and assays that are available to examine mucus diffusion capacity, stability and bioactivity of protein-based nanoparticles. These include circular dichroism, fourier transform infrared spectroscopy, X-ray diffractogram, UV spectroscopy, differential scanning calorimetry, fluorescence spectrum, Förster resonance energy transfer, NMR spectroscopy, Raman spectroscopy, cellular assays and animal models.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia; Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
35
|
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Zhang X, Sun K. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Nanomedicine (Lond) 2019; 14:989-1009. [PMID: 31088322 DOI: 10.2217/nnm-2018-0322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the effect of nanoparticles loaded with exenatide in overcoming the mucus barrier and improving intestinal targeting efficiency, to improve the oral bioavailability. Materials & methods: Low molecular weight protamine (LMWP)-dextran-poly(lactic-co-glycolic acid) was used to create LMWP-dextran-poly(lactic-co-glycolic acid)-nanoparticles (LDPs) encapsulating exenatide-Zn2+ complex.Results & conclusion: LDPs showed improved penetration of the mucus barrier, and LMWP was helpful for mediating cell translocation through protein transduction domains. The absorption sites and distribution rates of LDPs were verified by intestinal localization experiments and in vivo distribution experiments. Cell uptake and transmembrane experiments confirmed the absorption efficiency in the intestinal epithelium. Furthermore, the relative bioavailability after oral administration of exenatide-Zn2+-LDPs was 8.4%, with a significant hypoglycemic effect on Type 2 diabetic mice.
Collapse
Affiliation(s)
- Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, 264005, PR China
| | - Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Haiyan Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chunyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.,State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| |
Collapse
|
36
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
37
|
Development of PLGA nanoparticles for sustained release of a connexin43 mimetic peptide to target glioblastoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110191. [PMID: 31923988 DOI: 10.1016/j.msec.2019.110191] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
Abstract
Effective therapeutic delivery of peptide and protein drugs is challenged by short in vivo half-lives due to rapid degradation. Sustained release formulations of αCT1, a 25 amino acid peptide drug, would afford lower dosing frequency in indications that require long term treatment, such as chronic wounds and cancers. In this study, rhodamine B (RhB) was used as a model drug to develop and optimize a double emulsion-solvent evaporation method of poly(lactic-co-glycolic acid) (PLGA) nanoparticle synthesis. Encapsulation of αCT1 in these nanoparticles (NPs) resulted in a sustained in vitro release profile over three weeks, characterized by an initial burst release of approximately 50% of total encapsulated drug over the first three days followed by sustained release over the remaining two and a half weeks. NP uptake by glioblastoma stem cells was through endocytosis and RhB and αCT1 were observed in cells after at least 4 days.
Collapse
|
38
|
Mumuni MA, Kenechukwu FC, Ernest OC, Oluseun AM, Abdulmumin B, Youngson DC, Kenneth OC, Anthony AA. Surface-modified mucoadhesive microparticles as a controlled release system for oral delivery of insulin. Heliyon 2019; 5:e02366. [PMID: 31535040 PMCID: PMC6744591 DOI: 10.1016/j.heliyon.2019.e02366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
To overcome barriers and improve oral bioavailability of insulin delivery has been a mirage to formulation scientists due to instability of the insulin after oral administration. Microparticle (MP) composed of chitosan and snail mucin was prepared via double emulsion method for oral delivery of insulin. Microparticles were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy. The encapsulation efficiency (EE) of the insulin-loaded MPs were evaluated. Insulin release behavior was evaluated in acidic and phosphate buffer (pH 1.2 and 7.4) at 37 °C. Bioactivities of insulin-loaded MPs were evaluated in a diabetic animal model after oral administration. The insulin-loaded MPs showed irregular shape with a zeta potential (>29 mV). The encapsulation efficiency and drug loading were >75 and 28 %, respectively. The in vitro release shows >80 % release of insulin over 12 h in a sustained manner. The insulin-MPs significantly reduced blood glucose levels (>50 %) compared to positive control and the effect lasted for over 8 h. This study suggests that insulin-MPs as prepared would be potential carriers for oral delivery of insulin.
Collapse
Affiliation(s)
- Momoh A. Mumuni
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
- Corresponding author.
| | - Frankilin C. Kenechukwu
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Omeje C. Ernest
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Adedokun M. Oluseun
- Department of Pharmaceutics and Pharmaceutical Technology, University of Uyo, Akwa-Ibom State, Nigeria
| | - Barikisu Abdulmumin
- Department of Geology, Faculty of Physical Sciences, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Darlington C. Youngson
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Ofokansi C. Kenneth
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Attama A. Anthony
- Drug Delivery and Diabetics Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
39
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
40
|
Abd El Hady WE, Mohamed EA, Soliman OAEA, El-Sabbagh HM. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int J Nanomedicine 2019; 14:7191-7213. [PMID: 31564873 PMCID: PMC6732519 DOI: 10.2147/ijn.s213836] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Diosmin showed poor water solubility and low bioavailability. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles were successfully used to improve the drugs solubility and bioavailability. Coating of PLGA nanoparticles with chitosan can ameliorate their gastric retention and cellular uptake. Methodology PLGA nanoparticles of diosmin were prepared using different drug and polymer amounts. Nanoparticles were selected based on entrapment efficiency% (EE%) and particle size measurements to be coated with chitosan. The selected nanoparticles either uncoated or coated were evaluated regarding morphology, ζ-potential, solid-state characterization, in vitro release, storage stability, and mucoadhesion. The anti-ulcer activity (AA) against ethanol-induced ulcer in rats was assessed through macroscopical evaluation, histopathological examination, immunohistochemical localization of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transmission electron microscopic examination of gastric tissues compared to free diosmin (100 mg/kg) and positive control. Results Based on EE% and particle size measurements, the selected nanoparticles, either uncoated or coated with 0.1% w/v chitosan, were based on 1:15 drug-PLGA weight ratio and 20 mg diosmin employing methylene chloride as an organic phase. Examination by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed nanoscopic spherical particles. Drug encapsulation within the selected nanoparticles was suggested by Fourier transform-infrared, differential scanning calorimetry (DSC) and X-ray diffractometry results. Chitosan-coated nanoparticles were more stable against size enlargement probably due to the higher ζ-potential. Only coated nanoparticles showed gastric retention as revealed by SEM examination of stomach and duodenum. The superior AA of coated nanoparticles was confirmed by significant reduction in average mucosal damage, the majority of histopathological changes and NF-κB expression in gastric tissue when compared to positive control, diosmin and uncoated nanoparticles as well as insignificant difference relative to normal control. Coated nanoparticles preserved the normal ultrastructure of the gastric mucosa as revealed by TEM examination. Conclusion The optimized chitosan-coated PLGA nanoparticles can be represented as a potential oral drug delivery system of diosmin.
Collapse
|
41
|
Bugelli V, Campobasso CP, Angelino A, Focardi M, Pinchi V. CLEIA of humor vitreous in a case of suicidal insulin overdose. Leg Med (Tokyo) 2019; 40:22-25. [DOI: 10.1016/j.legalmed.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/07/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
42
|
Alkholief M. Optimization of Lecithin-Chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Chen T, Li S, Zhu W, Liang Z, Zeng Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 2019; 36:96-107. [DOI: 10.1080/02652048.2019.1604846] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tingting Chen
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shunying Li
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenting Zhu
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Liang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingbing Zeng
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
He S, Fu W, Zou M, Xing W, Liu Z, Xu D. Construction and evaluation of SAK-HV protein oral dosage form based on chitosan quaternary ammonium salt-PLGA microsphere. J Drug Target 2019; 27:1108-1117. [DOI: 10.1080/1061186x.2019.1605520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shiming He
- Institute of Military Cognition and Brain Sciences, Beijing, China
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Wenliang Fu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Minji Zou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Weiwei Xing
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Donggang Xu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
45
|
Zeng Z, Dong C, Zhao P, Liu Z, Liu L, Mao H, Leong KW, Gao X, Chen Y. Scalable Production of Therapeutic Protein Nanoparticles Using Flash Nanoprecipitation. Adv Healthc Mater 2019; 8:e1801010. [PMID: 30338666 DOI: 10.1002/adhm.201801010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Indexed: 12/28/2022]
Abstract
Flash nanoprecipitation (FNP) by fast mixing of drug-containing organic solvent and water in a microchamber is a powerful and scalable technology to produce solid drug nanoparticles with high payload. The embedded therapeutic drugs, however, are largely limited to hydrophobic small molecules. By transferring proteins into organic solvent via hydrophobic ion pairing, the scope of FNP applications is expanded. This platform technology is capable of producing protein nanoparticles with tunable sizes (from ≈30 nm to sub-micrometers), high-production scale (grams per hour), high drug loading efficiency (>90%), and excellent reproducibility, opening a new paradigm for formulation of biological pharmaceuticals. As a proof-of-concept, insulin nanoparticles are made to address a major medical challenge; oral administration. A relative insulin bioavailability of 13.2% is achieved, enabling sustained reduction of blood glucose levels in a diabetic rat model.
Collapse
Affiliation(s)
- Zhipeng Zeng
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| | - Cong Dong
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| | - Pengfei Zhao
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| | - Zhijia Liu
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| | - Lixin Liu
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| | - Hai‐Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and EngineeringJohns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering and Translational Tissue Engineering CenterJohns Hopkins University School of Medicine Baltimore MD 21287 USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia University New York NY 10027 USA
| | - Xiaohu Gao
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
| | - Yongming Chen
- School of Materials Science and EngineeringCenter of Functional BiomaterialsKey Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of EducationGD Research Center for Functional Biomaterials Engineering and TechnologySun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
46
|
Andreu V, Larrea A, Rodriguez-Fernandez P, Alfaro S, Gracia B, Lucía A, Usón L, Gomez AC, Mendoza G, Lacoma A, Dominguez J, Prat C, Sebastian V, Ainsa JA, Arruebo M. Matryoshka-type gastro-resistant microparticles for the oral treatment of Mycobacterium tuberculosis. Nanomedicine (Lond) 2019; 14:707-726. [PMID: 30734643 DOI: 10.2217/nnm-2018-0258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Production of Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) against Mycobacterium tuberculosis. MATERIALS & METHODS The emulsification and evaporation methods were followed for the synthesis of PLGA-NPs and methacrylic acid-ethyl acrylate-based coatings to protect rifampicin from degradation under simulated gastric conditions. RESULTS & CONCLUSION The inner antibiotic-loaded NPs here reported can be released under simulated intestinal conditions whereas their coating protects them from degradation under simulated gastric conditions. The encapsulation does not hinder the antituberculosis action of the encapsulated antibiotic rifampicin. A sustained antibiotic release could be obtained when using the drug-loaded encapsulated NPs. Compared with the administration of the free drug, a more effective elimination of M. tuberculosis was observed when applying the NPs against infected macrophages. The antibiotic-loaded PLGA-NPs were also able to cross an in vitro model of intestinal barrier.
Collapse
Affiliation(s)
- Vanesa Andreu
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Ane Larrea
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Pablo Rodriguez-Fernandez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Institut de Biotecnologia i Biomedicina, Bellaterra, Barcelona, Spain
| | - Salvador Alfaro
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Begoña Gracia
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Publica & BIFI, Universidad de Zaragoza, Domingo Miral s/n, Zaragoza 50009, Spain
| | - Ainhoa Lucía
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Publica & BIFI, Universidad de Zaragoza, Domingo Miral s/n, Zaragoza 50009, Spain
| | - Laura Usón
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Andromeda-Celeste Gomez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Institut de Biotecnologia i Biomedicina, Bellaterra, Barcelona, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Alicia Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jose Dominguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Victor Sebastian
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - José Antonio Ainsa
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Publica & BIFI, Universidad de Zaragoza, Domingo Miral s/n, Zaragoza 50009, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| |
Collapse
|
47
|
Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Chu L, Yan X, Zhao M, Zhang X, Mu H, Sun K. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Mol Pharm 2019; 16:518-532. [PMID: 30601014 DOI: 10.1021/acs.molpharmaceut.8b00809] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oral absorption of exenatide, a drug for type 2 diabetes treatment, can be improved by using nanoparticles (NPs) for its delivery. To improve the mucus penetration and intestinal absorption of exenatide, we designed a block copolymer, CSKSSDYQC-dextran-poly(lactic-co-glycolic acid) (CSK-DEX-PLGA), and used it for the preparation of exenatide-loaded NPs. The functionalized exenatide-loaded NPs composed of CSK-DEX-PLGA were able to target intestinal epithelial cells and reduce the mucus-blocking effect of the intestine. Moreover, the CSK modification of DEX-PLGA was found to significantly promote the absorption efficiency of NPs in the small intestine based on in vitro ligation of the intestinal rings and an examination of different intestinal absorption sites. Compared to DEX-PLGA-NPs (DPs), the absorption of CSK-DEX-PLGA-NPs (CDPs) was increased in the villi, allowing the drug to act on gobletlike Caco-2 cells through clathrin-, caveolin-, and gap-mediated endocytosis. Furthermore, the enhanced transport ability of CDPs was observed in a study on Caco-2/HT-29-MTX cocultured cells. CDPs exhibited a prolonged hypoglycemic response with a relative bioavailability of 9.2% in diabetic rats after oral administration. In conclusion, CDPs can target small intestinal goblet cells and have a beneficial effect on the oral administration of macromolecular peptides as a nanometer-sized carrier.
Collapse
Affiliation(s)
- Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Yanan Shi
- School of Pharmacy , Binzhou Medical University , Yantai 264005 , China
| | - Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Haiyan Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Chunyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Liuxiang Chu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Xiuju Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Mingyu Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Luye Pharmaceutical Co. Ltd. , Yantai 264005 , China
| | - Hongjie Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Luye Pharmaceutical Co. Ltd. , Yantai 264005 , China
| |
Collapse
|
49
|
Siwach R, Pandey P, Chawla V, Dureja H. Role of Nanotechnology in Diabetic Management. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:28-37. [PMID: 30608045 DOI: 10.2174/1872210513666190104122032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM) has emerged as an epidemic that has affected millions of people worldwide in the last few decades. Nanotechnology is a discipline that is concerned with material characteristics at nanoscale and offers novel techniques for disease detection, management and prevention. OBJECTIVE Diabetes mellitus is an epidemic disease that has affected millions of people globally. Nanotechnology has greatly enhanced the health status by providing non-obtrusive techniques for the management and treatment of diabetic patients. METHOD In diabetes research, the nanotechnology has encouraged the advancement of novel glucose monitoring and several modalities for insulin delivery holding possibilities to enhance the personal satisfaction and life quality for diabetic patients. RESULT Nanoparticles hold a great potential in the areas of drug delivery and are explored as vehicles for orally administered insulin formulations. Glucose biosensors equipped with nanoscale materials such as Quantum Dots (QDs), Carbon Nanotubes (CNTs), Magnetic Nanoparticles (MNPs) etc. have shown greater sensitivity. Nanotechnology in diabetic research is heading towards the novel techniques which can provide continuous glucose monitoring offering accurate information and improving patient's compliance. CONCLUSION The present review addresses the different aspects of nanoparticles and recent patents related to diabetic management based on nanotechnology.
Collapse
Affiliation(s)
- Reena Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak-124001, India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
50
|
Jafari M, Doustdar F, Mehrnejad F. Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. J Chem Inf Model 2018; 59:550-563. [PMID: 30475620 DOI: 10.1021/acs.jcim.8b00641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Encapsulation of peptide and protein-based drugs in polymeric nanoparticles is one of the fundamental fields in controlled-release drug delivery systems. The molecular mechanisms of absorption of peptides to the polymeric nanoparticles are still unknown, and there is no precise molecular data on the encapsulation process of peptide and protein-based drugs. Herein, the self-assembly of different polymers and block copolymers with combinations of the various molecular weight of blocks and the effects of resultant polymer and copolymer nanomicelles on the stability of magainin2, an α-helical antimicrobial peptide, were investigated by means of all-atom molecular dynamics (MD) simulation. The micelle forming, morphology of micellar aggregations and changes in the first hydration shell of the micelles during micelles formation were explored as well. The results showed that the peptide binds to the polymer and copolymer micelles and never detaches during the MD simulation time. In general, all polymers and copolymers simultaneously encapsulated the peptide during micelles formation and had the ability to maintain the helical structure of the peptide, whereas the first hydration shell of the peptide remained unchanged. Among the micelles, the polyethylene glycol (PEG) micelles completely encapsulated magainin2 and, surprisingly, the NMR structure of the peptide was perfectly kept during the encapsulation process. The MD results also indicated that the aromatic and basic residues of the peptide strongly interact with polymers/copolymers and play important roles in the encapsulation mechanism. This research will provide a good opportunity in the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
Affiliation(s)
- Majid Jafari
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| | - Farahnoosh Doustdar
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Microbiology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , P.O. Box 19839-63113 Tehran , Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| |
Collapse
|