1
|
Nowak P, Ilnicka A, Ziegler-Borowska M. Hydrazidomethyl starch as a pH-sensitive coating for magnetic core in tailored magnetic nanoparticles with selective doxorubicin release. Int J Biol Macromol 2024; 283:137716. [PMID: 39579836 DOI: 10.1016/j.ijbiomac.2024.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The work aimed to use and modify starch as a biodegradable and biocompatible polysaccharide to create a modern pH-sensitive anticancer drug carrier based on a hydrazone bond. The multi-step reaction created a material that can bind to the carbonyl group of anticancer drugs. Additionally, polysaccharide was used to coat magnetic nanoparticles to increase the applicability of the carrier system. At each synthesis stage, the material was characterized in detail by performing FTIR-ATR spectra, thermal analysis, XRD, and SEM photos. In the next step, doxorubicin was loaded with a maximum of 19 % drug loading to the carrier via hydrazone bond. In the last research stage, the carrier-hydrazone bond-drug system was tested in solutions with different pH values, imitating the environments of a cancer cell, a healthy cell, and their subcellular elements regarding drug release from the carrier. The obtained release results indicate a >4-fold increase in the amount of drug released from the carrier in conditions of a slightly lower pH environment (70 %), compared to neutral pH (15 %). This represents a promising potential for using the material as an intelligent drug delivery system (DDS).
Collapse
Affiliation(s)
- Paweł Nowak
- Doctoral School of Exact and Natural Sciences "Academia Scientiarum Thoruniensis", Grudziadzka 5, 87-100 Torun, Poland; Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomedical Chemistry and Polymers, Medicinal Chemistry Research Group, Gagarina 7, 87-100 Torun, Poland
| | - Anna Ilnicka
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Chemistry of Materials, Adsorption and Catalysis, Gagarina 7, 87-100 Torun, Poland
| | - Marta Ziegler-Borowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomedical Chemistry and Polymers, Medicinal Chemistry Research Group, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
2
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
3
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
4
|
Shymborska Y, Budkowski A, Raczkowska J, Donchak V, Melnyk Y, Vasiichuk V, Stetsyshyn Y. Switching it Up: The Promise of Stimuli-Responsive Polymer Systems in Biomedical Science. CHEM REC 2024; 24:e202300217. [PMID: 37668274 DOI: 10.1002/tcr.202300217] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.
Collapse
Affiliation(s)
- Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andrzej Budkowski
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Volodymyr Donchak
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Yuriy Melnyk
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Viktor Vasiichuk
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013, Lviv, Ukraine
| |
Collapse
|
5
|
Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines. J Pers Med 2022; 12:jpm12050698. [PMID: 35629120 PMCID: PMC9145326 DOI: 10.3390/jpm12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.
Collapse
|
6
|
Araujo de
Oliveira AP, Romero Colmenares VC, Diniz R, Freitas JTJ, da Cruz CM, Lages EB, Ferreira LAM, Vieira RP, Beraldo H. Memantine-Derived Schiff Bases as Transdermal Prodrug Candidates. ACS OMEGA 2022; 7:11678-11687. [PMID: 35449959 PMCID: PMC9017104 DOI: 10.1021/acsomega.1c06571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Condensation reactions of salicylaldehyde, 2-pyridinecarboxaldehyde, and pyridoxaldehyde with memantine (Me) produced novel memantine-derived Schiff bases (1-3). Speciation predictions and calculations of Log P, Log D, and of the percentage (%) of neutral species for (1-3) were carried out. In comparison with Me, the Schiff bases presented increased log P and log D in all cases and pH values, suggesting higher hydrophobicity. The determined solubilities in n-octanol were 34.7 mg/mL for memantine hydrochloride and 67.3 mg/mL for (3). According to the molecular weights and calculated logP, compounds (1-3) are suitable for transdermal administration, especially compound (3). In addition, hydrolysis of 3 with the release of pyridoxal, a daily cofactor in human metabolism, was observed. The results suggested that 3 is the most promising compound and that formation of the pyridoxal Schiff base with Me might be an effective strategy to obtain a prodrug candidate with increased lipophilicity, which would be able to passively cross biological barriers during transdermal delivery and might have applications in the treatment of Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Ana P. Araujo de
Oliveira
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Victoria C. Romero Colmenares
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Renata Diniz
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jennifer T. J. Freitas
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Clara M. da Cruz
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Eduardo B. Lages
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Departamento
de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rafael P. Vieira
- Departamento
de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Heloisa Beraldo
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 2022; 89:285-311. [PMID: 35150291 DOI: 10.1007/s00280-022-04400-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent frequently used for the treatment of a variety of tumor types, such as breast cancer. Despite the long history of DOX, the mechanistic details of its cytotoxic action remain controversial. Rather than one key mechanism of cytotoxic action, DOX is characterized by multiple mechanisms, such as (1) DNA intercalation and adduct formation, (2) topoisomerase II (TopII) poisoning, (3) the generation of free radicals and oxidative stress, and (4) membrane damage through altered sphingolipid metabolism. Many past reviews of DOX cytotoxicity are based on supraclinical concentrations, and several have addressed the concentration dependence of these mechanisms. In addition, most reviews lack a focus on the time dependence of these processes. We aim to update the concentration and time-dependent trends of DOX mechanisms at representative clinical concentrations. Furthermore, attention is placed on DOX behavior in breast cancer cells due to the frequent use of DOX to treat this disease. This review provides insight into the mechanistic pathway(s) of DOX at levels found within patients and establishes the magnitude of effect for each mechanism.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA
| | - Clyde M Ofner
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA.
| |
Collapse
|
8
|
Synthesis and cytotoxicity evaluation of doxorubicin-polyethyleneimine conjugate as a potential carrier for dual delivery of drug and gene. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Polyprodrug with ultra-high drug content for tumor intracellular acid-triggered degradation and drug delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Shukla SK, Sarode A, Kanabar DD, Muth A, Kunda NK, Mitragotri S, Gupta V. Bioinspired particle engineering for non-invasive inhaled drug delivery to the lungs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112324. [PMID: 34474875 DOI: 10.1016/j.msec.2021.112324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Pulmonary drug delivery is governed by several biophysical parameters of delivery carriers, such as particle size, shape, density, charge, and surface modifications. Although much attention has been given to other parameters, particle shape effects have rarely been explored. In this work, we assess the influence of particle shape of inhaled delivery carriers on their aerodynamic properties and macrophage uptake by using polymeric microparticles of different geometries ranging in various sizes. Doxorubicin was conjugated to the polymer particles and the bioconjugates were characterized. Interestingly, the results of in-vitro lung deposition, performed using a next generation impactor, demonstrated a significant improvement in the aerodynamic properties of the rod-shaped particles with a high aspect ratio as compared to spherical particles with the same equivalent volume. The results of a macrophage uptake experiment demonstrate that the high aspect ratio particles were phagocytosed less than spherical particles. Furthermore, the cytotoxicity of these doxorubicin-conjugated particles was determined against murine macrophages, resulting in reduced toxicity when treated with high aspect ratio particles as compared to spherical particles. This project provides valuable insights into the influence of particle shape on aerodynamic properties and primary defense mechanisms in the peripheral lungs, while using polymeric microparticles of various sizes and geometries. Further systematic development can help translate these findings to preclinical and clinical studies for designing efficient inhalable delivery carriers.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Apoorva Sarode
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Dipti D Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
11
|
Chytil P, Kostka L, Etrych T. HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. J Pers Med 2021; 11:115. [PMID: 33578756 PMCID: PMC7916469 DOI: 10.3390/jpm11020115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
Collapse
Affiliation(s)
| | | | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (P.C.); (L.K.)
| |
Collapse
|
12
|
Sheng Y, Dai W, Gao J, Li H, Tan W, Wang J, Deng L, Kong Y. pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110888. [DOI: 10.1016/j.msec.2020.110888] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
|
13
|
Bobde Y, Biswas S, Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide-doxorubicin conjugate as pH-responsive polymeric nanoparticles for cancer therapy. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Rani S, Gupta U. HPMA-based polymeric conjugates in anticancer therapeutics. Drug Discov Today 2020; 25:997-1012. [PMID: 32334073 DOI: 10.1016/j.drudis.2020.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 11/17/2022]
Abstract
Polymer therapeutics has gained prominence due to an attractive structural polymer chemistry and its applications in diseases therapy. In this review, we discussed the development and capabilities of N-(2-hydroxypropyl) methacrylamide (HPMA) and HPMA-drug conjugates in cancer therapy. The design, architecture, and structural properties of HPMA make it a versatile system for the synthesis of polymeric conjugations for biomedical applications. Research suggests that HPMA could be a possible alternative for polymers such polyethylene glycol (PEG) in biomedical applications. Although numerous clinical trials of HPMA-drug conjugates are ongoing, yet no product has been successfully brought to the market. Thus, further research is required to develop HPMA-drug conjugates as successful cancer therapeutics.
Collapse
Affiliation(s)
- Sarita Rani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
15
|
Piorecka K, Smith D, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem 2020; 96:103617. [PMID: 32014639 DOI: 10.1016/j.bioorg.2020.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Anthracyclines (Anth) are widely used in the treatment of various types of cancer. Unfortunately, they exhibit serious adverse effects, such as hematopoietic depression and cardiotoxicity, leading to heart failure. In this review, we focus on recently developed conjugates of anthracyclines with a range of nanocarriers, such as polymers, peptides, DNA or inorganic systems. Manipulation of the composition, size and shape of chemical entities at the nanometer scale makes possible the design and development of a range of prodrugs. In this review we concentrate on synthetic chemistry in the long process leading to the introduction of novel therapeutic products.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - David Smith
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
16
|
Alvi MM, Nicoletto RE, Eshmawi BA, Kim HK, Cammarata CR, Ofner CM. Intracellular trafficking and cytotoxicity of a gelatine-doxorubicin conjugate in two breast cancer cell lines. J Drug Target 2019; 28:487-499. [PMID: 31601131 DOI: 10.1080/1061186x.2019.1679820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Details of intracellular pathways of cytotoxicity remain unclear for doxorubicin conjugates being studied to treat breast cancer tumours. A high molecular weight gelatine-doxorubicin conjugate was investigated with an emphasis on lysosome participation. The conjugate was synthesised and characterised. Cell uptake and cellular localisation in MCF-7 and triple negative breast cancer (TNBC) MDA-MB-231 cells were determined with fluorescence microscopy. Nuclear content of released DOX was determined by UHPLC. Cytotoxicity was determined by the MTT assay. Lysosome membrane permeabilization (LMP) was followed by lysosomal release of fluorescently labelled dextran. After incubation at an equivalent 10 µM DOX, conjugate lysosome accumulation was substantial in both cell lines by 24 h, at which time the conjugate cytotoxic effect was first observed. By 48 h, the conjugate was nearly fourfold more toxic in TNBC than in MCF-7 cells. The MCF-7 nucleus drug content from conjugate released DOX was small but confirmed intra-lysosomal drug release. The conjugate induced LMP in 100% of TNBC cells but LMP was virtually absent in MCF-7 cells. These results suggest that the conjugate induces cytotoxicity by a lysosomal pathway in MDA-MB-231 cells and has potential for treatment of TNBC tumours. Support: NIH/NCI R15CA135421, the Agnes Varis Trust for Women's Health.
Collapse
Affiliation(s)
- Mohammed M Alvi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Rachel E Nicoletto
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Bayan A Eshmawi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Hyun Kate Kim
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Christopher R Cammarata
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Clyde M Ofner
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
17
|
Rozga-Wijas K, Sierant M. Daunorubicin-silsesquioxane conjugates (POSS-DAU) for theranostic drug delivery system: Characterization, biocompatibility and drug release study. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Adv 2019; 9:24699-24721. [PMID: 35528643 PMCID: PMC9069890 DOI: 10.1039/c9ra04358f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
Polymer therapeutics encompasses polymer-drug conjugates that are nano-sized, multicomponent constructs already in the clinic as antitumor compounds, either as single agents or in combination with other organic drug scaffolds. Nanoparticle-based polymer-conjugated therapeutics are poised to become a leading delivery strategy for cancer treatments as they exhibit prolonged half-life, higher stability and selectivity, water solubility, longer clearance time, lower immunogenicity and antigenicity and often also specific targeting to tissues or cells. Compared to free drugs, polymer-tethered drugs preferentially accumulate in the tumor sites unlike conventional chemotherapy which does not discriminate between the cancer cells and healthy cells, thereby causing severe side-effects. It is also desirable that the drug reaches its site of action at a particular concentration and the therapeutic dose remains constant over a sufficiently long period of time. This can be achieved by opting for new formulations possessing polymeric systems of drug carriers. However, many challenges still remain unanswered in polymeric drug conjugates which need to be readdressed and therefore, can broaden the scope of this field. This review highlights some of the antitumor polymer therapeutics including polymer-drug conjugates, polymeric micelles, polymeric liposomes and other polymeric nanoparticles that are currently under investigation.
Collapse
Affiliation(s)
- Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University Yanbu Branch 46423 Yanbu Saudi Arabia +966 504522069
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| |
Collapse
|
19
|
Liu P, Wu Q, Li Y, Li P, Yuan J, Meng X, Xiao Y. DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids Surf B Biointerfaces 2019; 181:1012-1018. [PMID: 31382328 DOI: 10.1016/j.colsurfb.2019.06.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Keratin is a good candidate for drug carrier due to its good biocompatibility, low immunogenicity, redox responsiveness, and abundant renewable sources. Herein, doxorubicin (DOX) was first conjugated with keratin through a pH-sensitive hydrazone linkage, and then prepared into particulate drug carrier via desolvation method. The size, morphology, and surface potential of keratin-DOX nanoparticles (KDNPs) were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The drug release results showed that KDNPs performed an excellent pH-sensitive behavior under acidic tumor microenvironment. Cytotoxicity assay by MTT confirmed that KDNPs exhibited the enhanced cytotoxicity against A549 cells. Furthermore, KDNPs had higher therapeutic efficiency in vivo than free DOX. Hemolysis assay indicated that KDNPs was blood compatible. All the results identified that KDNPs are well suited as an ideal drug carrier.
Collapse
Affiliation(s)
- Pengcheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China.
| | - Yinghong Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Francica JR, Laga R, Lynn GM, Mužíková G, Androvič L, Aussedat B, Walkowicz WE, Padhan K, Ramirez-Valdez RA, Parks R, Schmidt SD, Flynn BJ, Tsybovsky Y, Stewart-Jones GBE, Saunders KO, Baharom F, Petrovas C, Haynes BF, Seder RA. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biol 2019; 17:e3000328. [PMID: 31206510 PMCID: PMC6597128 DOI: 10.1371/journal.pbio.3000328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic “star” nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes. Synthetic polymer-based nanoparticles effectively deliver HIV Env glycopeptide immunogens to lymph nodes and stimulate B cell lineages with characteristics resembling broadly neutralizing antibodies, in nonhuman primates.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Geoffrey M Lynn
- Avidea Technologies, Inc., Baltimore, Maryland, United States of America
| | - Gabriela Mužíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kartika Padhan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramiro Andrei Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Lipowska-Kur D, Szweda R, Trzebicka B, Dworak A. Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Duan Z, Cai H, Zhang H, Chen K, Li N, Xu Z, Gong Q, Luo K. PEGylated Multistimuli-Responsive Dendritic Prodrug-Based Nanoscale System for Enhanced Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35770-35783. [PMID: 30246536 DOI: 10.1021/acsami.8b12232] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A PEGylated multistimuli-responsive dendritic copolymer-doxorubicin (DOX) prodrug-based nanoscale system was developed as a delivery model for hydrophobic drugs. In this system, PEGylation did not only prolong circulation of the nanoscale system in the body (average half-life of 14.6 h, four times longer than that of the free drug), but also allowed the system to aggregate into nanoparticles (NPs) because of interactions between hydrophilic (polyethylene glycol) and hydrophobic (dendritic prodrug) moieties for better uptake through endocytosis (around 150 nm of particle size with a neutrally charged surface for the PEGylated dendritic prodrug with 12.1 wt % of DOX). The dendritic structure was built by bridging poly[ N-(2-hydroxypropyl)methacrylamide] segments with enzyme-responsive GFLG (Gly-Phe-Leu-Gly tetrapeptide) linkers. DOX was released by hydrolyzing the hydrazone bond between DOX and the copolymer framework in the acidic endosomes/lysosomes. In vitro studies on DOX released from the NPs induced mitochondrial dysfunction during apoptosis. By imaging the main organs and tumor tissues from mice treated with the NPs, boosted accumulation of this nanoscale medicine was found in tumor tissues, leading to a decrease in toxicity and side effects to normal tissues and enhancement in drug tolerance. In the 4T1 breast cancer model, these NPs exhibited a superior antitumor efficacy confirmed by inhibiting angiogenesis, proliferation of tumor tissues, and inducing procedural apoptosis of tumor cells. The highest tumor growth inhibition value mediated by the NPs was up to 86.5%. Therefore, this PEGylated multistimuli-responsive dendritic copolymer-DOX prodrug-based nanoscale system may be further explored as an alternative to traditional chemotherapy for breast cancer treatment.
Collapse
Affiliation(s)
| | - Hao Cai
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Hu Zhang
- Amgen Bioprocess Centre , Keck Graduate Institute , Claremont , California 91711 , United States
| | | | - Ning Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | | | | | - Kui Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
23
|
Yin Y, Hu Q, Xu C, Qiao Q, Qin X, Song Q, Peng Y, Zhao Y, Zhang Z. Co-delivery of Doxorubicin and Interferon-γ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Mol Pharm 2018; 15:4161-4172. [PMID: 30011369 DOI: 10.1021/acs.molpharmaceut.8b00564] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFβ, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.
Collapse
|
24
|
Affiliation(s)
| | - Lila Kanta Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
25
|
Ahmad N, Ahmad R, Alam MA, Ahmad FJ. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem Cent J 2018; 12:65. [PMID: 29796830 PMCID: PMC5966352 DOI: 10.1186/s13065-018-0434-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/12/2018] [Indexed: 01/24/2023] Open
Abstract
Background Doxorubicin hydrochloride (DOX·HCl), an anthracycline glycoside antibiotic, exhibits low oral bioavailability due to active efflux from intestinal P-glycoprotein receptors. The oral administration of DOX remains a challenge hence; no oral formulation for DOX is marketed, till date. Aim of the study To improve the oral bioavailability of DOX through, preparation of a nanoformulation i.e. PEGylated-doxorubicin(DOX)-loaded-poly-lactic-co-glycolic acid (PLGA)-Nanoparticles (NPs) and to develop and validate an ultra-high performance liquid chromatography electrospray ionization-synapt mass spectrometric bioanalytical method (UHPLC/ESI-QTOF–MS/MS) for plasma (Wistar rats) DOX quantification. Materials and methods For chromatography, Waters ACQUITY UPLC™ along with a BEH C-18 column (2.1 mm × 100 mm; 1.7 μm), mobile phase conditions (acetonitrile: 0.1% formic acid::1:1 v/v) and flow rate (0.20 ml/min) was used. For analyte recovery from rat plasma, a liquid–liquid extraction method (LLE), using Acetonitrile: 5 mM ammonium acetate in a ratio of 6:4 v/v at pH 3.5, was used. Results Nanoformulation with a particle size (183.10 ± 7.41 nm), zeta potential (− 13.10 ± 1.04 mV), drug content (42.69 ± 1.97 µg/mg) and a spherical shape and smooth surface was developed. An elution time of 1.61 and 1.75 min along with a transition at m/z 544.42/397.27 and 528.46/321.41 were observed for DOX and internal standard (IS) Daunorubicin, respectively. In addition, a linear dynamic range with r2 ≥ 0.9985 over a concentration range of 1.00–2500.0 ng/ml was observed for different processes and parameters used in the study. Similarly a marked improvement i.e. 6.8 fold was observed, in PEGylated-DOX-PLGA-NPs as compared to DOX-S, in pharmacokinetics studies. Conclusion The promising approach of PEGylated-DOX-PLGA-NPs may provide an alternate to intravenous therapy for better patient care.
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Kingdom of Saudi Arabia.
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, 201310, India
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
26
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MDF, Cunha ADS, Mansur HS. Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjug Chem 2018; 29:1973-2000. [DOI: 10.1021/acs.bioconjchem.8b00208] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Tamer Y, Chen B. Lysine-derived, pH-sensitive and biodegradable poly(beta-aminoester urethane) networks and their local drug delivery behaviour. SOFT MATTER 2018; 14:1195-1209. [PMID: 29349467 DOI: 10.1039/c7sm01886j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a series of covalently crosslinked, l-lysine based poly(beta-aminoester urethane) (LPBAEU) networks with good biodegradability and pH sensitivity was reported. The effect of hydrophilic/hydrophobic characteristics and diacrylate/amine molar ratio on the structure, swelling and degradation behaviour of the networks was investigated. The water transport mechanism and dynamic swelling behavior of the LPBAEU networks were strongly affected by medium pH, and swelling amounts up to 252.2% and 148.7% were observed at pH 5.6 and pH 7.4, respectively. It was found that water diffusion within the networks followed a non-Fickian mechanism. The LPBAEU network with the highest diacrylate/amine molar ratio exhibited the highest tensile strength and Young's modulus. In vitro mass losses of networks showed that the degradation rate of LPBAEU networks can be adjusted from 4 to 14 days. LPBAEU networks also supported loading of doxycycline hyclate (DH) and in vitro release studies demonstrated that release of DH from the networks was substantially hindered in the neutral pH environment, with 20.9-56.2% DH release, whereas DH release was accelerated under mild acidic conditions, with a release percentage of 36.6-99.6%. The release data were fitted to different mathematical models and the obtained results confirmed that these networks released DH in a non-Fickian mechanism. The results of this research support the idea that pH-responsive LPBAEU networks may find potential applications in local drug delivery.
Collapse
Affiliation(s)
- Yasemin Tamer
- Department of Polymer Engineering, Yalova University, Yalova, 77100, Turkey
| | | |
Collapse
|
28
|
Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci Rep 2018; 8:2907. [PMID: 29440698 PMCID: PMC5811504 DOI: 10.1038/s41598-018-21331-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy of the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.
Collapse
|
29
|
Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv Pharm Bull 2017; 7:593-601. [PMID: 29399549 PMCID: PMC5788214 DOI: 10.15171/apb.2017.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Multidrug resistance (MDR) of tumors to chemotherapeutics often leads to failure of cancer treatment. The aim of the study was to prepare novel MDR-overcoming chemotherapeutics based on doxorubicin (DOX) derivatives and to evaluate their efficacy in 2D and 3D in vitro models. Methods: To overcome MDR, we synthesized five DOX derivatives, and then obtained non-covalent complexes with human serum albumin (HSA). Drug efficacy was evaluated for two tumor cell lines, namely human breast adenocarcinoma MCF-7 cells and DOX resistant MCF-7/ADR cells. Additionally, MCF-7 cells were entrapped in alginate-oligochitosan microcapsules, and generated tumor spheroids were used as a 3D in vitro model to study cytotoxicity of the DOX derivatives. Results: Due to 3D structure, the tumor spheroids were more resistant to chemotherapy compared to monolayer culture. DOX covalently attached to palmitic acid through hydrazone linkage (DOX-N2H-Palm conjugate) was found to be the most promising derivative. Its accumulation levels within MCF-7/ADR cells was 4- and 10-fold higher than those of native DOX when the conjugate was added to cultivation medium without serum and to medium supplemented with 10% fetal bovine serum, respectively. Non-covalent complex of the conjugate with HSA was found to reduce the IC50 value from 32.9 µM (for free DOX-N2H-Palm) to 16.8 µM (for HSA-DOX-N2H-Palm) after 72 h incubation with MCF-7/ADR cells. Conclusion: Palm-N2H-DOX conjugate was found to be the most promising DOX derivative in this research. The formation of non-covalent complex of Palm-N2H-DOX conjugate with HSA allowed improving its anti-proliferative activity against both MCF-7 and MCF-7/ADR cells.
Collapse
Affiliation(s)
- Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Maria Drozdova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Daria Zaytseva-Zotova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Pavel Chelushkin
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Annie Marc
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Isabelle Chevalot
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Sergey Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
30
|
Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 2017; 106:342-348. [DOI: 10.1002/jbm.a.36240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/03/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran P.O. Box 15875-4413 Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
| |
Collapse
|
31
|
Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol Biosci 2017; 18. [PMID: 28805040 DOI: 10.1002/mabi.201700209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Collapse
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
32
|
Šírová M, Horková V, Etrych T, Chytil P, Říhová B, Studenovský M. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics. J Drug Target 2017; 25:796-808. [PMID: 28726521 DOI: 10.1080/1061186x.2017.1358724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO donors were coupled to the polymer carrier either through a stable bond or through a hydrolytically degradable, pH sensitive, bond. In vivo, the co-administration of the polymer NO donor and HPMA copolymer-bound cytotoxic drug (doxorubicin; Dox) resulted in an improvement in the treatment of murine EL4 T-cell lymphoma. The polymer NO donors neither potentiated the in vitro toxicity of the cytotoxic drug nor exerted any effect on in vivo model without the EPR effect, such as BCL1 leukaemia. Thus, an increase in passive accumulation of the nanomedicine carrying cytotoxic drug via NO-enhanced EPR effect was the operative mechanism of action. The most significant improvement in the therapy was observed in a combination treatment with such a polymer conjugate of Dox, which is characterised by increased circulation in the blood and efficient accumulation in solid tumours. Notably, the combination treatment enabled the development of an anti-tumour immune response, which was previously demonstrated as an important feature of HPMA-based polymer cytotoxic drugs.
Collapse
Affiliation(s)
- Milada Šírová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Veronika Horková
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Tomáš Etrych
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Petr Chytil
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Blanka Říhová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Martin Studenovský
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| |
Collapse
|
33
|
Feng C, Rui M, Shen H, Xin Y, Zhang J, Li J, Yue L, Lai W, Xu X. Tumor-specific delivery of doxorubicin through conjugation of pH-responsive peptide for overcoming drug resistance in cancer. Int J Pharm 2017; 528:322-333. [DOI: 10.1016/j.ijpharm.2017.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/21/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
|
34
|
Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate. Eur J Pharm Sci 2017; 106:10-19. [DOI: 10.1016/j.ejps.2017.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 01/11/2023]
|
35
|
Onishi H, Fukasawa A, Miatmoko A, Kawano K, Ikeuchi-Takahashi Y, Hattori Y. Preparation of chondroitin sulfate-adipic acid dihydrazide-doxorubicin conjugate and its antitumour characteristics against LLC cells. J Drug Target 2017; 25:747-753. [DOI: 10.1080/1061186x.2017.1327593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Ai Fukasawa
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Andang Miatmoko
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
- Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Kumi Kawano
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | | | - Yoshiyuki Hattori
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
36
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
37
|
Qian J, Xia X, Xie Y. Self-assembled nano-balls released from multistage vector for cancer therapy. NANOTECHNOLOGY 2017; 28:122501. [PMID: 28145890 DOI: 10.1088/1361-6528/aa5d72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficacy of cancer drugs is often compromised due to the existence of biological barriers such as nonspecific distribution, hemorheological flow limitation and endothelial extravasation, impaired delivery across tumor cell membranes and tissue, and multidrug resistance. To overcome these obstacles, Xu et al developed an injectable nanoparticle generator platform to negotiate with the biological barriers and enable self-assembly of nano-balls in situ in order to maximize drug accumulation inside the tumor tissues and hence the therapeutic efficacy. This perspective aims to elaborate the designing strategy, and discuss the mechanism of action of the new drug and the potential for future development of nanoparticulate drugs.
Collapse
Affiliation(s)
- Jin Qian
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|
38
|
Sonawane SJ, Kalhapure RS, Govender T. Hydrazone linkages in pH responsive drug delivery systems. Eur J Pharm Sci 2016; 99:45-65. [PMID: 27979586 DOI: 10.1016/j.ejps.2016.12.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/24/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023]
Abstract
Stimuli-responsive polymeric drug delivery systems using various triggers to release the drug at the sites have become a major focus area. Among various stimuli-responsive materials, pH-responsiveness has been studied extensively. The materials used for fabricating pH-responsive drug delivery systems include a specific chemical functionality in their structure that can respond to changes in the pH of the surrounding environment. Various chemical functionalities, for example, acetal, amine, ortho ester, amine and hydrazone, have been used to design materials that are capable of releasing their payload at the acidic pH conditions of the tumor or infection sites. Hydrazone linkages are significant synthons for numerous transformations and have gained importance in pharmaceutical sciences due to their various biological and clinical applications. These linkages have been employed in various drug delivery vehicles, such as linear polymers, star shaped polymers, dendrimers, micelles, liposomes and inorganic nanoparticles, for pH-responsive drug delivery. This review paper focuses on the synthesis and characterization methods of hydrazone bond containing materials and their applications in pH-responsive drug delivery systems. It provides detailed suggestions as guidelines to materials and formulation scientists for designing biocompatible pH-responsive materials with hydrazone linkages and identifying future studies.
Collapse
Affiliation(s)
- Sandeep J Sonawane
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa..
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa..
| |
Collapse
|
39
|
Duan X, Chen H, Fan L, Kong J. Drug Self-Assembled Delivery System with Dual Responsiveness for Cancer Chemotherapy. ACS Biomater Sci Eng 2016; 2:2347-2354. [DOI: 10.1021/acsbiomaterials.6b00559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Duan
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Heng Chen
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Li Fan
- Department
of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jie Kong
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| |
Collapse
|
40
|
Li Y, Lin J, Liu G, Ma J, Xie L, Guo F, Zhu X, Hou Z. Dual-acting, function-responsive, and high drug payload nanospheres for combining simplicity and efficacy in both self-targeted multi-drug co-delivery and synergistic anticancer effect. Int J Pharm 2016; 512:194-203. [DOI: 10.1016/j.ijpharm.2016.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
41
|
Herranz-Blanco B, Shahbazi MA, Correia AR, Balasubramanian V, Kohout T, Hirvonen J, Santos HA. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Adv Healthc Mater 2016; 5:1904-16. [PMID: 27245691 DOI: 10.1002/adhm.201600160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Indexed: 11/10/2022]
Abstract
Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP.
Collapse
Affiliation(s)
- Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Alexandra R. Correia
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Tomáš Kohout
- Department of Physics; University of Helsinki; Gustaf Hällströmin katu 2a (P. O. Box 64) 00560 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| |
Collapse
|
42
|
|
43
|
Li Y, Wu Y, Huang L, Miao L, Zhou J, Satterlee AB, Yao J. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. J Control Release 2016; 228:107-119. [PMID: 26941036 DOI: 10.1016/j.jconrel.2016.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The potential of low molecular weight heparin (LMWH) in anti-angiogenic therapy has been tempered by poor in vivo delivery to the tumor cell and potentially harmful side effects, such as the risk of bleeding due to heparin's anticoagulant activity. In order to overcome these limitations and further improve the therapeutic effect of LMWH, we designed a novel combination nanosystem of LMWH and ursolic acid (UA), which is also an angiogenesis inhibitor for tumor therapy. In this system, an amphiphilic LMWH-UA (LHU) conjugate was synthesized and self-assembled into core/shell nanodrugs with combined anti-angiogenic activity and significantly reduced anticoagulant activity. Furthermore, DSPE-PEG-AA-modified LHU nanodrugs (A-LHU) were developed to facilitate the delivery of nanodrugs to the tumor. The anti-angiogenic activity of A-LHU was investigated both in vitro and in vivo. It was found that A-LHU significantly inhibited the tubular formation of human umbilical vein endothelial cells (HUVECs) (p<0.01) and the angiogenesis induced by basic fibroblast growth factor (bFGF) in a Matrigel plug assay (p<0.001). More importantly, A-LHU displayed significant inhibition on the tumor growth in B16F10-bearing mice in vivo. The level of CD31 and p-VEGFR-2 expression has demonstrated that the excellent efficacy of antitumor was associated with a decrease in angiogenesis. In conclusion, A-LHU nanodrugs are a promising multifunctional antitumor drug delivery system.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Lei Miao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Andrew Benson Satterlee
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA; University of North Carolina and North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
44
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
45
|
Liu L, Sun J, Yin H, Fang J, Jin X. pH-Responsive Polymer Conjugate of Pirarubicin With Styrene Maleic Acid Copolymer as a Potential Therapeutic for Ovarian Cancer. J Pharm Sci 2016; 105:1595-1602. [PMID: 27020984 DOI: 10.1016/j.xphs.2016.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/05/2016] [Accepted: 02/24/2016] [Indexed: 11/19/2022]
Abstract
Previous studies indicated the potential of styrene maleic acid copolymer (SMA)-conjugated pirarubicin (4'-O-tetrahydropyranyldoxorubicin [THP]) for targeted anticancer therapy based on the enhanced permeability and retention effect. In this study, to achieve further improved therapeutic efficacy, a pH-responsive SMA-conjugated THP-containing hydrazone bond (SMA-hyd-THP) was synthesized and evaluated in vitro and ex vivo using human ovarian cancer cells and tissues. SMA-hyd-THP showed good water solubility, forming micelles with a mean particle size of 48.0 nm, which is applicable for enhanced permeability and retention-based tumor accumulation. The THP loading in this preparation was 15% (wt/wt), and release rate of free THP from SMA-hyd-THP at physiological pH (7.4) was approximately 10% in 72 h. However, it increased rapidly at pH 6.5 (42%) and 5.5 (83%), which indicates that tumor environment of weak acidic condition (pH 6.5-6.9) is favorable for release of THP. This notion was partly proved by incubating SMA-hyd-THP with tumor tissues from ovarian cancer patients. In addition, release of THP was not affected by serum, suggesting that SMA-hyd-THP is relatively stable in circulation. Finally, SMA-hyd-THP showed much increased cytotoxicity against various ovarian cancer cells at acidic tumor pH (6.5). These findings may provide an option for targeted therapy against ovarian cancer.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, 116033, People's Republic of China
| | - Jinghua Sun
- Department of Oncology, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hongzhuan Yin
- Department of General Surgery, Sheng Jing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Jun Fang
- School of Public Health, Anhui Medical University, 81th Meishan Road, Hefei City, Anhui Province, 230032, People's Republic of China; Institute of Drug Delivery Science, Sojo University, Ikeda 4-22-1, Kumamoto Nishi-ku, 860-0082, Japan
| | - Xianyu Jin
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, 116033, People's Republic of China
| |
Collapse
|
46
|
Synthesis and biological assessment of folate-accepted developer (99m)Tc-DTPA-folate-polymer. Bioorg Med Chem Lett 2016; 26:2547-2550. [PMID: 27072904 DOI: 10.1016/j.bmcl.2016.03.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 11/21/2022]
Abstract
A novel cancer-targetable folate-poly(2-hydroxyethyl methacrylate) (PFDH) copolymer containing DTPA segment was prepared by conventional chemical synthesis and labeled with (99m)Tc subsequently. The (99m)Tc-labled PFDH could be produced easily with high radiochemical yield of 91% and radiochemical purity of 95%. The LogP octanol-water value for the (99m)Tc-labled PFDH was -2.19 and the radiotracer was stable in phosphate-buffered saline and human serum for 2h (>95% in PBS or ∼90% in human serum). To investigate (99m)Tc-labled PFDH tumor targeting, the in vitro and in vivo stability, cell uptake, in vivo biodistribution, and SPECT imaging were evaluated, respectively. These preliminary results strongly suggest that the novel folate conjugated dendrimer maybe developed to be potential for delivery of therapeutic radionuclides.
Collapse
|
47
|
Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm 2016; 42:1590-9. [PMID: 26942448 DOI: 10.3109/03639045.2016.1160103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Targeted hepatocellular carcinoma (HCC) therapy was carried out to improve the efficacy of liver cancers. The aim of this study was to develop transferrin (Tf) modified, self-assembled polymeric nanoparticles for co-delivery doxorubicin (DOX) and cisplatin (DDP), to achieve combination tumor therapy. METHODS Tf modified polyethylene glycol (PEG) containing DOX prodrug (Tf-PEG-DOX) was synthesized. DDP containing poly(lactic-co-glycolic) acid (PLGA) materials (PLGA-DDP) were prepared. Tf modified DOX and DDP loaded PLGA nanoparticles (Tf-DOX/DDP NPs) were prepared by using nanoprecipitation method. The particles sizes, zeta potentials, drug loading effects were characterized. The cytotoxicity of the NPs was evaluated in human hepatoma carcinoma cell lines (HepG2 cells), and in vivo anti-tumor was observed in mice bearing human HepG2 cells model. RESULTS Tf-DOX/DDP NPs displayed higher cytotoxicity and enhanced antitumor activity both in vitro and in vivo over their non-modified and single drug loaded counterparts. CONCLUSION Tf-DOX/DDP NPs can achieve outstanding anti-tumor activity due to the combination effect of two drugs and the active targeting ability of Tf ligands. The self-assembled polymeric nanomedicine could act as an efficient therapy method for HCC treatment.
Collapse
Affiliation(s)
- Xiaoran Zhang
- a Ji'nan Central Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Jinxiu Li
- b Department of Pharmacy , Binzhou People ' s Hospital , Binzhou , People's Republic of China
| | - Meixing Yan
- c Department of Pharmacy , Qingdao Municipal Hospital , Qingdao , People's Republic of China
| |
Collapse
|
48
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Spadavecchia J, Movia D, Moore C, Maguire CM, Moustaoui H, Casale S, Volkov Y, Prina-Mello A. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomedicine 2016; 11:791-822. [PMID: 27013874 PMCID: PMC4777276 DOI: 10.2147/ijn.s97476] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG)-gold nanoparticles (AuNPs) and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]). In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50) and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene 1 (hERG1) channel aberrantly expressed on the membrane of pancreatic cancer cells. Targeted PEG-AuNPs were translocated into the lysosomes and were associated to an increased lysosomal function in PANC-1 cells. Additionally, doxorubicin release into an aqueous environment was almost negligible after 7 days, suggesting that drug release from PEG-AuNPs was triggered by enzymatic activity. Although preliminary, data gathered from this study have considerable potential in the application of safe-by-design nano-enabled drug-delivery systems (ie, nanomedicines) for the treatment of pancreatic cancer, a disease with a poor prognosis and one of the main current burdens of today's health care bill of industrialized countries.
Collapse
Affiliation(s)
- Jolanda Spadavecchia
- Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris
- Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Dania Movia
- AMBER Centre, CRANN Institute, Dublin, Ireland
| | - Caroline Moore
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Ciaran Manus Maguire
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Hanane Moustaoui
- Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Sandra Casale
- Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris
| | - Yuri Volkov
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Adriele Prina-Mello
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
50
|
Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016; 85:152-67. [PMID: 26871891 DOI: 10.1016/j.biomaterials.2016.01.061] [Citation(s) in RCA: 637] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy.
Collapse
|