1
|
Leyrer-Jackson JM, Kufahl PR, Olive MF. Differential reductions in alcohol consumption and cue-induced alcohol-seeking behavior following mGlu5 receptor inhibition in the prelimbic vs. infralimbic subregions of the rat prefrontal cortex. Pharmacol Biochem Behav 2025; 248:173958. [PMID: 39805474 DOI: 10.1016/j.pbb.2025.173958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior. Here we examined the effects of microinfusions of the selective mGlu5 inhibitor 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) into either the prelimbic (PL) or infralimbic (IL) regions of the PFC on alcohol intake or cue-evoked reinstatement of alcohol-seeking behavior. Adult male Wistar rats were trained to self-administer 10 % alcohol in the presence of compound discriminative stimuli (SD) signaling alcohol availability (S+) or non-availability (S-). In one group of animals, effects of locally administered MTEP (0, 0.5 or 1 μg/μl) into either the PL or IL on active alcohol intake were examined. MTEP was without effect on alcohol self-administration when infused into the PL, but decreased alcohol intake at both doses tested when infused into the IL. In separate groups of animals, we examined effects of locally administered MTEP (0, 0.5 or 1 μg/μl) into either the PL or IL on reinstatement of alcohol seeking elicited by alcohol predictive stimuli (S+). When infused into the PL, MTEP attenuated cue-induced reinstatement only at the higher dose tested (1 μg/μl), but when infused into the IL, MTEP reduced cue-induced reinstatement at both doses tested (0.5 μg/μl and 1 μg/μl). Together, these results suggest a largely preferential role for mGlu5 signaling in the IL vs. PL in regulating both alcohol self-administration behavior and cue-elicited alcohol seeking. Neuromodulatory approaches aimed at reducing mGlu5 signaling in the IL may therefore be of potential therapeutic value in problematic alcohol use.
Collapse
Affiliation(s)
- Jonna M Leyrer-Jackson
- Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America; Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ 85012, United States of America
| | - Peter R Kufahl
- Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America.
| |
Collapse
|
2
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
4
|
Tomasini MC, Loche A, Cacciaglia R, Ferraro L, Beggiato S. GET73 modulates lipopolysaccharide- and ethanol-induced increase in cytokine/chemokine levels in primary cultures of microglia of rat cerebral cortex. Pharmacol Rep 2024; 76:1174-1183. [PMID: 39088104 DOI: 10.1007/s43440-024-00632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND - Alcohol-induced pro-inflammatory activation might influence cellular and synaptic pathology, thus contributing to the behavioral phenotypes associated with alcohol use disorders. In the present study, the possible anti-inflammatory properties of N-[(4-trifluoromethyl)-benzyl]4-methoxybutyramide (GET73), a promising therapeutic agent for alcohol use disorder treatment, were evaluated in primary cultures of rat cortical microglia. METHODS - Primary cultures of cerebral cortex microglial cells were treated with 100 ng/ml lipopolysaccharide (LPS; 8 h, 37 °C) or 75 mM ethanol (EtOH; 4 days, 37 °C) alone or in the presence of GET73 (1-30 µM). At the end of the incubation period, multiparametric quantification of cytokines/chemokines was performed by using the xMAP technology and Luminex platform. Furthermore, cultured microglial cell viability following the treatment with EtOH and GET73, alone or in combination, has been measured by a colorimetric assay (i.e. MTT assay). RESULTS - GET73 (10 and 30 µM) partially or fully prevented the LPS-induced increase of IL-6, IL-1β, RANTES/CCL5 protein and MCP-1/CCL2 levels. On the contrary, GET73 failed to attenuate the TNF-α level increase induced by LPS. Furthermore, GET73 treatment (10-30 µM) significantly attenuated or prevented the EtOH-induced increase of TNF-α, IL-6, IL-1β and MCP-1/CCL2 levels. Finally, at all the concentrations tested (1-30 µM), the GET73 treatment did not alter the EtOH-induced reduction of microglial cell viability. CONCLUSIONS - The current results provide the first in vitro evidence of GET73 protective properties against EtOH-induced neuroinflammation. These data add more information on the complex and multifactorial profile of action of the compound, further supporting the significance of developing GET73 as a therapeutic tool for the treatment of individuals with alcohol use disorders.
Collapse
Affiliation(s)
- Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy
| | | | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy.
- LTTA Centre, University of Ferrara, Ferrara, Italy.
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
5
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-induced alcohol craving: A human laboratory study. Addict Biol 2023; 28:e13288. [PMID: 37369125 PMCID: PMC10313137 DOI: 10.1111/adb.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/29/2023]
Abstract
Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Providence RI, Brown University
| | - Molly Magill
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | | | - Joshua C. Brown
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elie G. Aoun
- Division of Law, Ethics and Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Patricia A. Cioe
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | - Rajita Sinha
- Yale Stress Center, Department of Psychiatry, Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, NIDA IRP and NIAAA DICBR, Baltimore and Bethesda, MD, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
6
|
Haass-Koffler CL, Magill M, Cannella N, Brown JC, Aoun EG, Cioe PA, Sinha R, Swift RM, Ciccocioppo R, Leggio L. Mifepristone as a pharmacological intervention for stress-Induced alcohol craving: a translational crossover randomized trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.02.23284122. [PMID: 36711869 PMCID: PMC9882427 DOI: 10.1101/2023.01.02.23284122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration Clinicaltrials.gov ; NCT02243709. IND/FDA 121984, mifepristone and yohimbine (Holder: Haass-Koffler).
Collapse
|
7
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
8
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
9
|
Smart K, Worhunsky PD, Scheinost D, Angarita GA, Esterlis I, Carson RE, Krystal JH, O'Malley SS, Cosgrove KP, Hillmer AT. Multimodal neuroimaging of metabotropic glutamate 5 receptors and functional connectivity in alcohol use disorder. Alcohol Clin Exp Res 2022; 46:770-782. [PMID: 35342968 PMCID: PMC9117461 DOI: 10.1111/acer.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND People recovering from alcohol use disorder (AUD) show altered resting brain connectivity. The metabotropic glutamate 5 (mGlu5) receptor is an important regulator of synaptic plasticity potentially linked with synchronized brain activity and a target of interest in treating AUD. The goal of this work was to assess potential relationships of brain connectivity at rest with mGlu5 receptor availability in people with AUD at two time points early in abstinence. METHODS Forty-eight image data sets were acquired with a multimodal neuroimaging battery that included resting-state functional magnetic resonance imaging (fMRI) and mGlu5 receptor positron emission tomography (PET) with the radiotracer [18 F]FPEB. Participants with AUD (n = 14) were scanned twice, at approximately 1 and 4 weeks after beginning supervised abstinence. [18 F]FPEB PET results were published previously. Primary comparisons of fMRI outcomes were performed between the AUD group and healthy controls (HCs; n = 23) and assessed changes over time within the AUD group. Relationships between resting-state connectivity measures and mGlu5 receptor availability were explored within groups. RESULTS Compared to HCs, global functional connectivity of the orbitofrontal cortex was higher in the AUD group at 4 weeks of abstinence (p = 0.003), while network-level functional connectivity within the default mode network (DMN) was lower (p < 0.04). Exploratory multimodal analyses showed that mGlu5 receptor availability was correlated with global connectivity across all brain regions (HCs, r = 0.41; AUD group at 1 week of abstinence, r = 0.50 and at 4 weeks, r = 0.46; all p < 0.0001). Furthermore, a component of cortical and striatal mGlu5 availability was correlated with connectivity between the DMN and salience networks in HCs (r = 0.60, p = 0.003) but not in the AUD group (p > 0.3). CONCLUSIONS These preliminary findings of altered global and network connectivity during the first month of abstinence from drinking may reflect the loss of efficient network function, while exploratory relationships with mGlu5 receptor availability suggest a potential glutamatergic relationship with network coherence.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
11
|
An inpatient human laboratory study assessing the safety and tolerability, pharmacokinetics, and biobehavioral effect of GET 73 when co-administered with alcohol in individuals with alcohol use disorder. Psychopharmacology (Berl) 2022; 239:35-46. [PMID: 34731268 PMCID: PMC8865311 DOI: 10.1007/s00213-021-06008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Previous work suggests that GET 73, a novel compound with putative activity on the metabotropic glutamate receptor subtype 5 (mGluR5), may represent a novel pharmacological treatment for alcohol use disorder (AUD). OBJECTIVE In this study, we investigated the safety, tolerability, pharmacokinetics, and biobehavioral effects of GET 73, when co-administered with alcohol, in individuals with alcohol dependence (AD). METHODS This was an inpatient, cross-over, randomized, double-blind, placebo-controlled, human laboratory study with non-treatment-seeking, alcohol-dependent individuals. The study used a within-subject design, with two counterbalanced stages, during which participants received GET 73 and then placebo, or vice versa. During each stage, participants underwent an alcohol interaction session and, on a separate day, an alcohol cue reactivity, followed by an alcohol self-administration session. RESULTS Safety outcomes of GET 73 were excellent with no serious adverse events, nor adverse events of severe grade. The co-administration of alcohol and GET 73 did not affect the pharmacokinetics of GET 73 or alcohol. GET 73, compared to placebo, did not affect the alcohol-related stimulation effects, but increased the subjective sedative effects of alcohol. GET 73 did not affect alcohol cue-induced craving, or alcohol self-administration in the laboratory. CONCLUSIONS The study confirms the safety and tolerability of GET 73 when co-administered with alcohol. Although, under this experimental condition, we did not detect an effect on alcohol craving and consumption in the laboratory, additional studies should be conducted administering GET 73 for an extended period in an outpatient setting.
Collapse
|
12
|
Longitudinal imaging of metabotropic glutamate 5 receptors during early and extended alcohol abstinence. Neuropsychopharmacology 2021; 46:380-385. [PMID: 32919411 PMCID: PMC7852514 DOI: 10.1038/s41386-020-00856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Chronic alcohol use has important effects on the glutamate system. The metabotropic glutamate 5 (mGlu5) receptor has shown promise in preclinical models as a target to reduce drinking-related behaviors and cue-induced reinstatement, motivating human studies of mGlu5 receptor negative allosteric modulators. The goal of this work was to measure levels of mGlu5 receptor availability with positron emission tomography (PET) imaging using the mGlu5 receptor-specific radiotracer [18F]FPEB during early and extended alcohol abstinence. Subjects who met DSM-5 criteria for alcohol use disorder (AUD; n = 17) were admitted inpatient for the study duration. [18F]FPEB PET scans were acquired first during early abstinence (6 ± 4 days after last drink) and a second time during extended abstinence (n = 13; 27 ± 6 days after last drink). A single scan was acquired in healthy controls matched for sex and smoking status (n = 20). [18F]FPEB total volumes of distribution (VT) corrected for partial volume effects were measured using equilibrium analysis throughout the brain. A linear mixed model controlling for smoking status and sex identified significantly higher [18F]FPEB VT in AUD subjects at early abstinence compared to controls (F(1,32) = 7.23, p = 0.011). Post-hoc analyses revealed this effect to occur in cortical brain regions. No evidence for significant changes in [18F]FPEB VT over time were established. These findings provide human evidence consistent with a robust preclinical literature supporting mGlu5 receptor drugs as pharmacotherapies for AUD.
Collapse
|
13
|
Smart K, Nagano-Saito A, Milella MS, Sakae DY, Favier M, Vigneault E, Louie L, Hamilton A, Ferguson SSG, Rosa-Neto P, Narayanan S, El Mestikawy S, Leyton M, Benkelfat C. Metabotropic glutamate type 5 receptor binding availability during dextroamphetamine sensitization in mice and humans. J Psychiatry Neurosci 2021; 46:E1-E13. [PMID: 32559027 PMCID: PMC7955855 DOI: 10.1503/jpn.190162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood. METHODS We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.0 mg/kg, i.p.) on locomotor activity and binding of the mGlu5 ligand [3H]ABP688. In a parallel study, in 19 stimulant-drug-naïve healthy human volunteers (14 female) we administered 3 doses of dextroamphetamine (0.3 mg/kg, p.o.) or placebo, followed by a fourth dose 2 weeks later. We measured [11C]ABP688 binding using positron emission tomography before and after the induction phase. We assessed psychomotor and behavioural sensitization using speech rate, eye blink rate and self-report. We measured the localization of mGlu5 relative to synaptic markers in mouse striatum using immunofluorescence. RESULTS We observed amphetamine-induced psychomotor sensitization in mice and humans. We did not see group differences in mGlu5 availability following 3 pre-challenge amphetamine doses, but group differences did develop in mice administered 5 doses. In mice and humans, individual differences in mGlu5 binding after repeated amphetamine administration were negatively correlated with the extent of behavioural sensitization. In drug-naïve mice, mGlu5 was expressed at 67% of excitatory synapses on dendrites of striatal medium spiny neur. LIMITATIONS Correlational results should be interpreted as suggestive because of the limited sample size. We did not assess sex differences. CONCLUSION Together, these results suggest that changes in mGlu5 availability are not part of the earliest neural adaptations in stimulant-induced behavioural sensitization, but low mGlu5 binding might identify a higher propensity for sensitization.
Collapse
Affiliation(s)
- Kelly Smart
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Atsuko Nagano-Saito
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Michele S Milella
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Diana Yae Sakae
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Mathieu Favier
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Erika Vigneault
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Leanne Louie
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Alison Hamilton
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Stephen S G Ferguson
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Pedro Rosa-Neto
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Sridar Narayanan
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Salah El Mestikawy
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Marco Leyton
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| | - Chawki Benkelfat
- From the Department of Psychiatry, McGill University, Montreal, Que. (Smart, Nagano-Saito, Milella, Sakae, Favier, Vigneault, Louie, Rosa-Neto, El Mestikawy, Leyton, Benkelfat); the Douglas Mental Health University Institute, McGill University, Montreal, Que. (Smart, Sakae, Favier, Vigneault, Rosa-Neto, El Mestikawy); the Department of Cellular and Molecular Medicine, University of Ottawa, Ont. (Hamilton, Ferguson); the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Que. (Rosa-Neto, Narayanan, Leyton, Benkelfat); and the Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Que. (Leyton)
| |
Collapse
|
14
|
Ferrigno A, Berardo C, Di Pasqua LG, Cagna M, Siciliano V, Richelmi P, Vairetti M. The selective blockade of metabotropic glutamate receptor-5 attenuates fat accumulation in an <em>in vitro</em> model of benign steatosis. Eur J Histochem 2020; 64. [PMID: 33207858 PMCID: PMC7662107 DOI: 10.4081/ejh.2020.3175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
It has been previously found that the blockade of metabotropic glutamate receptor type 5 (mGluR5) protects against hepatic ischemia/reperfusion injury and acetaminophen toxicity. The role of mGluR5 in NAFLD has not yet been elucidated. Here, we evaluated the effects of mGluR5 blockade in an in vitro model of steatosis. HepG2 cells were pre-incubated for 12 h with an mGluR5 agonist, a negative allosteric modulator (DHPG and MPEP, respectively) or vehicle, then treated with 1.5 mM oleate/palmitate (O/P) for another 12 h. Cell viability was evaluated with the MTT assay; fat accumulation was measured using the fluorescent dye nile red; SREBP-1, PPAR-α, iNOS and Caspase-3 protein expression were evaluated by Western blot; NFkB activity was evaluated as pNFkB/NFkB ratio. mGluR5 modulation did not alter cell viability in O/P-incubated cells; MPEP prevented intracellular lipid accumulation in O/P treated cells; MPEP administration was also associated with a reversion of O/P-induced changes in SREBP-1 and PPAR-α expression, involved in free fatty acid (FFA) metabolism and uptake. No changes were observed in iNOS and Caspase-3 expression, or in NFkB activity. In conclusion, mGluR5 pharmacological blockade reduced fat accumulation in HepG2 cells incubated with O/P, probably by modulating the expression of SREBP-1 and PPAR-α.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Veronica Siciliano
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, Unit of Cellular and Molecular Pharmacology and Toxicology, University of Pavia.
| |
Collapse
|
15
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
16
|
Masilamoni GJ, Smith Y. Group I metabotropic glutamate receptors in the primate motor thalamus: subsynaptic association with cortical and sub-cortical glutamatergic afferents. Brain Struct Funct 2019; 224:2787-2804. [PMID: 31422483 DOI: 10.1007/s00429-019-01937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that mGluR5 is a potential therapeutic target for Parkinson's disease and L-DOPA-induced dyskinesia. However, the mechanisms through which these therapeutic benefits are mediated remain poorly understood. Although the regulatory role of mGluR5 on glutamatergic transmission has been examined in various basal ganglia nuclei, very little is known about the localization and function of mGluR5 in the ventral motor and intralaminar thalamic nuclei, the main targets of basal ganglia output in mammals. Thus, we used immuno-electron microscopy to map the cellular and subcellular localization of group I mGluRs (mGluR1a and mGluR5) in the ventral motor and caudal intralaminar thalamic nuclei in rhesus monkeys. Furthermore, using double immuno-electron microscopy, we examined the subsynaptic localization of mGluR5 in relation to cortical and sub-cortical glutamatergic afferents. Four major conclusions can be drawn from these data. First, mGluR1a and mGluR5 are expressed postsynaptically on the plasma membrane of dendrites of projection neurons and GABAergic interneurons in the basal ganglia- and cerebellar-receiving regions of the ventral motor thalamus and in CM. Second, the plasma membrane-bound mGluR5 immunoreactivity is preferentially expressed perisynaptically at the edges of cortical and sub-cortical glutamatergic afferents. Third, the mGluR5 immunoreactivity is more strongly expressed in the lateral than the medial tiers of CM, suggesting a preferential association with thalamocortical over thalamostriatal neurons in the primate CM. Overall, mGluR5 is located to subserve powerful modulatory role of cortical and subcortical glutamatergic transmission in the primate ventral motor thalamus and CM.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
17
|
Khoo SYS, LeCocq MR, Deyab GE, Chaudhri N. Context and topography determine the role of basolateral amygdala metabotropic glutamate receptor 5 in appetitive Pavlovian responding. Neuropsychopharmacology 2019; 44:1524-1533. [PMID: 30758331 PMCID: PMC6785093 DOI: 10.1038/s41386-019-0335-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
Abstract
Preclinical data have shown that the excitatory metabotropic Gαq-coupled glutamate receptor, mGluR5, has a role in substance abuse and relapse. However, little is known about the contribution of mGluR5 to the expression of conditioned responding elicited by appetitive Pavlovian cues. We investigated this question in rats that were trained to associate a discrete, auditory conditioned stimulus (CS) with a fructose-glucose solution (5.5% fructose/4.5% glucose; "sugar"). In subsequent tests for the expression of conditioned responding without sugar delivery, CS-elicited fluid port entries were elevated in a context associated with sugar, relative to an equally familiar, neutral context. Inhibiting mGluR5 via systemic injections of a negative allosteric modulator (MTEP; 5 mg/kg) reduced CS port entries in both the sugar context and neutral context. Targeting MTEP microinjections (3 µg/side; 0.3 µl/min) to the nucleus accumbens (Acb) core had no effect on CS port entries at test, whereas the same manipulation in the basolateral amygdala (BLA) produced effects that were topographically dependent. Specifically, microinjecting MTEP in the posterior BLA had no effect on behavior, whereas inhibiting mGluR5 in the anterior BLA enhanced the contextual discrimination of CS port entries. These data are the first to show a role of mGluR5 in the context-dependent expression of appetitive Pavlovian conditioned responding, with a topographically defined arrangement of mGluR5 in the BLA being particularly important for context-based responding to a discrete, appetitive cue.
Collapse
Affiliation(s)
- Shaun Yon-Seng Khoo
- 0000 0004 1936 8630grid.410319.eCenter for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Quebec, Montreal, Canada
| | - Mandy Rita LeCocq
- 0000 0004 1936 8630grid.410319.eCenter for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Quebec, Montreal, Canada
| | - Ghislaine E. Deyab
- 0000 0004 1936 8630grid.410319.eCenter for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Quebec, Montreal, Canada
| | - Nadia Chaudhri
- Center for Studies in Behavioral Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Quebec, Montreal, Canada.
| |
Collapse
|
18
|
Laukkanen V, Kärkkäinen O, Kautiainen H, Tiihonen J, Storvik M. Increased [³H]quisqualic acid binding density in the dorsal striatum and anterior insula of alcoholics: A post-mortem whole-hemisphere autoradiography study. Psychiatry Res Neuroimaging 2019; 287:63-69. [PMID: 30991250 DOI: 10.1016/j.pscychresns.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
The function of group I metabotropic glutamate receptors mGluR1 and mGluR5 is involved in the hyperglutamatergic state caused by chronic alcohol. Preclinical studies suggest that group I mGluR modulation could serve as a novel treatment of alcoholism. Considering the wide role of glutamatergic neurochemistry in addiction, group I mGluR binding was studied in brain areas involved in decision-making, learning and memory. Post-mortem whole hemisphere autoradiography was used to study the binding density of [³H]quisqualic acid, a potent group I mGluR agonist, in 9 Cloninger type 1 alcoholics, 8 Cloninger type 2 alcoholics and 10 controls. Binding was studied in the dorsal striatum, hippocampus and cortex. Alcoholics displayed a trend towards increased [³H]quisqualic acid binding in all brain areas. The most robust findings were in the putamen (p = 0.006) and anterior insula (p = 0.005), where both alcoholic subtypes displayed increased binding compared to the controls. These findings suggest altered group I mGluR function in alcoholic subjects in the dorsal striatum, which is involved in habitual learning, and in the anterior insula, which has a pivotal role in the perception of bodily sensations. Increased [³H]quisqualic acid binding might suggest a beneficial impact of mGluR1/5 modulators in the treatment of alcoholism.
Collapse
Affiliation(s)
- Virpi Laukkanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Olli Kärkkäinen
- Department of Pharmacology and Toxicology, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Helsinki University Central Hospital, P.O. Box 705, FI-00029 HUS, Helsinki, Finland; Department of General Practice, Helsinki University, P.O. Box 20, FI-00014 Helsinki, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240 Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Hospital, 17176 Stockholm, Sweden
| | - Markus Storvik
- Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
19
|
Smart K, Cox SML, Nagano-Saito A, Rosa-Neto P, Leyton M, Benkelfat C. Test-retest variability of [ 11 C]ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 2018; 72:e22041. [PMID: 29935121 DOI: 10.1002/syn.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
[11 C]ABP688 is a positron emission tomography (PET) radioligand that binds selectively to metabotropic glutamate type 5 receptors (mGluR5). The use of this tracer has identified receptor binding changes in clinical populations, and has been informative in drug occupancy studies. However, previous studies have found significant increases in [11 C]ABP688 binding in the later scan of same-day comparisons, and estimates of test-retest reliability under consistent scanning conditions are not available. The objective of this study was to assess the variability of [11 C]ABP688 binding in healthy people in scans performed at the same time of day. Two [11 C]ABP688 scans were acquired in eight healthy volunteers (6 women, 2 men) using a high-resolution research tomograph (HRRT). Scans were acquired 3 weeks apart with start times between 10:00am and 1:30pm. Mean mGluR5 binding potential (BPND ) values were calculated across cortical, striatal and limbic brain regions. Participants reported on subjective mood state after each scan and blood samples were drawn for cortisol analysis. No significant change in BPND between scans was observed. Variability in BPND values of 11-21% was observed across regions, with the greatest change in the hippocampus and amygdala. Reliability was low to moderate. BPND was not statistically related to scan start time, subjective anxiety, serum cortisol levels, or menstrual phase in women. Overall, [11 C]ABP688 BPND estimates show moderate variability in healthy people. Reliability is fair in cortical and striatal regions, and lower in limbic regions. Future research using this ligand should account for this in study design and analysis.
Collapse
Affiliation(s)
- Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada.,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Quebec, H4H 1R3, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
20
|
Beggiato S, Borelli AC, Tomasini MC, Castelli MP, Pintori N, Cacciaglia R, Loche A, Ferraro L. In Vitro Functional Characterization of GET73 as Possible Negative Allosteric Modulator of Metabotropic Glutamate Receptor 5. Front Pharmacol 2018; 9:327. [PMID: 29674969 PMCID: PMC5895880 DOI: 10.3389/fphar.2018.00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 μM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| | - Andrea C Borelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,IRET Foundation, Bologna, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Center of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,IRET Foundation, Bologna, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Haass-Koffler CL, Goodyear K, Loche A, Long VM, Lobina C, Tran HH, Cacciaglia R, Swift RM, Colombo G, Leggio L. Administration of the metabotropic glutamate receptor subtype 5 allosteric modulator GET 73 with alcohol: A translational study in rats and humans. J Psychopharmacol 2018; 32:163-173. [PMID: 29361897 PMCID: PMC7014573 DOI: 10.1177/0269881117746904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Preclinical work suggests that GET 73 (N-[4-(trifluoromethyl)benzyl]-4-methoxybutyramide), a novel metabotropic glutamate receptor subtype 5 negative allosteric modulator, may represent a novel pharmacological treatment for alcohol use disorder. Two independent experiments evaluated the effect of acutely administered GET 73 (0, 30, and 100 mg/kg, intragastrically) on alcohol-induced hypolocomotion ( n=72) and sedation/hypnosis ( n=36) in rats. In healthy male volunteers ( n=14), an open-label, randomised, crossover study was conducted to compare adverse events and pharmacokinetic parameters, in two experiments in which 300 mg GET 73 was administered, with and without alcohol, once and thrice. In rats, when administered with alcohol-vehicle, 100 mg/kg, but not 30 mg/kg, GET 73 reduced spontaneous locomotor activity. When administered with alcohol, no dose of GET 73 altered either alcohol-induced hypolocomotion or sedation/hypnosis. In humans, both single and thrice 300 mg GET 73 administration were well tolerated, in the presence and absence of alcohol, with no differences in adverse events. There were no significant differences in relative bioavailability between administering 300 mg GET 73 in the presence or absence of alcohol.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA,Corresponding author: Carolina L Haass-Koffler, Center for Alcohol and Addiction Studies, Department Psychiatry and Human Behavior, Brown University, 121 South Main Street, Providence, RI 02912, USA;
| | - Kimberly Goodyear
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | | | - Victoria M Long
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cagliari, Italy
| | - Harrison H Tran
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | | | - Robert M Swift
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cagliari, Italy
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Haass-Koffler CL, Goodyear K, Long VM, Tran HH, Loche A, Cacciaglia R, Swift RM, Leggio L. Dataset for Phase I randomized clinical trial for safety and tolerability of GET 73 in single and repeated ascending doses including preliminary pharmacokinetic parameters. Data Brief 2017; 15:407-413. [PMID: 29214202 PMCID: PMC5712048 DOI: 10.1016/j.dib.2017.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022] Open
Abstract
The data in this article outline the methods used for the administration of GET 73 in the first time-in-human manuscript entitled “Phase I randomized clinical trial for the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy male volunteers” (Haass-Koffler et al., 2017) [1]. Data sets are provided in two different manners. The first series of tables provided includes procedural information about the experiments conducted. The next series of tables provided includes Pharmacokinetic (PK) parameters for GET 73 and its main metabolite MET 2. This set of data is comprised by two experiments: Experiment 1 references a single ascending dose administration of GET 73 and Experiment 2 references a repeated ascending dose administration of GET 73.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kimberly Goodyear
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Victoria M Long
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Harrison H Tran
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | | | | | - Robert M Swift
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|