1
|
Nguyen HX, Le NY, Nguyen CN. Quality by design optimization of formulation variables and process parameters for enhanced transdermal delivery of nanosuspension. Drug Deliv Transl Res 2024:10.1007/s13346-024-01733-4. [PMID: 39496992 DOI: 10.1007/s13346-024-01733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
This investigation aims to fabricate, characterize, and optimize organogel containing andrographolide nanosuspension to enhance transdermal drug delivery into and across the skin in vitro. We identified the critical material attributes (CMAs) and critical process parameters (CPPs) that impact key characteristics of andrographolide nanosuspension using a systematic quality-by-design approach. We prepared andrographolide nanosuspension using the wet milling technique and evaluated various properties of the formulations. The CMAs were types and concentrations of polymers, types and concentrations of surfactants, drug concentration, and lipid concentration. The CPPs were volume of milling media and milling duration. Mean particle size, polydispersity index, encapsulation efficiency, and drug loading capacity as critical quality attributes were selected in the design for the evaluation and optimization of the formulations. Furthermore, we developed and evaluated organogel formulation to carry andrographolide nanosuspension 0.05% w/w. Drug release and permeation studies were conducted to assess the drug release kinetics and transdermal delivery of andrographolide. We presented the alteration in the average particle size, polydispersity index, encapsulation efficiency, drug-loading capacity, and drug release among various formulations to select the optimal parameters. The permeation study indicated that organogel delivered markedly more drug into the receptor fluid and skin tissue than DMSO gel (n = 3, p < 0.05). This enhancement in transdermal drug delivery was demonstrated by cumulative drug permeation after 24 h, steady-state flux, permeability coefficient, and predicted steady-state plasma concentration. Drug quantity in skin layers, total delivery, delivery efficiency, and topical selectivity were also reported. Conclusively, andrographolide nanosuspension-loaded organogel significantly increased transdermal drug delivery in vitro.
Collapse
Affiliation(s)
- Hiep X Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
- Novoremedy, 2001 Talmage Rd, Ukiah, CA, 95482, USA
| | - Nhi Y Le
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam
| | - Chien N Nguyen
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam.
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Tipduangta P, Chansakaow S, Tansakul P, Meungjai R, Dilokthornsakul P. Polymer Matrix and Manufacturing Methods in Solid Dispersion System for Enhancing Andrographolide Solubility and Absorption: A Systematic Review. Pharmaceutics 2024; 16:688. [PMID: 38794350 PMCID: PMC11125128 DOI: 10.3390/pharmaceutics16050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases including PubMed, Web of Science, Scopus®, Embase and ScienceDirect Elsevier® up to November 2023 for studies on the solubility or absorption of ADG in SD formulations. Two reviewers independently reviewed the retrieved articles and extracted data using a standardized form and synthesized the data qualitatively. Results: SD significantly improved ADG solubility with up to a 4.7-fold increase and resulted in a decrease in 50% release time (T1/2) to less than 5 min. SD could also improve ADG absorption, as evidenced by higher Cmax and AUC and reduced Tmax. Notably, Soluplus-based SDs showed marked solubility and absorption enhancements. Among the five SD techniques (rotary evaporation, spray drying, hot-melt extrusion, freeze drying and vacuum drying) examined, spray drying emerged as the most effective, enabling a one-step process without the need for post-milling. Conclusions: SD techniques, particularly using Soluplus and spray drying, effectively enhance the solubility and absorption of ADG. This insight is vital for the future development of ADG-SD matrices.
Collapse
Affiliation(s)
- Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
| | - Pimpimon Tansakul
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Rungarun Meungjai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
| | - Piyameth Dilokthornsakul
- Center for Medical and Health Technology Assessment (CM-HTA), Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Assim Haq S, Paudwal G, Banjare N, Iqbal Andrabi N, Wazir P, Nandi U, Ahmed Z, Gupta PN. Sustained release polymer and surfactant based solid dispersion of andrographolide exhibited improved solubility, dissolution, pharmacokinetics, and pharmacological activity. Int J Pharm 2024; 651:123786. [PMID: 38185339 DOI: 10.1016/j.ijpharm.2024.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Andrographolide (AD) is a potent natural product with a wide range of pharmacological activities. However, it has low oral bioavailability due to poor solubility and dissolution rate. Solid dispersion (SD) is a promising technique to improve the solubility and dissolution rate of such molecules. In this study, SD formulation of AD was prepared using Kollidon-SR (KSR) and Poloxamer-407 (P-407) as carriers. SD was prepared using the solvent evaporation method and evaluated for the modulation of solubility of AD. The developed SD formulation was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Further, dissolution rate, yield, drug content, stability, flowability, and pharmacokinetic profile of SD were evaluated. The compatibility of SD with the Caco-2 cells and its impact on the P-glycoprotein (P-gp) mediated efflux was also investigated. Furthermore, carrageenan-induced paw edema, and adjuvant-induced arthritic model were used to evaluate the efficacy of SD. The results showed that SD3 (AD + KSR + P-407, 1:6:8) exhibited the highest solubility and dissolution rate, and significantly improved pharmacokinetic profile compared to native AD. SD3 was found to be stable during storage and displayed excellent yield, drug content, and flowability. This formulation was found to be compatible with the Caco-2 cells and retarded the efflux of P-gp substrate. SD3 also demonstrated substantially better efficacy than native AD in terms of paw edema inhibition (carrageenan-induced paw edema, Wistar rats), and overall improvement of disease condition (in terms of paw edema, arthritic score, AST, ALT, cytokines, radiological changes, and histopathology) in arthritic Wistar rats. In conclusion, SD3 exhibited improved solubility, dissolution rate, pharmacokinetic profile, and pharmacological activity than native AD.
Collapse
Affiliation(s)
- Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gourav Paudwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Meng Y, Cai Y, Cui M, Xu Y, Wu L, Li X, Chu X. Solid self-microemulsifying drug delivery system (S-SMEDDS) prepared by spray drying to improve the oral bioavailability of cinnamaldehyde (CA). Pharm Dev Technol 2024; 29:112-122. [PMID: 38308442 DOI: 10.1080/10837450.2024.2312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The aim of this study was to prepare a solid self-microemulsifying drug delivery system (S-SMEDDS) of cinnamaldehyde (CA) by spray drying technique to improve the oral bioavailability of CA. The preparation of CA S-SMEDDS with maltodextrin as the solid carrier, a core-wall material mass ratio of 1:1, a solid content of 20% (w/v), an inlet air temperature of 150 °C, an injection speed of 5.2 mL/min, and an atomization pressure of 0.1 MPa was determined by using the encapsulation rate as the index of investigation. Differential scanning calorimetry (DSC) revealed the possibility of CA being encapsulated in S-SMEDDS in an amorphous form. The in-vitro release showed that the total amount of CA released by S-SMEDDS was approximately 1.3 times higher than that of the CA suspension. Pharmacokinetic results showed that the relative oral bioavailability of CA S-SMEDDS was also increased to 1.6-fold compared to CA suspension. Additionally, we explored the mechanism of CA uptake and transport of lipid-soluble drugs CA by S-SMEDDS in a Caco-2/HT29 cell co-culture system for the first time. The results showed that CA S-SMEDDS uptake on the co-culture model was mainly an energy-dependent endocytosis mechanism, including lattice protein-mediated endocytosis and vesicle-mediated endocytosis. Transport experiments showed that CA S-SMEDDS significantly increased the permeability of CA in this model. These findings suggested that CA S-SMEDDS is an effective oral solid dosage form for increasing the oral bioavailability of lipid-soluble drug CA.
Collapse
Affiliation(s)
- Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, National Medical Products, Hefei, PR China
- Administration Key Laboratory for Quality Research and Evaluation of Traditional, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, PR China
| |
Collapse
|
5
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
6
|
Kadian R, Nanda A. A Comprehensive Insight on Self Emulsifying Drug Delivery Systems. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:16-44. [PMID: 34875995 DOI: 10.2174/2667387815666211207112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The oral route is a highly recommended route for the delivery of a drug. But most lipophilic drugs are difficult to deliver via this route due to their low aqueous solubility. Selfemulsifying drug delivery systems (SEDDS) have emerged as a potential approach of increasing dissolution of a hydrophobic drug due to spontaneous dispersion in micron or nano sized globules in the GI tract under mild agitation. OBJECTIVE The main motive of this review article is to describe the mechanisms, advantages, disadvantages, factors affecting, effects of excipients, possible mechanisms of enhancing bioavailability, and evaluation of self-emulsifying drug delivery systems. RESULTS Self emulsifying systems incorporate the hydrophobic drug inside the oil globules, and a monolayer is formed by surfactants to provide the low interfacial tension, which leads to improvement in the dissolution rate of hydrophobic drugs. The globule size of self-emulsifying systems depends upon the type and ratio of excipients in which they are used. The ternary phase diagram is constructed to find out the range of concentration of excipients used. This review article also presents recent and updated patents on self-emulsifying drug delivery systems. Self-emulsifying systems have the ability to enhance the oral bioavailability and solubility of lipophilic drugs. CONCLUSION This technique offers further advantages such as bypassing the first pass metabolism via absorption of drugs through the lymphatic system, easy manufacturing, reducing enzymatic hydrolysis, inter and intra subject variability, and food effects.
Collapse
Affiliation(s)
- Renu Kadian
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Arun Nanda
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
7
|
Goyal R, Bala R, Sindhu RK, Zehravi M, Madaan R, Ramproshad S, Mondal B, Dey A, Rahman MH, Cavalu S. Bioactive Based Nanocarriers for the Treatment of Viral Infections and SARS-CoV-2. NANOMATERIALS 2022; 12:nano12091530. [PMID: 35564239 PMCID: PMC9104170 DOI: 10.3390/nano12091530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Since ancient times, plants have been used for their medicinal properties. They provide us with many phytomolecules, which serve a synergistic function for human well-being. Along with anti-microbial, plants also possess anti-viral activities. In Western nations, about 50% of medicines were extracted from plants or their constituents. The spread and pandemic of viral diseases are becoming a major threat to public health and a burden on the financial prosperity of communities worldwide. In recent years, SARS-CoV-2 has made a dramatic lifestyle change. This has promoted scientists not to use synthetic anti-virals, such as protease inhibitors, nucleic acid analogs, and other anti-virals, but to study less toxic anti-viral phytomolecules. An emerging approach includes searching for eco-friendly therapeutic molecules to develop phytopharmaceuticals. This article briefly discusses numerous bioactive molecules that possess anti-viral properties, their mode of action, and possible applications in treating viral diseases, with a special focus on coronavirus and various nano-formulations used as a carrier for the delivery of phytoconstituents for improved bioavailability.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rajni Bala
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rakesh K. Sindhu
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Reecha Madaan
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| |
Collapse
|
8
|
Loureiro Damasceno JP, Silva da Rosa H, Silva de Araújo L, Jacometti Cardoso Furtado NA. Andrographis paniculata Formulations: Impact on Diterpene Lactone Oral Bioavailability. Eur J Drug Metab Pharmacokinet 2022; 47:19-30. [PMID: 34816382 PMCID: PMC8609994 DOI: 10.1007/s13318-021-00736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Diterpene lactones have been identified as active compounds in several medicinal plants, including Andrographis paniculata (Burm. f.) Nees, which is a medicinal plant that has been used for centuries across the world. Andrographolide is the major diterpene from A. paniculata and the main bioactive constituent of this species. The effectiveness of diterpenes can be affected by factors that limit their oral bioavailability, such as their poor water solubility, slow dissolution rates, low gastrointestinal absorption, high chemical and metabolic instability, and rapid excretion. In this context, the purpose of the present review is to compile and compare literature data on the bioavailability of diterpene lactones from A. paniculata after oral administration in medicinal plant extracts or in their free forms and to highlight strategies that have been used to improve their oral bioavailability. Considering that medicinal plant extracts are commonly used as dried powder that is reconstituted in water before oral administration, novel pharmaceutical formulation strategies that are used to overcome difficulties with diterpene solubility are also compiled in this review. The use of self-microemulsifying drug delivery systems is a good strategy to enhance the dissolution and consequently the bioavailability of andrographolide after oral administration of A. paniculata extract formulations. On the other hand, herbosome technology, pH-sensitive nanoparticles, nanosuspensions, nanoemulsions, nanocrystal suspensions, nanocrystal-based solid dispersions, and solid dispersion systems are useful to formulate andrographolide in its free form and increase its oral bioavailability. The use of a suitable andrographolide delivery system is essential to achieve its therapeutic potential.
Collapse
Affiliation(s)
- João Paulo Loureiro Damasceno
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Hemerson Silva da Rosa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Silva de Araújo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Niege Araçari Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
9
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:761-768. [DOI: 10.1093/jpp/rgab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022]
|
10
|
Zhang S, Zeng Q, Zhao G, Dong W, Ou L, Cai P, Liao Z, Liang X. Effect of carrier materials on the properties of the andrographolide solid dispersion. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Shoude Zhang
- Jiangxi University of Traditional Chinese Medicine, China
| | - Qingyun Zeng
- Jiangxi University of Traditional Chinese Medicine, China
| | - Guowei Zhao
- Jiangxi University of Traditional Chinese Medicine, China
| | - Wei Dong
- Jiangxi University of Traditional Chinese Medicine, China
| | - Liquan Ou
- Jiangxi University of Traditional Chinese Medicine, China
| | - Ping Cai
- Jiangxi University of Traditional Chinese Medicine, China
| | - Zhenggen Liao
- Jiangxi University of Traditional Chinese Medicine, China
| | - Xinli Liang
- Jiangxi University of Traditional Chinese Medicine, China
| |
Collapse
|
11
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Zeng B, Wei A, Zhou Q, Yuan M, Lei K, Liu Y, Song J, Guo L, Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2021; 36:336-364. [PMID: 34818697 DOI: 10.1002/ptr.7324] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Andrographis paniculata (Burm. f.) Wall. ex Nees, a renowned herb medicine in China, is broadly utilized in traditional Chinese medicine (TCM) for the treatment of cold and fever, sore throat, sore tongue, snake bite with its excellent functions of clearing heat and toxin, cooling blood and detumescence from times immemorial. Modern pharmacological research corroborates that andrographolide, the major ingredient in this traditional herb, is the fundamental material basis for its efficacy. As the main component of Andrographis paniculata (Burm. f.) Wall. ex Nees, andrographolide reveals numerous therapeutic actions, such as antiinflammatory, antioxidant, anticancer, antimicrobial, antihyperglycemic and so on. However, there are scarcely systematic summaries on the specific mechanism of disease treatment and pharmacokinetics. Moreover, it is also found that it possesses easily ignored security issues in clinical application, such as nephrotoxicity and reproductive toxicity. Thereby it should be kept a lookout over in clinical. Besides, the relationship between the efficacy and security issues of andrographolide should be investigated and evaluated scientifically. In this review, special emphasis is given to andrographolide, a multifunctional natural terpenoids, including its pharmacology, pharmacokinetics, toxicity and pharmaceutical researches. A brief overview of its clinical trials is also presented. This review intends to systematically and comprehensively summarize the current researches of andrographolide, which is of great significance for the development of andrographolide clinical products. Noteworthy, those un-cracked issues such as specific pharmacological mechanisms, security issues, as well as the bottleneck in clinical transformation, which detailed exploration and excavation are still not to be ignored before achieving integration into clinical practice. In addition, given that current extensive clinical data do not have sufficient rigor and documented details, more high-quality investigations in this field are needed to validate the efficacy and/or safety of many herbal products.
Collapse
Affiliation(s)
- Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Ailing Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action and Delivery System. Pharmaceuticals (Basel) 2021; 14:ph14111102. [PMID: 34832884 PMCID: PMC8619093 DOI: 10.3390/ph14111102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Andrographispaniculata (Burm.f.) Nees has been used as a traditional medicine in Asian countries, especially China, India, Vietnam, Malaysia, and Indonesia. This herbaceous plant extract contains active compounds with multiple biological activities against various diseases, including the flu, colds, fever, diabetes, hypertension, and cancer. Several isolated compounds from A. paniculata, such as andrographolide and its analogs, have attracted much interest for their potential treatment against several virus infections, including SARS-CoV-2. The mechanisms of action in inhibiting viral infections can be categorized into several types, including regulating the viral entry stage, gene replication, and the formation of mature functional proteins. The efficacy of andrographolide as an antiviral candidate was further investigated since the phytoconstituents of A. paniculata exhibit various physicochemical characteristics, including low solubility and low bioavailability. A discussion on the delivery systems of these active compounds could accelerate their development for commercial applications as antiviral drugs. This study critically reviewed the current antiviral development based on andrographolide and its derivative compounds, especially on their mechanism of action as antiviral drugs and drug delivery systems.
Collapse
|
14
|
Zhu Z, Liu J, Yang Y, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J Microencapsul 2021; 38:459-471. [DOI: 10.1080/02652048.2021.1963341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhongan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuhang Yang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, GH, UK
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Tashkent State Agricultural University (Nukus Branch), Nukus, Uzbekistan
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| |
Collapse
|
15
|
Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ren X, Xu W, Sun J, Dong B, Awala H, Wang L. Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide. Curr Med Chem 2021; 28:2346-2368. [PMID: 32778020 DOI: 10.2174/0929867327666200810135604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.
Collapse
Affiliation(s)
- Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hussein Awala
- Faculty of Science, Lebanese University, Nabatieh, Lebanon
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
17
|
Reverse pharmacology of phytoconstituents of food and plant in the management of diabetes: Current status and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Mehta S, Sharma AK, Singh RK. Ethnobotany, Pharmacological activities and Bioavailability studies of "King of Bitter" (Kalmegh): A Review (2010-2020). Comb Chem High Throughput Screen 2021; 25:788-807. [PMID: 33745423 DOI: 10.2174/1386207324666210310140611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Andrographis paniculata, commonly known as "Kalmegh", is an annual herbaceous plant from family Acanthaceae. The whole plant of A. paniculata has explored for multiple pharmacological activities and is scientifically recognized by in-vivo and in-vitro studies. Various biotechnologically engineered techniques have been explored to enhance the bioavailability of this plant. OBJECTIVE In this review, we aim to present comprehensive recent advances in the ethnopharmacology, phytochemistry, specific pharmacology, safety and toxicology and bioavailability of A. paniculata and its pure compounds. Possible directions for future research are also outlined in brief, which will encourage advance investigations on this plant. METHODS Information on the recent updates of the present review is collected from different electronic scientific databases such as Science Direct, PubMed, Scopus, and Google Scholar. All the composed information is classified into different sections according to the objective of the paper. RESULTS More than hundred research and review papers have been studied and incorporated in the present manuscript. After vast literature search of A. paniculata, we present a noteworthy report of various phytoconstituents present in plant, which are accountable for potential therapeutic properties of the plant. Forty-five of studied articles give general information about introduction, ethnobotany and traditional uses of the plant. Twenty-two papers enclosed information about the phytoconstituents present in different parts of A. paniculata and seventy-two papers briefly outlined the pharmacological activities like antioxidant, anti-dengue, anti-ulcerogenic, antifungal, some miscellaneous activities like activity against SARS-CoV-2, antidiarrhoeal. Nineteen studies highlighted the research work conducted by various researchers to increased bioavailability of A. paniculata and two studies reported the safety and toxicology of the plant. CONCLUSION This review incorporated the scientifically validated research work encompassing the ethnobotanical description of the subjected plant, phytochemical profile, various pharmacological activities, and recent approaches to enhance the bioavailability of active metabolites.
Collapse
Affiliation(s)
- Sharuti Mehta
- CT Institute of Pharmaceutical Sciences, Jalandhar, 144020, Punjab. India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals India Limited, Ranjeet Nagar, 110008, New Delhi. India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, 140126, Punjab. India
| |
Collapse
|
19
|
Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv 2020; 18:315-332. [PMID: 33232184 DOI: 10.1080/17425247.2021.1856073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Oral administration of a drug is the most common, ideal and preferred route of administration. The main problem of oral drug formulations is their low bioavailability arises from poor aqueous solubility of drug. Aqueous solubility of lipophilic drugs can be improved by various techniques like salt formation, complexation, addition of co-solvent etc. but self-emulsifying drug-delivery system (SEDDS) is getting more attention for increasing the solubility of such drugs. The SEDDS is an isotropic mixture of drug, lipids, and emulsifiers, usually with one or more hydrophilic co-solvents/co-emulsifiers. This system is having ability to generate oil-in-water (o/w) emulsions or microemulsions upon gentle agitation followed by dilution with aqueous phase. The SEDDSs are relatively newer, lipid-based technological innovations possessing unparalleled potential in improving oral bioavailability of poorly water-soluble drugs.Areas covered: This review provides updated information regarding the types of SEDDS, their preparation techniques, drug delivery and related recent patents along with marketed formulations.Expert opinion: The SEDDS has been explored for improving bioavailability, rising intra-subject heterogeneity, and increasing solubility. SEDDS offers the benefit of a protective effect against the hostile environment in the gut. The unique fabrication techniques provide specific strategy to overcome the low bioavailability and poor solubility problems.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
21
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
22
|
Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, Killedar SG, Kawtikwar PS. Capsaicin Loaded Solid SNEDDS for Enhanced Bioavailability and Anticancer Activity: In-Vitro, In-Silico, and In-Vivo Characterization. J Pharm Sci 2020; 110:280-291. [PMID: 33069713 DOI: 10.1016/j.xphs.2020.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
In this investigation, the fabrication of capsaicin loaded self nano emulsifying drug delivery system (SNEDDS) was attempted to improve the effectiveness of capsaicin through the oral route. A pseudo-ternary phase diagram was constructed at different km values (1:1, 2:1, & 3:1). Nine liquid formulations (L-CAP-1 to L-CAP-9) were prepared at km = 3, evaluated & converted to solid free-flowing granules using neusilin® US2. L-CAP-3 comprising of 15% isopropyl myristate, 33.75% Labrafil, & 11.25% ethanol exhibited higher % transmittance (98.90 ± 1.24%) & lower self-emulsification time (18.19 ± 0.46 s). FT-IR spectra showed no incompatibility whereas virtual analysis confirmed hydrogen bond interaction between amino hydrogen in the capsaicin & oxygen of the neusilin. DSC & XRD study revealed the amorphization & molecular dispersion of capsaicin in S-SNEDDS. TEM analysis confirmed the nano-sized spherical globules. Within 15 min, L-SNEDDS, S-SNEDDS, & pure capsaicin showed 87.36 ± 3.25%, 85.19 ± 4.87%, & 16.61 ± 3.64% drug release respectively. S-CAP-3 significantly (P < 0.001) inhibited the proliferation of HT-29 colorectal cancer cells than capsaicin. Apoptosis assay involving Annexin V/PI staining for S-CAP-3 treated cells demonstrated a significant (P < 0.001) apoptotic rate. Remarkably, 3.6 fold increase in bioavailability was observed after oral administration of capsaicin-SNEDDS than plain capsaicin.
Collapse
Affiliation(s)
| | - Pratik A Swami
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | | | - Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences & Research Centre, Belgavi, 590 010, Karnataka, India
| | - Harinath N More
- Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, Maharashtra, India
| | - Suresh G Killedar
- Sant Gajanan Maharaj College of Pharmacy, Mahagoan, Site: Chinchewadi 416503, Maharashtra, India
| | - Pravin S Kawtikwar
- Sudhakarrao Naik Institute of Pharmacy, Pusad 445 204, Maharashtra, India
| |
Collapse
|
23
|
Ahiwale RJ, Chellampillai B, Pawar AP. Investigation of 1,2-Dimyristoyl-sn-Glycero-3-Phosphoglycerol-Sodium (DMPG-Na) Lipid with Various Metal Cations in Nanocochleate Preformulation: Application for Andrographolide Oral Delivery in Cancer Therapy. AAPS PharmSciTech 2020; 21:279. [PMID: 33037507 DOI: 10.1208/s12249-020-01801-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed at carrying out a preformulation investigation of nanocochleates (NCs) and develop andrographolide-loaded nanocochleates. Preformulation study comprised of exploring the effect of trivalent and divalent ions on transition temperature (TT) of lipid (DMPG-Na), on particle size (PS), entrapment efficacy (EE), zeta potential (ZP) of NCs, and effect of NCs on change in lipid solubility post-NC formation. Further, the andrographolide-loaded nanocochleates made with CaCl2 (ANDNCs) were characterized for ZP, PS, EE, X-ray powder diffraction (PXRD), differential scanning calorimetry (DSC), transition electron microscopy (TEM), in vitro release studies, in vitro anticancer potential on the cell line of human breast cancer (MCF-7), in vivo oral pharmacokinetic studies, and tissue distribution in female Wistar rats. Nanocochleates developed with CaCl2 had a significant reduction in PS (1.78-fold) and ZP (1.38-fold), and elevation of EE (1.17-fold) as compared to AlCl3 developed NCs. Trivalent ions demonstrated elevation of TT as compared to divalent ions. Spiral-shaped ANDNCs demonstrated ZP, PS, and EE of - 121.46 ± 15.12 mV, 360 ± 47 nm, and 68.12 ± 3.81% respectively. In vitro release study of ANDNCs showed a strong pH-dependent release profile due to hydrogen bonding between NCs and andrographolide (AND). Formulated ANDNCs demonstrated 26.99-fold decrease in IC50 value as compared to free AND. Additionally, the oral bioavailability of AND from ANDNCs improved by 1.81-fold as compared to free AND. Furthermore, ANDNCs showed minimum accumulation within the vital organs such as liver, kidney, and spleen. Briefly, the preformulation study laid a platform for better understanding the NCs and its components. Further, developed ANDNCs revealed superior physiochemical properties to be used as an alternative for a clinical setting.
Collapse
|
24
|
Liu J, Wang Q, Omari-Siaw E, Adu-Frimpong M, Liu J, Xu X, Yu J. Enhanced oral bioavailability of Bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: Formulation design, in vitro and in vivo evaluation. Int J Pharm 2020; 590:119887. [PMID: 32950666 DOI: 10.1016/j.ijpharm.2020.119887] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Abstract
In this study, we sought to overcome the poor solubility and bioavailability of bismethoxycurcumin (BDMC) by fabricating a BDMC-loaded self micro-emulsifying system (BDMC-SMEDDS). Solubility and compatibility tests, pseudo-ternary phase diagrams (PTPDs) as well as d-optimal concept was applied to design the formulation. The assessment of the prepared BDMC-SMEDDS in-vitro mainly included droplet size (DS) and entrapment efficiency (EE) determination, morphology, drug release and stability testing. Besides, the in vivo behavior was also evaluated after oral administration of BDMC-SMEDDS to rats. The optimal formulation was found to compose of Kolliphor EL (K-EL, emulsifier, 645.3 mg), PEG 400 (co-emulsifier, 147.2 mg), ethyl oleate (EO, oil, 207.5 mg) and BDMC (50 mg). The BDMC-SMEDDS with satisfactory stability had a mean size of 21.25 ± 3.23 nm and EE of 98.31 ± 0.32%. Roughly 70% of BDMC was released from BDMC-SMEDDS within 84 h compared with <20% from the free BDMC. More importantly, the in-vivo behavior of BDMC-SMEDDS showed that the AUC(0-12h) and plasma concentration of BDMC increased substantially as compared to the free BDMC. Altogether, BDMC-SMEDDS has the potential to enhance the solubility and bioavailability of BDMC and could be applied in the clinics.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Kumasi Technical University, Kumasi, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Niu J, Xu Z, Li X, Wang Z, Li J, Yang Z, Khattak SU, Liu Y, Shi Y. Development and evaluation of rhubarb free anthraquinones loaded self-nanoemulsifying tablets. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Oral Bioavailability Enhancement and Anti-Fatigue Assessment of the Andrographolide Loaded Solid Dispersion. Int J Mol Sci 2020; 21:ijms21072506. [PMID: 32260319 PMCID: PMC7177338 DOI: 10.3390/ijms21072506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023] Open
Abstract
Andrographolide (AG), a major diterpene lactone isolated from Andrographis paniculata (Burm. f.) Nees (Acanthaceae), possesses a wide spectrum of biological activities. However, its poor water solubility and low bioavailability limit its clinical application. Therefore, this study aimed to develop a solid dispersion (SD) formulation to increase the aqueous solubility and dissolution rate of AG. Different drug-polymer ratios were used to prepare various SDs. The optimized formulation was characterized for differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffraction. The analysis indicated that the optimized SD enhanced AG solubility and dissolution rates by changing AG crystallinity to an amorphous state. The dissolution behaviors of the optimum SD composed of an AG-polyvinylpyrrolidone K30-Kolliphor EL ratio of 1:7:1 (w/w/w) resulted in the highest accumulated dissolution (approximately 80%). Pharmacokinetic studies revealed that Cmax/dose and the AUC/dose increased by 3.7-fold and 3.0-fold, respectively, compared with AG suspension. Furthermore, pretreatment using the optimized AG-SD significantly increased the swimming time to exhaustion by 1.7-fold and decreased the plasma ammonia level by 71.5%, compared with the vehicle group. In conclusion, the optimized AG-SD formulation appeared to effectively improve its dissolution rate and oral bioavailability. Moreover, the optimized AG-SD provides a promising treatment against physical fatigue.
Collapse
|
27
|
Preparation and Characterization of PEG4000 Palmitate/PEG8000 Palmitate-Solid Dispersion Containing the Poorly Water-Soluble Drug Andrographolide. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/4239207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Solid dispersion (SD) is the effective approach to improve the dissolution rate and bioavailability of class II drugs with low water solubility and high tissue permeability in the Biopharmaceutics Classification System. This study investigated the effects of polyethylene glycol (PEG) molecular weight in carrier material PEG palmitate on the properties of andrographolide (AG)-SD. We prepared SDs containing the poorly water-soluble drug AG by the freeze-drying method. The SDs were manufactured from two different polymers, PEG4000 palmitate and PEG8000 palmitate. The physicochemical properties of the AG-SDs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, dissolution testing, and so on. We found that AG-PEG4000 palmitate-SD and AG-PEG8000 palmitate-SD were similar in the surface morphology, specific surface area, and pore volume. Compared with the AG-PEG4000 palmitate-SD, the intermolecular interaction between PEG8000 palmitate and AG was stronger, and the thermal stability of AG-PEG8000 palmitate-SD was better. In the meanwhile, the AG relative crystallinity was lower and the AG dissolution rate was faster in AG-PEG8000 palmitate-SD. The results demonstrate that the increasing PEG molecular weight in the PEG palmitate can improve the compatibility between the poorly water-soluble drug and carrier material, which is beneficial to improve the SD thermal stability and increases the dissolution rate of poorly water-soluble drug in the SD.
Collapse
|
28
|
Wang L, Yan W, Tian Y, Xue H, Tang J, Zhang L. Self-Microemulsifying Drug Delivery System of Phillygenin: Formulation Development, Characterization and Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E130. [PMID: 32028742 PMCID: PMC7076376 DOI: 10.3390/pharmaceutics12020130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 01/20/2023] Open
Abstract
Phillygenin, as an active ingredient of Forsythia suspensa, possesses a wide range of biological and pharmacological activity. However, its development and application are restricted due to its poor bioavailability and low solubility. Our work aimed to develop a self-microemulsifying drug delivery system to improve the oral bioavailability of phillygenin. The composition of the self-microemulsifying drug delivery system was preliminary screened by the pseudo-ternary phase diagram. Subsequently, the central composite design method was employed to optimize the prescription of the self-microemulsifying drug delivery system loaded with phillygenin. The prepared self-microemulsifying drug delivery system of phillygenin was characterized in terms of morphology, droplet size distribution, polydispersity index and stability. Then, the in vitro dissolution and the oral bioavailability were analyzed. The optimized self-microemulsifying drug delivery system of phillygenin consisted of 27.8% Labrafil M1944CS, 33.6% Cremophor EL, 38.6% polyethylene glycol 400 (PEG-400) and 10.2 mg/g phillygenin loading. The prepared self-microemulsifying drug delivery system of phillygenin exhibited spherical and uniform droplets with small size (40.11 ± 0.74 nm) and satisfactory stability. The in vitro dissolution experiment indicated that the cumulative dissolution rate of the self-microemulsifying drug delivery system of phillygenin was significantly better than that of free phillygenin. Furthermore, after oral administration in rats, the bioavailability of phillygenin was significantly enhanced by the self-microemulsifying drug delivery system. The relative bioavailability of the self-microemulsifying drug delivery system of phillygenin was 588.7% compared to the phillygenin suspension. These findings suggest that the self-microemulsifying drug delivery system of phillygenin can be a promising oral drug delivery system to improve the absorption of phillygenin.
Collapse
Affiliation(s)
- Lingzhi Wang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Wenrui Yan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| | - Yurun Tian
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Huanhuan Xue
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Jiankai Tang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Liwei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| |
Collapse
|
29
|
Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem 2020; 95:103511. [DOI: 10.1016/j.bioorg.2019.103511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
|
30
|
Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther Deliv 2019; 10:626-641. [DOI: 10.4155/tde-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A solid self-emulsifying drug delivery systems was developed by using the spray-drying technique, to improve the solubility of resveratrol (RES). Materials & methods: Cod liver oil and three surfactant system were tested: soy phosphatidylcholine (SPC)/Eumulgin® HRE-40 (EU)/Sodium oleate (system A); SPC/Tween®80 (TW) /Sodium oleate (system B) and SPC/EU/TW (system C). Results: The greatest incorporation was obtained with system C (21.26 mg/ml). Solid self-emulsifying drug delivery systems with the highest yield were obtained with colloidal silicon dioxide (CSD) (80.12%), and CSD sodium croscarmelose 9:1 and 5:5. RES dissolution attained 100% at 45 min with CSD:CS 5:5. Discussion: The surface modification to hydrophilic by CSD:sodium croscarmellose reduced the cohesive force among drug particles. Conclusion: The developed systems are a good approximation for the design of strategies that could allow increasing the oral bioavailability of RES.
Collapse
|
31
|
Yi T, Zhang J. Effects of Hydrophilic Carriers on Structural Transitions and In Vitro Properties of Solid Self-Microemulsifying Drug Delivery Systems. Pharmaceutics 2019; 11:E267. [PMID: 31181811 PMCID: PMC6631422 DOI: 10.3390/pharmaceutics11060267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/03/2023] Open
Abstract
Self-microemulsifying drug delivery systems (SMEDDS) offer potential for improving the oral bioavailability of poorly water-soluble drugs. However, their susceptibilities during long term storage and in vivo precipitation issues limit their successful commercial application. To overcome these limitations, SMEDDS can be solidified with solid carriers, thus producing solid self-microemulsifying drug delivery systems (S-SMEDDS). In this study, effects of various hydrophilic carriers on structural transitions and in vitro properties of S-SMEDDS were investigated in order to set up in vitro methods for screening out appropriate carriers for S-SMEDDS. Liquid SMEDDS was prepared and characterized using nimodipine as a model drug. The effects of various hydrophilic carriers on internal microstructure and solubilization of SMEDDS were investigated by conductivity measurement and in vitro dispersion test. The results showed that hydrophilic carriers including dextran 40, maltodextrin and PVP K30 seemed to delay the percolation transition of SMEDDS, allowing it to maintain a microstructure that was more conducive to drug dissolution, thus significantly increasing the solubilization of nimodipine in the self-microemulsifying system and decreasing drug precipitation when dispersed in simulated gastric fluid. S-SMEDDS of nimodipine were prepared by using spray drying with hydrophilic carriers. The effects of various hydrophilic carriers on in vitro properties of S-SMEDDS were investigated by using SEM, DSC, PXRD and in vitro dissolution. The results showed that properties of hydrophilic carriers, especially relative molecular mass of carriers, had obvious influences on surface morphologies of S-SMEDDS, reconstitution of microemulsion and physical state of nimodipine in S-SMEDDS. Considering that in vitro properties of S-SMEDDS are closely related to their pharmacokinetic properties in vivo, the simple and economical in vitro evaluation methods established in this paper can be used to screen solid carriers of S-SMEDDS well.
Collapse
Affiliation(s)
- Tao Yi
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China.
| | - Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
32
|
Rogobete AF, Bedreag OH, Sărăndan M, Păpurică M, Preda G, Dumbuleu MC, Vernic C, Stoicescu ER, Săndesc D. Liposomal bupivacaine – New trends in Anesthesia and Intensive Care Units. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2014.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Alexandru Florin Rogobete
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Ovidiu Horea Bedreag
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Mirela Sărăndan
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Department Anesthesia and Intensive Care “Casa Austria” , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Marius Păpurică
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Gabriela Preda
- West University of Timişoara, Faculty of Chemistry, Biology, Geography , Str. Pestalozzi 16A , 300115 Timişoara, Romania
| | - Maria Corina Dumbuleu
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
| | - Corina Vernic
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Emil Robert Stoicescu
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| | - Dorel Săndesc
- Emergency County Hospital, Clinic of Anesthesia and Intensive Care , Bd. Iosif Bulbuca Nr. 10 , 300736 Timişoara, Romania
- “Victor Babeş” University of Medicine and Pharmacy, Faculty of Medicine , Piata E. Murgu 2 , 300041 Timişoara, Romania
| |
Collapse
|
33
|
Yang Q, Wang Q, Feng Y, Wei Q, Sun C, Firempong CK, Adu-Frimpong M, Li R, Bao R, Toreniyazov E, Ji H, Yu J, Xu X. Anti-hyperuricemic property of 6-shogaol via self-micro emulsifying drug delivery system in model rats: formulation design, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45:1265-1276. [DOI: 10.1080/03639045.2019.1594885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qiuxuan Yang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Yingshu Feng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Qiuyu Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Caleb Kesse Firempong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
- Department of Biochemistry and Biotechnology, College of Science, KwameNkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ran Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus branch), Avdanberdi str., Nukus, Karakalpakstan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Kamboj S, Sethi S, Rana V. A spray dried Nelfinavir Mesylate particles for enhanced oral bioavailability: Systematic formulation optimization and in-vivo performance. Colloids Surf B Biointerfaces 2019; 176:288-299. [DOI: 10.1016/j.colsurfb.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022]
|
35
|
Zhu Y, Xu W, Zhang J, Liao Y, Firempong CK, Adu-Frimpong M, Deng W, Zhang H, Yu J, Xu X. Self-microemulsifying Drug Delivery System for Improved Oral Delivery of Limonene: Preparation, Characterization, in vitro and in vivo Evaluation. AAPS PharmSciTech 2019; 20:153. [PMID: 30915610 DOI: 10.1208/s12249-019-1361-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
The current investigation aimed at formulating self-microemulsifying drug delivery system (SMEDDS) to ameliorate oral bioavailability of a hydrophobic functional ingredient, limonene. Solubility test, compatibility test, and pseudo-ternary phase diagrams (PTPD) were adopted to screen the optimal compositions of limonene-SMEDDS (L-SMEDDS). The characteristics of this system assessed in vitro, mainly included determination of particle size distribution, observation of morphology via transmission electron microscopy (TEM), testing of drug release in different dissolution media, and evaluation of stability. The oral bioavailability study in vivo of the formulated limonene was performed in rats with the free limonene as the reference. Compared with the free limonene, the distribution study of L-SMEDDS was conducted in Kunming mice after oral administration. The optimized SMEDDS (ethyl oleate, 14.2%; Cremophor EL, 28.6%; isopropanol, 28.6%; and loaded limonene, 28.6%) under the TEM (about 100 nm) was spherical with no significant variations in size/appearance for 30 days at 4, 25, and 60°C. In comparison with free limonene, higher than 89.0% of limonene was released from SMEDDS within 10 min in different dissolution media. An in vivo study showed a 3.71-fold improved oral bioavailability of the formulated limonene compared to the free limonene. The tissue distribution results showed that limonene predominantly accumulated in the various tissues for the L-SMEDDS compared with the free limonene. Hence, L-SMEDDS could remarkably improve the concentration of limonene in the various organs. These findings hinted that the oral bioavailability of limonene could be improved via an effectual delivery system like SMEDDS.
Collapse
|
36
|
Song P, Lai C, Xie J, Zhang Y. The preparation and investigation of spinosin–phospholipid complex self-microemulsifying drug delivery system based on the absorption characteristics of spinosin. J Pharm Pharmacol 2019; 71:898-909. [DOI: 10.1111/jphp.13076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/19/2019] [Indexed: 12/27/2022]
Abstract
Abstract
Objectives
The aim of this research was to investigate the intestinal absorption characteristics and mechanisms of spinosin (SPI), and a new dosage form was prepared to increase the intestinal absorption of SPI.
Methods
In this study, the intestinal absorption characteristics and mechanisms of SPI were first investigated using in situ absorption model and Caco-2 monolayer model. Subsequently, the phospholipid complex (PLC) loaded with SPI was prepared followed by a self-microemulsifying drug delivery system (SMEDDS) technique for developing a more efficient formulation.
Key findings
The results showed that the absorption rate constant (0.02 h−1) and absorption percentage (10%) of SPI were small. Paracellular and active transport pathways mainly mediated the intestinal absorption of SPI. Moreover, SPI-PLC-SMEDDS showed a nanoscale particle size and excellent dispersibility in vitro. The cellular uptake and transportation properties of SPI-PLC-SMEDDS in the Caco-2 cell model were improved significantly. Besides, a statistically dramatically higher oral bioavailability (almost fivefold) was observed following the oral administration of SPI-PLC-SMEDDS than free SPI on the basis of pharmacokinetic experiment results. Furthermore, the SPI-PLC-SMEDDS exhibited certain immunization.
Conclusions
SPI-PLC-SMEDDS could be a promising oral drug delivery system to improve the absorption of SPI.
Collapse
Affiliation(s)
- Panpan Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Changjiangsheng Lai
- National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Science, Beijing, China
| | - Junbo Xie
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin, China
| |
Collapse
|
37
|
Effect of Carrier Lipophilicity and Preparation Method on the Properties of Andrographolide⁻Solid Dispersion. Pharmaceutics 2019; 11:pharmaceutics11020074. [PMID: 30744157 PMCID: PMC6409804 DOI: 10.3390/pharmaceutics11020074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 11/22/2022] Open
Abstract
Solid dispersion (SD) is a useful approach to improve the dissolution rate and bioavailability of poorly water-soluble drugs. This work investigated the effects of carrier material lipophilicity and preparation method on the properties of andrographolide (AG)–SD. The SDs of AG and the carrier materials, polyethylene glycol (PEG) and PEG grafted with carbon chains of different length (grafted PEG), have been prepared by spray-drying and vacuum-drying methods. In AG–SDs prepared by the different preparation methods with the same polymer as carrier material, the intermolecular interaction, 5% weight-loss temperature, the melting temperature (Tm), surface morphology, crystallinity, and dissolution behavior have significant differences. In the AG–SDs prepared by the same spray-drying method with different grafted PEG as carrier material, Tm, surface morphology, crystallinity, and dissolution behavior had little difference. In the AG–SDs prepared by the same vacuum-drying method with different grafted PEG as carrier material, the crystallinity and Tm decreased, and the dissolution rate of AG increased with the increase of grafted PEG lipophilicity. The preparation method has an important effect on the properties of SD. The increase of carrier material lipophilicity is beneficial to the thermal stability of SD, the decrease of crystallinity and the increase of dissolution rate of a poorly water-soluble drug in the SD.
Collapse
|
38
|
Kamboj S, Sethi S, Rana V. Lipid based delivery of Efavirenz: An answer to its erratic absorption and food effect. Eur J Pharm Sci 2018; 123:199-216. [DOI: 10.1016/j.ejps.2018.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/18/2018] [Indexed: 01/23/2023]
|
39
|
Syukri Y, Martien R, Lukitaningsih E, Nugroho AE. Novel Self-Nano Emulsifying Drug Delivery System (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: Characterization, in-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Sun C, Gui Y, Hu R, Chen J, Wang B, Guo Y, Lu W, Nie X, Shen Q, Gao S, Fang W. Preparation and Pharmacokinetics Evaluation of Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS) of Osthole. AAPS PharmSciTech 2018; 19:2301-2310. [PMID: 29845504 DOI: 10.1208/s12249-018-1067-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
The study was performed aiming to enhance the solubility and oral bioavailability of poorly water-soluble drug osthole by formulating solid self-microemulsifying drug delivery system (S-SMEDDS) via spherical crystallization technique. Firstly, the liquid self-microemulsifying drug delivery system (L-SMEDDS) of osthole was formulated with castor oil, Cremophor RH40, and 1,2-propylene glycol after screening various lipids and emulsifiers. The type and amount of polymeric materials, good solvents, bridging agents, and poor solvents in S-SMEDDS formulations were further determined by single-factor study. The optimal formulation contained 1:2 of ethyl cellulose (EC) and Eudragit S100, which served as matrix forming and enteric coating polymers respectively. Anhydrous ethanol and dichloromethane with a ratio of 5:3 are required to perform as good solvent and bridging agent, respectively, with the addition of 0.08% SDS aqueous solution as poor solvent. The optimized osthole S-SMEDDS had a high yield (83.91 ± 3.31%) and encapsulation efficiency (78.39 ± 2.25%). Secondly, osthole L-SMEDDS was solidified to osthole S-SMEDDS with no significant changes in terms of morphology, particle size, and zeta potential. In vitro release study demonstrated a sustained release of the drug from osthole S-SMEDDS. Moreover, in vivo pharmacokinetic study showed that the Tmax and mean residence time (MRT(0-t)) of osthole were significantly prolonged and further confirmed that osthole S-SMEDDS exhibited sustained release effect in rabbits. Comparing with osthole aqueous suspension and L-SMEDDS, osthole S-SMEDDS increased bioavailability by 205 and 152%, respectively. The results suggested that S-SMEDDS was an effective oral solid dosage form, which can improve the solubility and oral bioavailability of poorly water-soluble drug osthole.
Collapse
|
41
|
The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:673-684. [DOI: 10.1016/j.nano.2017.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
|
42
|
Huang Y, Zhang S, Shen H, Li J, Gao C. Controlled Release of the Nimodipine-Loaded Self-Microemulsion Osmotic Pump Capsules: Development and Characterization. AAPS PharmSciTech 2018; 19:1308-1319. [PMID: 29340982 DOI: 10.1208/s12249-017-0936-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/05/2017] [Indexed: 01/26/2023] Open
Abstract
The present study was intended to develop a controlled released osmotic pump capsule based on Nimodipine (NM)-loaded self-microemulsifying drug delivery systems (SMEDDSs) in order to improve the low oral bioavailability of NM. To optimize the NM-loaded SMEDDS composition, the experiments of NM solubility in different oils, the pseudo-ternary phase diagram experiments and the different drug loading experiments were conducted in the preliminary screening studies. Controlled release of NM required an osmotic pump capsule comprising a coated semi-permeable capsule shell, plasticizer, and pore-forming agent. NM release follows zero-order kinetics after oral administration. Polyethylene glycol content, used as a pore-forming agent, coating mass, and drug release orifice size were key factors affecting drug release behavior according to the single methods and were optimized through response surface methodology. The NM-loaded SMEDDS droplet size and the 1H NMR mass spectrogram of the novel capsule were determined. The droplet size of the reconstituted microemulsion was 39.9 nm and 1H NMR analysis showed NM dissolution in the microemulsion. The dissolution test performed on three batches of NM-SMEDDS capsules-prepared using optimal preparation methods-indicated the capsule to deliver a qualified drug delivery with a zero-order release rate. The results demonstrated that NM-loaded SMEDDSs were successfully developed and displayed a qualified release rate in vitro.
Collapse
|
43
|
Yen CC, Chen YC, Wu MT, Wang CC, Wu YT. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomedicine 2018; 13:669-680. [PMID: 29440893 PMCID: PMC5798547 DOI: 10.2147/ijn.s154824] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Andrographolide (AG), a compound with low water solubility, possesses various pharmacological activities, particularly anti-inflammatory activity. However, its low oral bioavailability is a major obstacle to its potential use. This study developed and optimized an AG-loaded nanoemulsion (AG-NE) formulation to improve AG oral bioavailability and its protective effects against inflammatory bowel disease. Methods A high-pressure homogenization technique was used to prepare the AG-NE and solubility, viscosity, and droplet size tests were conducted to develop the optimized AG-NE composed of α-tocopherol, ethanol, Cremophor EL, and water. The permeability was assessed using everted rat gut sac method and in vivo absorption and anti-inflammatory effect in rats was also evaluated. The plasma concentration of AG was determined using our validated high performance liquid chromatography method, which was used to generate a linear calibration curve over the concentration range of 0.1–25 μg/mL in rat plasma (R2>0.999). Results The optimized AG-NE had a droplet size of 122±11 nm confirmed using transmission electron microscopy and a viscosity of 28 centipoise (cps). It was stable at 4 and 25°C for 90 days. An ex vitro intestinal permeability study indicated that the jejunum was the optimal site for AG absorption from the optimized AG-NE, which was 8.21 and 1.40 times higher than that from an AG suspension and AG ethanol solution, respectively. The pharmacokinetic results indicate that the absorption of AG from AG-NE was significantly enhanced in comparison with that from the AG suspension, with a relative bioavailability of 594.3%. Moreover, the ulcer index and histological damage score of mice with indomethacin-induced intestinal lesions were significantly reduced by AG-NE pretreatment. Conclusion We conclude that the developed AG-NE not only enhanced the oral bioavailability of AG in this study but may also prove to be an effective formulation of AG for preventing gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- Ching-Chi Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Chinese Medicine Department, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi City, Taiwan
| | - Chia-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Piazzini V, Monteforte E, Luceri C, Bigagli E, Bilia AR, Bergonzi MC. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv 2017; 24:380-390. [PMID: 28165811 PMCID: PMC8241024 DOI: 10.1080/10717544.2016.1256002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to develop new formulation for an improved oral delivery of Vitex agnus-castus (VAC) extract. After the optimization and validation of analytical method for quali-quantitative characterization of extract, nanoemulsion (NE) was selected as lipid-based nanocarrier. The composition of extract-loaded NE resulted in triacetin as oil phase, labrasol as surfactant, cremophor EL as co-surfactant and water. NE contains until 60 mg/mL of extract. It was characterized by DLS and TEM analyses and its droplets appear dark with an average diameter of 11.82 ± 0.125 nm and a polydispersity index (PdI) of 0.117 ± 0.019. The aqueous solubility of the extract was improved about 10 times: the extract is completely soluble in the NE at the concentration of 60 mg/mL, while its solubility in water results less than 6 mg. The passive intestinal permeation was tested by using parallel artificial membrane permeation assay (PAMPA) and the permeation across Caco-2 cells after preliminary cytotoxicity studies were also evaluated. NE shows a good solubilizing effect of the constituents of the extract, compared with aqueous solution. The total amount of constituents permeated from NE to acceptor compartment is greater than that permeated from saturated aqueous solution. Caco-2 test confirmed PAMPA results and they revealed that NE was successful in increasing the permeation of VAC extract. This formulation could improve oral bioavailability of extract due to enhanced solubility and permeability of phytocomplex.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, Sesto Fiorentino, FI, Italy and
| | - Elena Monteforte
- Department of Chemistry, University of Florence, Sesto Fiorentino, FI, Italy and
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Sesto Fiorentino, FI, Italy and
| | | |
Collapse
|
45
|
Mandić J, Zvonar Pobirk A, Vrečer F, Gašperlin M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int J Pharm 2017; 533:335-345. [DOI: 10.1016/j.ijpharm.2017.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
46
|
Zhang Y, He L, Yue S, Huang Q, Zhang Y, Yang J. Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv 2017; 24:632-640. [PMID: 28283000 PMCID: PMC8241163 DOI: 10.1080/10717544.2017.1284946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to characterize and evaluate tectorigenin-loaded self-microemulsifying drug delivery system (TG-SMEDDS), a previously studied preparation, and further confirm the improvement of TG in solubility and bioavailability. The appearance of TG-SMEDDS was clear and transparent, with good mobility. The microemulsion formed by TG-SMEDDS was globular, edge smooth, clear-cut, and distribution homogeneous under transmission electron microscope. The stability studies revealed that TG-SMEDDS remained stable at room temperature for at least 3 months. TG-SMEDDS showed excellent dissolution behavior that more than 90% of TG was released in only 5 min. The in situ intestinal perfusion studies indicated enhancement of absorption in four tested intestinal segments, and the main absorption site of TG was changed to duodenum. In addition, TG-SMEDDS showed significantly higher Cmax and AUC values (11-fold and 5-fold higher values, respectively; P < 0.05) than TG, and the absolute oral bioavailability of TG-SMEDDS was 56.33% (5-fold higher than that of crude TG). What's more, the AUC0-t of crude TG and TG-SMEDDS in bile duct non-ligation rats were 6.05 and 2.80 times, respectively, than that in bile duct ligation rats, indicating the existence of enterohepatic circulation and the secretion of bile could significantly affect the absorption of TG. Further studies showed that even the bile duct was ligation, TG-SMEDDS can still keep a better oral bioavailability (179.67%, compared with crude TG in the bile duct non-ligation rats). Therefore, our study implies that SMEDDS containing TG could be an effective strategy for the oral administration of TG.
Collapse
Affiliation(s)
- Yunrong Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li He
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Shanlan Yue
- Chengdu Women and Children’s Central Hospital, Chengdu, China, and
| | - Qingting Huang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuhong Zhang
- Medical College of China Three Gorges University, Yichang, China
| | - Junyi Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability. Oncotarget 2017; 8:94297-94316. [PMID: 29212229 PMCID: PMC5706875 DOI: 10.18632/oncotarget.21691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul® MCM (13.2 mg), Tween® 80 (59.2 mg), Transcutol® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite® PS-10 (119.1 mg) and Vivapur® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.
Collapse
|
48
|
Priyanka K, Kosuru R, Sharma RP, Sahu PL, Singh S. Assessment of pharmacokinetic parameters of lupeol in Ficus religiosa L. extract after oral administration of suspension and solid lipid nanoparticles to Wistar rats. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Moradkhani MR, Karimi A, Negahdari B. Nanotechnology application to local anaesthesia (LA). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:355-360. [PMID: 28395522 DOI: 10.1080/21691401.2017.1313263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several advancements have been made on the exact release of local anaesthetics formulation and its efficiency at inducing motor and sensory block for an extended time has been harnessed in clinical practice. The use of sustained release formulations delivers analgesia for a lengthier period of time with one administration, thereby reducing complications that usually arise with administration of conventional analgesia. In addition, controlled release of an anaesthetic drug is said to prevent overdosing, reduced side effects, especially cardiotoxicity, neurotoxicity and tissue lesions. The use of nanotechnology knowledge via liposomal formulation has recorded high successful results in pain control and quick patient recovery.
Collapse
Affiliation(s)
- Mahmoud Reza Moradkhani
- a Department of Anesthesiology , Lorestan University of Medical Sciences , Khorramabad , Iran
| | - Arash Karimi
- a Department of Anesthesiology , Lorestan University of Medical Sciences , Khorramabad , Iran
| | - Babak Negahdari
- b Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
50
|
Self-microemulsifying sustained-release pellet of Ginkgo biloba extract: Preparation, in vitro drug release and pharmacokinetics study in beagle dogs. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|