1
|
Guaragna MS, Casimiro FMS, Varela P, de S Feltran L, Watanabe A, Neves PDMM, Pesquero JB, Belangero VMS, Nogueira PCK, Onuchic LF. Past and future in vitro and in vivo approaches toward circulating factors and biomarkers in idiopathic nephrotic syndrome. Pediatr Nephrol 2025:10.1007/s00467-024-06643-8. [PMID: 39883133 DOI: 10.1007/s00467-024-06643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Predicting the risks of progression to chronic kidney disease (CKD) stage 5 in idiopathic nephrotic syndrome (NS) and recurrence of the disease (rNS) following kidney transplantation (KT) is a key assessment to provide essential management information. NS has been categorized etiologically as genetic and immune-based. A genetic cause can be identified in ~ 30% of children with steroid-resistant NS (SRNS), a finding associated with a very low risk of rNS following KT. In immune-based NS, clinical overlap is observed among steroid-sensitive NS, secondary-resistant NS, and SRNS not associated with disease-causing genetic variants (non-monogenic SRNS). While ~ 50% of SRNS patients with no identified monogenic disease respond to intensified immunosuppressive treatments, the ones that do not respond to this therapy have a high risk of progression to CKD stage 5 and post-KT rNS. Secondary-resistant patients who progress to CKD stage 5 display the highest risk of post-KT rNS. The proposed shared underlying mechanism of the immune-based NS associated with post-KT rNS is based on a systemic circulating factor (CF) that affects glomerular permeability by inducing foot process effacement and focal segmental glomerulosclerosis. However, identifying patients without a detected genetic form who will recur post-KT is a major challenge. Extensive efforts, therefore, have been made to identify CFs and biomarkers potentially capable of predicting the risk of progression to CKD stage 5 and post-KT rNS. This review discusses the in vitro and in vivo approaches employed to date to identify and characterize potential CFs and CF-induced biomarkers of recurrent NS and offers an assessment of their potential to improve outcomes of KT in this patient population.
Collapse
Affiliation(s)
- Mara S Guaragna
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Fernanda M S Casimiro
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia Varela
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciana de S Feltran
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Precil D M M Neves
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - João B Pesquero
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Vera M S Belangero
- Department of Pediatrics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paulo C K Nogueira
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
- Department of Pediatric Nephrology, São Paulo Federal University, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
2
|
Huang X, Li M, Espinoza MIM, Zennaro C, Bossi F, Lonati C, Oldoni S, Castellano G, Alfieri C, Messa P, Cellesi F. Brain-Derived Neurotrophic Factor-Loaded Low-Temperature-Sensitive liposomes as a drug delivery system for repairing podocyte damage. Int J Pharm 2024; 660:124322. [PMID: 38866082 DOI: 10.1016/j.ijpharm.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular co-culture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.
Collapse
Affiliation(s)
- Xiaoyi Huang
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Maria Isabel Martinez Espinoza
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Fleur Bossi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Alfieri
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
3
|
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol 2024; 12:1373386. [PMID: 38605984 PMCID: PMC11007038 DOI: 10.3389/fbioe.2024.1373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- *Correspondence: Fang-Fang He, ; Chun Zhang,
| |
Collapse
|
4
|
Schlichenmaier N, Zielinski A, Beneke S, Dietrich DR. PODO/TERT256 - A promising human immortalized podocyte cell line and its potential use for in vitro research at different oxygen levels. Chem Biol Interact 2024; 387:110813. [PMID: 38006960 DOI: 10.1016/j.cbi.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
Podocytes are of key interest for the prediction of nephrotoxicity as they are especially sensitive to toxic insults due to their central role in the glomerular filtration apparatus. However, currently, prediction of nephrotoxicity in humans remains insufficiently reliable, thus highlighting the need for advanced in vitro model systems using human cells with improved prediction capacity. Recent approaches for refining in vitro model systems focus on closely replicating physiological conditions as observed under the in vivo situation typical of the respective nephron section of interest. PODO/TERT256, a human immortalized podocyte cell line, were employed in a semi-static transwell system to evaluate its potential use as a human podocyte in vitro system for modelling potential human glomerular toxicity. Furthermore, the impact of routinely employed excessive oxygen tension (21 % - AtmOx), when compared to the physiological oxygen tensions (10 % - PhysOx) observed in vivo, was analyzed. Generally, cultured PODO/TERT256 formed a stable, contact-inhibited monolayer with typical podocyte morphology (large cell body, apical microvilli, finger-like cytoplasmic projections (reminiscent of foot processes), and interdigitating cell-cell junctions) and developed a size-selective filtration barrier. PhysOx, however, induced a more pronounced in vivo like phenotype, comprised of significantly larger cell bodies, significantly enhanced filtration barrier size-selectivity, and a remarkable re-localization of nephrin to the cell membrane, thus suggesting an improved in vitro replication of in vivo characteristics. Preliminary toxicity characterization with the known glomerulotoxin doxorubicin (DOX) suggested an increasing change in filtration permeability, already at the lowest DOX concentrations tested (0.01 μM) under PhysOx, whereas obvious changes under AtmOx were observed as of 0.16 μM and higher with a near all or nothing effect. The latter findings suggested that PODO/TERT256 could serve as an in vitro human podocyte model for studying glomerulotoxicity, whereby culturing at PhyOx tension appeared critical for an improved in vivo-like phenotype and functionality. Moreover, PODO/TERT256 could be incorporated into advanced human glomerulus systems in vitro, recapitulating microfluidic conditions and multiple cell types (endothelial and mesenchymal cells) that can even better predict human glomerular toxicity.
Collapse
Affiliation(s)
- Nadja Schlichenmaier
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Zielinski
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Sascha Beneke
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Daniel R Dietrich
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
5
|
Rederer A, Rose V, Krüger R, Schmittutz L, Swierzy I, Fischer L, Thievessen I, Bauer J, Friedrich O, Schiffer M, Müller-Deile J. Partner, Neighbor, Housekeeper and Dimension: 3D versus 2D Glomerular Co-Cultures Reveal Drawbacks of Currently Used Cell Culture Models. Int J Mol Sci 2023; 24:10384. [PMID: 37373531 DOI: 10.3390/ijms241210384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell-cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.
Collapse
Affiliation(s)
- Anna Rederer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Victoria Rose
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - René Krüger
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Linda Schmittutz
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Izabela Swierzy
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Fischer
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ingo Thievessen
- Center for Medicine, Physics and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Guo C, Ding Y, Yang A, Geng Y, Liu C, Zhou L, Ma L, Yang Z, Hu F, Jiang K, Cai R, Bai P, Quan M, Deng Y, Wu C, Sun Y. CHILKBP protects against podocyte injury by preserving ZO-1 expression. Cell Mol Life Sci 2022; 80:18. [PMID: 36564652 PMCID: PMC11072396 DOI: 10.1007/s00018-022-04661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
Glomerular diseases afflict millions of people and impose an enormous burden on public healthcare costs worldwide. Identification of potential therapeutic targets for preventing glomerular diseases is of considerable clinical importance. CHILKBP is a focal adhesion protein and modulates a wide array of biological functions. However, little is known about the role of CHILKBP in glomerular diseases. To investigate the function of CHILKBP in maintaining the structure and function of podocytes in a physiologic setting, a mouse model (CHILKBP cKO) was generated in which CHILKBP gene was conditionally deleted in podocytes using the Cre-LoxP system. Ablation of CHILKBP in podocytes resulted in massive proteinuria and kidney failure in mice. Histologically, typical podocyte injury including podocyte loss, foot process effacement, and glomerulosclerosis was observed in CHILKBP cKO mice. Mechanistically, we identified ZO-1 as a key junctional protein that interacted with CHILKBP. Loss of CHILKBP in podocytes exhibited a significant reduction of ZO-1 expression, leading to abnormal actin organization, aberrant slit diaphragm protein expression and compromised podocyte filtration capacity. Restoration of CHILKBP or ZO-1 in CHILKBP-deficient podocytes effectively alleviated podocyte injury induced by the loss of CHILKBP in vitro and in vivo. Finally, we showed the glomerular expression of CHILKBP and ZO-1 was decreased in patients with proteinuric kidney diseases. Our findings reveal a novel signaling pathway consisting of CHILKBP and ZO-1 that plays an essential role in maintaining podocyte homeostasis and suggest novel therapeutic approaches to alleviate glomerular diseases.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yanyan Ding
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aihua Yang
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiqing Geng
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengmin Liu
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Zhou
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Luyao Ma
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng Hu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ke Jiang
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Renwei Cai
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Panzhu Bai
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiling Quan
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Deng
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ying Sun
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
8
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Zhang SY, Mahler GJ. Modelling Renal Filtration and Reabsorption Processes in a Human Glomerulus and Proximal Tubule Microphysiological System. MICROMACHINES 2021; 12:mi12080983. [PMID: 34442605 PMCID: PMC8398588 DOI: 10.3390/mi12080983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Kidney microphysiological systems (MPS) serve as potentially valuable preclinical instruments in probing mechanisms of renal clearance and osmoregulation. Current kidney MPS models target regions of the nephron, such as the glomerulus and proximal tubule (PCT), but fail to incorporate multiple filtration and absorption interfaces. Here, we describe a novel, partially open glomerulus and PCT microdevice that integrates filtration and absorption in a single MPS. The system equalizes pressure on each side of the PCT that operates with one side "closed" by recirculating into the bloodstream, and the other "opened" by exiting as primary filtrate. This design precisely controls the internal fluid dynamics and prevents loss of all fluid to the open side. Through this feature, an in vitro human glomerulus and proximal tubule MPS was constructed to filter human serum albumin and reabsorb glucose for seven days of operation. For proof-of-concept experiments, three human-derived cell types-conditionally immortalized human podocytes (CIHP-1), human umbilical vein endothelial cells (HUVECs), and human proximal tubule cells (HK-2)-were adapted into a common serum-free medium prior to being seeded into the three-component MPS (T-junction splitter, glomerular housing unit, and parallel proximal tubule barrier model). This system was optimized geometrically (tubing length, tubing internal diameter, and inlet flow rate) using in silico computational modeling. The prototype tri-culture MPS successfully filtered blood serum protein and generated albumin filtration in a physiologically realistic manner, while the device cultured only with proximal tubule cells did not. This glomerulus and proximal convoluted tubule MPS is a potential prototype for the human kidney used in both human-relevant testing and examining pharmacokinetic interactions.
Collapse
|
10
|
Wang D, Sant S, Ferrell N. A Biomimetic In Vitro Model of the Kidney Filtration Barrier Using Tissue-Derived Glomerular Basement Membrane. Adv Healthc Mater 2021; 10:e2002275. [PMID: 34218528 DOI: 10.1002/adhm.202002275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Indexed: 01/28/2023]
Abstract
The glomerular filtration barrier (GFB) filters the blood to remove toxins while retaining high molecular weight proteins in the circulation. The glomerular basement membrane (GBM) and podocytes, highly specialized epithelial cells, are critical components of the filtration barrier. The GBM serves as a physical barrier to passage of molecules into the filtrate. Podocytes adhere to the filtrate side of the GBM and further restrict passage of high molecular weight molecules into the filtrate. Here, a 3D cell culture model of the glomerular filtration barrier to evaluate the role of the GBM and podocytes in mediating molecular diffusion is developed. GBM is isolated from mammalian kidneys to recapitulate the composition and mechanics of the in vivo basement membrane. The GFB model exhibits molecular selectivity that is comparable to the in vivo filtration barrier. The GBM alone provides a stringent barrier to passage of albumin and Ficoll. Podocytes further restrict molecular diffusion. Damage to the GBM that is typical of diabetic kidney disease is simulated using hypochlorous acid and results in increased molecular diffusion. This system can serve as a platform to evaluate the effects of GBM damage, podocyte injury, and reciprocal effects of altered podocyte-GBM interactions on kidney microvascular permeability.
Collapse
Affiliation(s)
- Dan Wang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Center for Kidney Disease, S3223 Medical Center North, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Bellucci L, Montini G, Collino F, Bussolati B. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Pass through the Filtration Barrier and Protect Podocytes in a 3D Glomerular Model under Continuous Perfusion. Tissue Eng Regen Med 2021; 18:549-560. [PMID: 34313970 PMCID: PMC8325748 DOI: 10.1007/s13770-021-00374-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dynamic cultures, characterized by continuous fluid reperfusion, elicit physiological responses from cultured cells. Mesenchymal stem cell-derived EVs (MSC-EVs) has been proposed as a novel approach in treating several renal diseases, including acute glomerular damage, by using traditional two-dimensional cell cultures and in vivo models. We here aimed to use a fluidic three-dimensional (3D) glomerular model to study the EV dynamics within the glomerular structure under perfusion. METHODS To this end, we set up a 3D glomerular model culturing human glomerular endothelial cells and podocytes inside a bioreactor on the opposite sides of a porous membrane coated with type IV collagen. The bioreactor was connected to a circuit that allowed fluid passage at the rate of 80 µl/min. To mimic glomerular damage, the system was subjected to doxorubicin administration in the presence of therapeutic MSC-EVs. RESULTS The integrity of the glomerular basal membrane in the 3D glomerulus was assessed by a permeability assay, demonstrating that the co-culture could limit the passage of albumin through the filtration barrier. In dynamic conditions, serum EVs engineered with cel-miR-39 passed through the glomerular barrier and transferred the exogenous microRNA to podocyte cell lines. Doxorubicin treatment increased podocyte apoptosis, whereas MSC-EV within the endothelial circuit protected podocytes from damage, decreasing cell death and albumin permeability. CONCLUSION Using an innovative millifluidic model, able to mimic the human glomerular barrier, we were able to trace the EV passage and therapeutic effect in dynamic conditions.
Collapse
Affiliation(s)
- Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda IRCCS, Policlinico Di Milano, Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
12
|
Ebefors K, Lassén E, Anandakrishnan N, Azeloglu EU, Daehn IS. Modeling the Glomerular Filtration Barrier and Intercellular Crosstalk. Front Physiol 2021; 12:689083. [PMID: 34149462 PMCID: PMC8206562 DOI: 10.3389/fphys.2021.689083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter in vitro has been challenging, though critical for various research applications and drug screening. Research efforts in the past few years have transformed our understanding of the structure and multifaceted roles of the cells and their intricate crosstalk in development and disease pathogenesis. In this review, we present a new wave of technologies that include glomerulus-on-a-chip, three-dimensional microfluidic models, and organoids all promising to improve our understanding of glomerular biology and to enable the development of GFB-targeted therapies. Here, we also outline the challenges and the opportunities of these emerging biomimetic systems that aim to recapitulate the complex glomerular filter, and the evolving perspectives on the sophisticated repertoire of cellular signaling that comprise the glomerular milieu.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Dembele M, Delafosse M, Yousfi N, Debiec H, Ngo K, Plaisier E, Ronco P, Perry G. [Models of glomerular filtration barrier : New developments]. Med Sci (Paris) 2021; 37:242-248. [PMID: 33739271 DOI: 10.1051/medsci/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we present the latest innovations to generate in vitro models of the glomerular filtration barrier. There is currently a growing interest for such model systems that allow to reduce the use of animal models. Methodologies to improve their physiological relevance have taken advantage of the development of induced pluripotent stem cells and of bioengineering, particularly tissue engineering. Here, we first introduce the methods to overcome the limitations of the currently used glomerular cells based on the use of stem cells. The different approaches to obtain podocytes, the most important cells in the glomerulus, are presented. Finally, we emphasize the importance of the glomerular microenvironment in maintaining the glomerular cell phenotype, which can be achieved by co-culturing different glomerular cells, integration of biomaterials mimicking the extracellular matrix and introduction of flows with microfluidics.
Collapse
Affiliation(s)
- Mahamadou Dembele
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Marion Delafosse
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Nadhir Yousfi
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Hanna Debiec
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Kieu Ngo
- Sorbonne Université, CNRS, Laboratoire interfaces et systèmes électrochimiques, LISE, Campus Pierre et Marie Curie, 4 place Jussieu 75252 Paris, France
| | - Emmanuelle Plaisier
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Pierre Ronco
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France
| | - Guillaume Perry
- Inserm, Sorbonne Université, Maladies rénales fréqunentes et rares (CoRaKiD), UMRS 1155, Hôpital Tenon, Bâtiment recherche, 4 rue de la Chine, 75020 Paris, France - CNRS, Sorbonne université, Laboratoire de génie électrique et électronique de Paris, GeePs, Campus Pierre et Marie Curie, 4 Place Jussieu 75252 Paris, France
| |
Collapse
|
14
|
Iampietro C, Bellucci L, Arcolino FO, Arigoni M, Alessandri L, Gomez Y, Papadimitriou E, Calogero RA, Cocchi E, Van Den Heuvel L, Levtchenko E, Bussolati B. Molecular and functional characterization of urine-derived podocytes from patients with Alport syndrome. J Pathol 2021; 252:88-100. [PMID: 32652570 PMCID: PMC7589231 DOI: 10.1002/path.5496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Alport syndrome (AS) is a genetic disorder involving mutations in the genes encoding collagen IV α3, α4 or α5 chains, resulting in the impairment of glomerular basement membrane. Podocytes are responsible for production and correct assembly of collagen IV isoforms; however, data on the phenotypic characteristics of human AS podocytes and their functional alterations are currently limited. The evident loss of viable podocytes into the urine of patients with active glomerular disease enables their isolation in a non‐invasive way. Here we isolated, immortalized, and subcloned podocytes from the urine of three different AS patients for molecular and functional characterization. AS podocytes expressed a typical podocyte signature and showed a collagen IV profile reflecting each patient's mutation. Furthermore, RNA‐sequencing analysis revealed 348 genes differentially expressed in AS podocytes compared with control podocytes. Gene Ontology analysis underlined the enrichment in genes involved in cell motility, adhesion, survival, and angiogenesis. In parallel, AS podocytes displayed reduced motility. Finally, a functional permeability assay, using a podocyte–glomerular endothelial cell co‐culture system, was established and AS podocyte co‐cultures showed a significantly higher permeability of albumin compared to control podocyte co‐cultures, in both static and dynamic conditions under continuous perfusion. In conclusion, our data provide a molecular characterization of immortalized AS podocytes, highlighting alterations in several biological processes related to extracellular matrix remodelling. Moreover, we have established an in vitro model to reproduce the altered podocyte permeability observed in patients with AS. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
- Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fanny O Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Yonathan Gomez
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Cocchi
- Department of Pediatric Nephrology, University of Torino, Torino, Italy.,Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Lambertus Van Den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Agarwal S, Sudhini YR, Reiser J, Altintas MM. From Infancy to Fancy: A Glimpse into the Evolutionary Journey of Podocytes in Culture. KIDNEY360 2020; 2:385-397. [PMID: 35373019 PMCID: PMC8740988 DOI: 10.34067/kid.0006492020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
Podocytes are critical components of the filtration barrier and responsible for maintaining healthy kidney function. An assault on podocytes is generally associated with progression of chronic glomerular diseases. Therefore, podocyte pathophysiology is a favorite research subject for nephrologists. Despite this, podocyte research has lagged because of the unavailability of techniques for culturing such specialized cells ex vivo in quantities that are adequate for mechanistic studies. In recent years, this problem was circumvented by the efforts of researchers, who successfully developed several in vitro podocyte cell culture model systems that paved the way for incredible discoveries in the field of nephrology. This review sets us on a journey that provides a comprehensive insight into the groundbreaking breakthroughs and novel technologic advances made in the field of podocyte cell culture so far, beginning from its inception, evolution, and progression. In this study, we also describe in detail the pros and cons of different models that are being used to culture podocytes. Our extensive and exhaustive deliberation on the status of podocyte cell culture will facilitate researchers to choose wisely an appropriate model for their own research to avoid potential pitfalls in the future.
Collapse
|
16
|
Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL. Glomerular Endothelial Cells as Instigators of Glomerular Sclerotic Diseases. Front Pharmacol 2020; 11:573557. [PMID: 33123011 PMCID: PMC7573930 DOI: 10.3389/fphar.2020.573557] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent relationship with podocytes and mesangial cells, which involves bidirectional cross-talk via intercellular signaling. Given that GEnC behavior directly influences podocyte function, it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria, subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC dysfunction is sufficient to cause podocyte injury, proteinuria and activation of mesangial cells. Aberrant gene expression patterns largely contribute to GEnC dysfunction and epigenetic changes seem to be involved in causing aberrant transcription. This review summarizes literature that uncovers the importance of cross-talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the development of FSGS and DN, and the potential use of GEnCs as efficacious cellular target to pharmacologically halt development and progression of DN and FSGS.
Collapse
Affiliation(s)
- Marloes Sol
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Xie R, Korolj A, Liu C, Song X, Lu RXZ, Zhang B, Ramachandran A, Liang Q, Radisic M. h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS CENTRAL SCIENCE 2020; 6:903-912. [PMID: 32607437 PMCID: PMC7318083 DOI: 10.1021/acscentsci.9b01097] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 05/07/2023]
Abstract
Kidney-on-a-chip devices may revolutionize the discovery of new therapies. However, fabricating a 3D glomerulus remains a challenge, due to a requirement for a microscale soft material with complex topography to support cell culture in a native configuration. Here, we describe the use of microfluidic spinning to recapitulate complex concave and convex topographies over multiple length scales, required for biofabrication of a biomimetic 3D glomerulus. We produced a microfluidic extruded topographic hollow fiber (h-FIBER), consisting of a vessel-like perfusable tubular channel for endothelial cell cultivation, and a glomerulus-like knot with microconvex topography on its surface for podocyte cultivation. Meter long h-FIBERs were produced in microfluidics within minutes, followed by chemically induced inflation for generation of topographical cues on the 3D scaffold surface. The h-FIBERs were assembled into a hot-embossed plastic 96-well plate. Long-term perfusion, podocyte barrier formation, endothelialization, and permeability tests were easily performed by a standard pipetting technique on the platform. Following long-term culture (1 month), a functional filtration barrier, measured by the transfer of albumin from the blood vessel side to the ultrafiltrate side, suggested the establishment of an engineered glomerulus.
Collapse
Affiliation(s)
- Ruoxiao Xie
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Anastasia Korolj
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Chuan Liu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Xin Song
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Rick Xing Ze Lu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Boyang Zhang
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Arun Ramachandran
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Qionglin Liang
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Milica Radisic
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| |
Collapse
|
19
|
Li M, Alfieri CM, Morello W, Cellesi F, Armelloni S, Mattinzoli D, Montini G, Messa P. Assessment of increased glomerular permeability associated with recurrent focal segmental glomerulosclerosis using an in vitro model of the glomerular filtration barrier. J Nephrol 2019; 33:747-755. [PMID: 31853790 DOI: 10.1007/s40620-019-00683-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022]
Abstract
The presence of circulating permeability factors (cPFs) has been hypothesized to be associated with recurrence of focal segmental glomerulosclerosis (rFSGS) in renal allografts. The available methods to detect cPFs are complex, not easily repeatable and inappropriate to represent the anatomical characteristics of the three-layer glomerular filtration barrier (GFB). Here we describe a novel method which measures the permeability to bovine serum albumin (BSA) through a three-layer device (3LD). The 3 layers comprise: (1) conditionally immortalized human podocytes (HCiPodo), (2) collagen type IV coated porous membrane and (3) human glomerular endothelial cells (HCiGEnC). Using this method, we found that sera from all rFSGS patients increased albumin permeability, while sera from non recurrent (nrFSGS) and genetic (gFSGS) forms of FSGS did not. The mechanisms underlying the increase of albumin permeability are probably due to endothelial cell damage as an initial event, which was demonstrated by the decrease of Platelet endothelial cell adhesion molecule (PECAM-1 or CD31), while the podocytes' expressions of synaptopodin and podocin were normal. Furthermore, we also found that the plasmapheretic treatment (PPT) eliminated the effect of increasing BSA permeability in sera from rFSGS patients. These preliminary data suggest that our in vitro GFB model could not only be useful in predicting the recurrence of FSGS after renal transplantation (RTx), but also be a valuable in vitro model to study podocyte and endothelial cell biology.
Collapse
Affiliation(s)
- Min Li
- IRCCS Ospedale Maggiore Policlinico, Renal Research Laboratory, Foundation Ca' Granda, Milan, Italy
| | - Carlo Maria Alfieri
- Unit of Adult Nephrology, Dialysis and Renal Transplant, Department of Medicine, Foundation Ca' Granda IRCCS Ospedale Maggiore Policlinico, Via Commenda 15, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Foundation IRCCS Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Cellesi
- Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Milan, Italy
| | - Silvia Armelloni
- IRCCS Ospedale Maggiore Policlinico, Renal Research Laboratory, Foundation Ca' Granda, Milan, Italy
| | - Deborah Mattinzoli
- IRCCS Ospedale Maggiore Policlinico, Renal Research Laboratory, Foundation Ca' Granda, Milan, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Foundation IRCCS Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| | - Piergiorgio Messa
- Unit of Adult Nephrology, Dialysis and Renal Transplant, Department of Medicine, Foundation Ca' Granda IRCCS Ospedale Maggiore Policlinico, Via Commenda 15, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Kim D, Eom S, Park SM, Hong H, Kim DS. A collagen gel-coated, aligned nanofiber membrane for enhanced endothelial barrier function. Sci Rep 2019; 9:14915. [PMID: 31624315 PMCID: PMC6797789 DOI: 10.1038/s41598-019-51560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a collagen gel-coated and aligned nanofiber membrane named Col-ANM is developed, which remarkably improves endothelial barrier function by providing biochemical and topographical cues simultaneously. Col-ANM is fabricated by collagen gel coating process on an aligned polycaprolactone (PCL) nanofiber membrane, which is obtained by a simple electrospinning process adopting a parallel electrode collector. Human umbilical vein endothelial cells (HUVECs) cultured on Col-ANM exhibit remarkably enhanced endothelial barrier function with high expression levels of intercellular junction proteins of ZO-1 and VE-cadherin, a high TEER, and a cellular permeability compared with the artificial porous membranes in commercial cell culture well inserts. The enhanced endothelial barrier function is conjectured to be attributed to the synergistic effects of topographical and biochemical cues provided by the aligned PCL nanofibers and collagen gel in the Col-ANM, respectively. Finally, the reactive oxygen species is applied to the HUVEC monolayer formed on the Col-ANM to destroy the tight junctions between HUVECs. The destruction of the tight junctions is demonstrated by the decreased TEER value over time. Results indicate the potential of Col-ANM in modeling endothelial barrier dysfunction-related diseases.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
- Department of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan, 46241, South Korea
| | - Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
21
|
Korolj A, Laschinger C, James C, Hu E, Velikonja C, Smith N, Gu I, Ahadian S, Willette R, Radisic M, Zhang B. Curvature facilitates podocyte culture in a biomimetic platform. LAB ON A CHIP 2018; 18:3112-3128. [PMID: 30264844 DOI: 10.1039/c8lc00495a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most kidney diseases begin with abnormalities in glomerular podocytes, motivating the need for podocyte models to study pathophysiological mechanisms and new treatment options. However, podocytes cultured in vitro face a limited ability to maintain appreciable extents of differentiation hallmarks, raising concerns over the relevance of study results. Many key properties such as nephrin expression and morphology reach plateaus that are far from the in vivo levels. Here, we demonstrate that a biomimetic topography, consisting of microhemispheres arrayed over the cell culture substrate, promotes podocyte differentiation in vitro. We define new methods for fabricating microscale curvature on various substrates, including a thin porous membrane. By growing podocytes on our topographic substrates, we found that these biophysical cues augmented nephrin gene expression, supported full-size nephrin protein expression, encouraged structural arrangement of F-actin and nephrin within the cell, and promoted process formation and even interdigitation compared to the flat substrates. Furthermore, the topography facilitated nephrin localization on curved structures while nuclei lay in the valleys between them. The improved differentiation was also evidenced by tracking barrier function to albumin over time using our custom topomembranes. Overall, our work presents accessible methods for incorporating microcurvature on various common substrates, and demonstrates the importance of biophysical stimulation in supporting higher-fidelity podocyte cultivation in vitro.
Collapse
Affiliation(s)
- Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Burton TP, Callanan A. A Non-woven Path: Electrospun Poly(lactic acid) Scaffolds for Kidney Tissue Engineering. Tissue Eng Regen Med 2018; 15:301-310. [PMID: 30603555 PMCID: PMC6171675 DOI: 10.1007/s13770-017-0107-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 12/03/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multi-population of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.
Collapse
Affiliation(s)
- Todd P. Burton
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| | - Anthony Callanan
- Institute of Bioengineering, School of Engineering, The University of Edinburgh, Faraday Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL UK
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The kidney is a highly complex organ and renal function depends on many factors, both extrinsic to the kidney and intrinsic. The kidney responds both to systemic hormonal and neuronal signals and to autocrine and paracrine factors produced within the renal tissue. Recently, there has been an increased emphasis on crosstalk in and between different compartments in the kidney. RECENT FINDINGS Crosstalk in the kidney between different cellular compartments has added new and important understanding of renal function and the development of kidney disease. SUMMARY Most of the literature cited concern glomerular crosstalk but also tubular and interstitial crosstalk are being reviewed. Mechanistic insight into the communication between the cells may help us find new targets for treating kidney disease.
Collapse
|
24
|
Perry G, Xiao W, Welsh GI, Perriman AW, Lennon R. Engineered basement membranes: from in vivo considerations to cell-based assays. Integr Biol (Camb) 2018; 10:680-695. [DOI: 10.1039/c8ib00138c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered basement membranes are required to mimic in vivo properties within cell-based assays.
Collapse
Affiliation(s)
- Guillaume Perry
- Sorbonne Université, Laboratoire d’Electronique et d’Electromagnétisme
- F-75005 Paris
- France
| | - Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol
- BS1 3NY Bristol
- UK
| | - Adam W. Perriman
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester
- M13 9PT Manchester
- UK
| |
Collapse
|
25
|
Starc N, Li M, Algeri M, Conforti A, Tomao L, Pitisci A, Emma F, Montini G, Messa P, Locatelli F, Bernardo ME, Vivarelli M. Phenotypic and functional characterization of mesenchymal stromal cells isolated from pediatric patients with severe idiopathic nephrotic syndrome. Cytotherapy 2017; 20:322-334. [PMID: 29291917 DOI: 10.1016/j.jcyt.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome (INS) is one of the most common renal diseases in the pediatric population; considering the role of the immune system in its pathogenesis, corticosteroids are used as first-line immunosuppressive treatment. Due to its chronic nature and tendency to relapse, a significant proportion of children experience co-morbidity due to prolonged exposure to corticosteroids and concomitant immunosuppression with second-line, steroid-sparing agents. Mesenchymal stromal cells (MSCs) are multipotent cells that represent a key component of the bone marrow (BM) microenvironment; given their unique immunoregulatory properties, their clinical use may be exploited as an alternative therapeutic approach in INS treatment. METHODS In view of the possibility of exploiting their immunoregulatory properties, we performed a phenotypical and functional characterization of MSCs isolated from BM of five INS patients (INS-MSCs; median age, 13 years; range, 11-16 years) in comparison with MSCs isolated from eight healthy donors (HD-MSCs). MSCs were expanded ex vivo and then analyzed for their properties. RESULTS Morphology, proliferative capacity, immunophenotype and differentiation potential did not differ between INS-MSCs and HD-MSCs. In an allogeneic setting, INS-MSCs were able to prevent both T- and B-cell proliferation and plasma-cell differentiation. In an in-vitro model of experimental damage to podocytes, co-culture with INS-MSCs appeared to be protective. DISCUSSION Our results demonstrate that INS-MSCs maintain the main biological and functional properties typical of HD-MSCs; these data suggest that MSCs may be used in autologous cellular therapy approaches for INS treatment.
Collapse
Affiliation(s)
- Nadia Starc
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Mattia Algeri
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Conforti
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Luigi Tomao
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Pitisci
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Paediatrics, University of Pavia, Pavia, Italy
| | - Maria Ester Bernardo
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marina Vivarelli
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
26
|
Bruni R, Possenti P, Bordignon C, Li M, Ordanini S, Messa P, Rastaldi MP, Cellesi F. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. J Control Release 2017; 255:94-107. [PMID: 28395969 DOI: 10.1016/j.jconrel.2017.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
We explored the use of new drug-loaded nanocarriers and their targeted delivery to the kidney glomerulus and in particular to podocytes, in order to overcome the failure of current therapeutic regimens in patients with proteinuric (i.e. abnormal amount of proteins in the urine) diseases. Podocytes are glomerular cells which are mainly responsible for glomerular filtration and are primarily or secondarily involved in chronic kidney diseases. Therefore, the possibility to utilise a podocyte-targeted drug delivery could represent a major breakthrough in kidney disease research, particularly in terms of dosage reduction and elimination of systemic side effects of current therapies. Four-arm star-shaped polymers, with/without a hydrophobic poly-ε-caprolactone core and a brush-like polyethylene glycol (PEG) hydrophilic shell, were synthesised by controlled/living polymerisation (ROP and ATRP) to allow the formation of stable ultrasmall colloidal nanomaterials of tuneable size (5-30nm), which are able to cross the glomerular filtration barrier (GFB). The effects of these nanomaterials on glomerular cells were evaluated in vitro. Nanomaterial accumulation and permeability in the kidney glomerulus were also assessed in mice under physiological and pathological conditions. Drug (dexamethasone) encapsulation was performed in order to test loading capacity, release kinetics, and podocyte repairing effects. The marked efficacy of these drug-loaded nanocarriers in repairing damaged podocytes may pave the way for developing a cell-targeted administration of new and traditional drugs, increasing efficacy and limiting side effects.
Collapse
Affiliation(s)
- Riccardo Bruni
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Paolo Possenti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Carlotta Bordignon
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Min Li
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Stefania Ordanini
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Francesco Cellesi
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| |
Collapse
|
27
|
Colombo C, Li M, Watanabe S, Messa P, Edefonti A, Montini G, Moscatelli D, Rastaldi MP, Cellesi F. Polymer Nanoparticle Engineering for Podocyte Repair: From in Vitro Models to New Nanotherapeutics in Kidney Diseases. ACS OMEGA 2017; 2:599-610. [PMID: 30023613 PMCID: PMC6044764 DOI: 10.1021/acsomega.6b00423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 05/21/2023]
Abstract
Specific therapeutic targeting of kidney podocytes, the highly differentiated ramified glomerular cells involved in the onset and/or progression of proteinuric diseases, could become the optimal strategy for preventing chronic kidney disease. With this aim, we developed a library of engineered polymeric nanoparticles (NPs) of tuneable size and surface properties and evaluated their interaction with podocytes. NP cytotoxicity, uptake, and cytoskeletal effects on podocytes were first assessed. On the basis of these data, nanodelivery of dexamethasone loaded into selected biocompatible NPs was successful in repairing damaged podocytes. Finally, a three-dimensional in vitro system of co-culture of endothelial cells and podocytes was exploited as a new tool for mimicking the mechanisms of NP interaction with glomerular cells and the repair of the kidney filtration barrier.
Collapse
Affiliation(s)
- Claudio Colombo
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Fondazione
CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Shojiro Watanabe
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Piergiorgio Messa
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Alberto Edefonti
- Pediatric
Nephrology and Dialysis Unit, Department of Clinical Sciences and
Community Health, University of Milan, Fondazione
IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via Commenda, 20122 Milano, Italy
| | - Giovanni Montini
- Pediatric
Nephrology and Dialysis Unit, Department of Clinical Sciences and
Community Health, University of Milan, Fondazione
IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via Commenda, 20122 Milano, Italy
| | - Davide Moscatelli
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Maria Pia Rastaldi
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Francesco Cellesi
- Fondazione
CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Renal
Research Laboratory, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica
“G. Natta”. Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
- E-mail:
| |
Collapse
|
28
|
Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Sci Rep 2016; 6:34228. [PMID: 27721446 PMCID: PMC5056367 DOI: 10.1038/srep34228] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2−/− mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Collapse
|
29
|
Zennaro C, Rastaldi MP, Bakeine GJ, Delfino R, Tonon F, Farra R, Grassi G, Artero M, Tormen M, Carraro M. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture. Int J Nanomedicine 2016; 11:4957-4973. [PMID: 27757030 PMCID: PMC5053378 DOI: 10.2147/ijn.s110201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it is well recognized that cell–matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes – the gatekeepers of glomerular filtration – which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | | | - Gerald James Bakeine
- Department of Radiology, San Martino University Hospital, University of Genoa, Genoa
| | - Riccarda Delfino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste; Department of Life Sciences, Cattinara University Hospital, University of Trieste
| | - Mary Artero
- Azienda Sanitaria Universitaria Integrata di Trieste, Trieste
| | | | - Michele Carraro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| |
Collapse
|