1
|
Xiao W, Li M, Li D, Shi B, Zhong R, Zhao Y, Tai Q, He S, Dong Q. Schottky Interface Enabled Electrospun Rhodium Oxide Doped Gold for Both pH Sensing and Glucose Measurements in Neutral Buffer and Human Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20797-20810. [PMID: 39287604 PMCID: PMC11447893 DOI: 10.1021/acs.langmuir.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS), etc. The prepared materials were used for both pH responsive testing and amperometric glucose measurements. The rhodium oxide nanocoral doped gold demonstrated a sensitivity of 3.52 μA mM-1 cm-2 and limit of detection of 20 μM with linear range up to 3 mM glucose concentration compared to solely electrodeposited gold for a sensitivity of 0.46 μA mM-1 cm-2 and a limit of detection of 450 μM. The Mott-Schottky method was used for the analysis of an electron transfer process from noble metal to metal oxide to electrolyte in demonstrating the improved sensitivity at neutral pH for glucose measurements due to the Schottky barrier adjustment mechanism at an applied flat band potential of 0.3 V. This work opens a new venue in illustrating the metal oxide/metal materials in the glucose neutral response mechanism. In the end, human serum samples were tested against current commercial glucose meter to certify the accuracy of the proposed sensor.
Collapse
Affiliation(s)
- Weiyu Xiao
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Mingman Li
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Danlei Li
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Bo Shi
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Runze Zhong
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Yiyuan Zhao
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Qingliang Tai
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Songbing He
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Qiuchen Dong
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Gu L, Zeng S, Fan Z, Qian W, Qin D, Chen Z, Huang L, Bai S, Xie H, Gao L, Wang P. The application of a novel biomimetic enzyme p-BEs cascade catalytic platform for the rapid detection of glucose. Int J Biol Macromol 2024; 277:134485. [PMID: 39102926 DOI: 10.1016/j.ijbiomac.2024.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The blood glucose concentration in aquatic organisms, a crucial indicator reflecting their health status, holds significant importance for detecting glucose levels in serum in terms of processing and quality monitoring. In this study, a novel POD biomimetic enzyme (p-BEs) with horseradish peroxidase catalytic properties was designed, optimized, and its mechanism was discussed in detail. Based on this, a portable system has been developed capable of determining glucose levels in three ways: quantitatively analyzed through UV-Vis/MD, quantitatively analyzed on-site using a mobile phone RGB, and semi-quantitatively analyzed through a drip plate. Meanwhile, compared with other catalytic methods for detecting glucose, we achieved a lower limit of detection (0.03 μM) and shorter detection time (12 min), with high catalytic activity. This study provides new insights into the design of efficient and reliable cascade catalytic systems responsive to glucose, offering a low-cost, simplicity of operation method for glucose detection.
Collapse
Affiliation(s)
- Long Gu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Sili Zeng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ze Fan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Wenqi Qian
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Li Huang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Shuyan Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Lei Gao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China.
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin), Ministry of Agriculture and Rural Affairs, Harbin 150070, China.
| |
Collapse
|
3
|
Singh J, Gupta NK, Sarkar S. A hybrid effective medium description for nanoporous gold films and thickness-mediated control of optical absorption. NANOTECHNOLOGY 2024; 35:395702. [PMID: 38941980 DOI: 10.1088/1361-6528/ad5cfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
With the increasing demand for sensing platforms operating across UV, visible, and near-infrared wavelengths, nanoporous gold has emerged as an ideal substrate for rapid, quantitative detection of analytes with excellent specificity and high sensitivity. This study investigates thickness-mediated compositional changes and their impact on scattering characteristics of thin nanoporous gold films fabricated using selective chemical etching. Specifically, we observe thickness-induced morphological and structural changes across different fabricated samples from 25 to 100 nm in thickness. Upon their optical characterization across UV-VIS-NIR spectral regime, we notice that the constitutional differences among samples manifest distinctively & deterministically in their total optical scattering response. In order to gain insights into these observed scattering responses and to fathom the subtle connections between structural properties of NPG films and their optical response, a hybrid theoretical model comprising Maxwell-Garnett & Bruggeman effective medium approximations has been adopted. Our approach not only allows to appropriately account for the inhomogeneous nature of these films, but also corroborates well with the atomic force microscopy characterizations of the fabricated samples. Furthermore, tracing such a theoretical model is important as it helps in systematically ascertaining additional loss terms emerging in the complex dielectric function of films due to their nanoscale porosity & roughness, permitting a good reproduction of measured optical spectra. We believe, our approach will not only facilitate accurate regulation of losses in NPG thin films but will also aid in deriving customized optical performance from them, thereby advancing their potential applications in sensing and beyond.
Collapse
Affiliation(s)
- Jaspreet Singh
- Surface Modification and Applications Laboratory (SMAL) Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Nitish Kumar Gupta
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Subhendu Sarkar
- Surface Modification and Applications Laboratory (SMAL) Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
German N, Popov A, Ramanaviciene A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. BIOSENSORS 2024; 14:134. [PMID: 38534241 DOI: 10.3390/bios14030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 μA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| |
Collapse
|
5
|
German N, Popov A, Ramanaviciene A. The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. BIOSENSORS 2023; 13:727. [PMID: 37504125 PMCID: PMC10377297 DOI: 10.3390/bios13070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Reagentless electrochemical glucose biosensors were developed and investigated. A graphite rod (GR) electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNs) and redox mediators (Med) such as ferrocenecarboxylic acid (FCA), 1,10-phenathroline-5,6-dione (PD), N,N,N',N'-tetramethylbenzidine (TMB) or tetrathiafulvalene (TTF) in combination with glucose oxidase (GOx) (GR/DGNs/FCA/GOx, GR/DGNs/PD/GOx, GR/DGNs/TMB/GOx, or GR/DGNs/TTF/GOx) were developed and electrochemically investigated. A biosensor based on threefold-layer-by-layer-deposited PD and GOx (GR/DGNs/(PD/GOx)3) was found to be the most suitable for the determination of glucose. To improve the performance of the developed biosensor, the surface of the GR/DGNs/(PD/GOx)3 electrode was modified with polypyrrole (Ppy) for 5 h. A glucose biosensor based on a GR/DGNs/(PD/GOx)3/Ppy(5 h) electrode was characterized using a wide linear dynamic range of up to 39.0 mmol L-1 of glucose, sensitivity of 3.03 µA mM-1 cm-2, limit of detection of 0.683 mmol L-1, and repeatability of 9.03% for a 29.4 mmol L-1 glucose concentration. The Ppy-based glucose biosensor was characterized by a good storage stability (τ1/2 = 9.0 days). Additionally, the performance of the developed biosensor in blood serum was investigated.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
6
|
Berni A, Amine A, García-Guzmán JJ, Cubillana-Aguilera L, Palacios-Santander JM. Feather-like Gold Nanostructures Anchored onto 3D Mesoporous Laser-Scribed Graphene: A Highly Sensitive Platform for Enzymeless Glucose Electrochemical Detection in Neutral Media. BIOSENSORS 2023; 13:678. [PMID: 37504077 PMCID: PMC10377420 DOI: 10.3390/bios13070678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The authors present a novel sensing platform for a disposable electrochemical, non-enzymatic glucose sensor strip at physiological pH. The sensing material is based on dendritic gold nanostructures (AuNs) resembling feather branches, which are electrodeposited onto a laser-scribed 3D graphene electrode (LSGE). The LSGEs were fabricated via a one-step laser scribing process on a commercially available polyimide sheet. This study investigates several parameters that influence the morphology of the deposited Au nanostructures and the catalytic activity toward glucose electro-oxidation. The electrocatalytic activity of the AuNs-LSGE was evaluated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and amperometry and was compared to commercially available carbon electrodes prepared under the same electrodeposition conditions. The sensor demonstrated good stability and high selectivity of the amperometric response in the presence of interfering agents, such as ascorbic acid, when a Nafion membrane was applied over the electrode surface. The proposed sensing strategy offers a wide linear detection range, from 0.5 to 20 mM, which covers normal and elevated levels of glucose in the blood, with a detection limit of 0.21 mM. The AuNs-LSGE platform exhibits great potential for use as a disposable glucose sensor strip for point-of-care applications, including self-monitoring and food management. Its non-enzymatic features reduce dependence on enzymes, making it suitable for practical and cost-effective biosensing solutions.
Collapse
Affiliation(s)
- Achraf Berni
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
7
|
Bakhoum EG, Zhang C. Field Effect Transistor with Nanoporous Gold Electrode. MICROMACHINES 2023; 14:1135. [PMID: 37374719 DOI: 10.3390/mi14061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Nanoporous gold (NPG) has excellent catalytic activity and has been used in the recent literature on this issue as a sensor in various electrochemical and bioelectrochemical reactions. This paper reports on a new type of metal-oxide-semiconductor field-effect transistor (MOSFET) that utilizes NPG as a gate electrode. Both n-channel and p-channel MOSFETs with NPG gate electrodes have been fabricated. The MOSFETs can be used as sensors and the results of two experiments are reported: the detection of glucose and the detection of carbon monoxide. A detailed comparison of the performance of the new MOSFET to that of the older generation of MOSFETs fitted with zinc oxide gate electrodes is given.
Collapse
Affiliation(s)
- Ezzat G Bakhoum
- Department of Electrical and Computer Engineering, University of West Florida, Pensacola, FL 32514, USA
| | - Cheng Zhang
- Department of Mechanical Engineering, University of West Florida, Pensacola, FL 32514, USA
| |
Collapse
|
8
|
Arshad F, Tahir A, Haq TU, Munir A, Hussain I, Sher F. Bubbles Templated Interconnected Porous Metallic Materials: Synthesis, Surface Modification, and their Electrocatalytic Applications for Water Splitting and Alcohols Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farhan Arshad
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Aleena Tahir
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry College of Sciences University of Sharjah P.O. Box 27272 Sharjah, UAE
| | - Akhtar Munir
- Department of Chemistry University of Sialkot Sialkot 51040 Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Falak Sher
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| |
Collapse
|
9
|
Sondhi P, Neupane D, Bhattarai JK, Demchenko AV, Stine KJ. Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications. J Electroanal Chem (Lausanne) 2022; 924:116865. [PMID: 36405880 PMCID: PMC9673609 DOI: 10.1016/j.jelechem.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Nanoporous gold (NPG) is one of the most extensively investigated nanomaterials owing to its tunable pore size, ease of surface modification, and range of applications from catalysis, actuation, and molecular release to the development of electrochemical sensors. In an effort to improve the usefulness of NPG, a simple and robust method for the fabrication of hierarchical and bimodal nanoporous gold electrodes (hb-NPG) containing both macro-and mesopores is reported using electrochemical alloying and dealloying processes to engineer a bicontinuous solid/void morphology. Scanning electron microscopy (color SEM) images depict the hierarchical pore structure created after the multistep synthesis with an ensemble of tiny pores below 100 nm in size located in ligaments spanning larger pores of several hundred nanometers. Smaller-sized pores are exploited for surface modification, and the network of larger pores aids in molecular transport. Cyclic voltammetry (CV) was used to compare the electrochemically active surface area of the hierarchical bimodal structure with that of the regular unimodal NPG with an emphasis on the critical role of both dealloying and annealing in creating the desired structure. The adsorption of different proteins was followed using UV-vis absorbance measurements of solution depletion revealing the high loading capacity of hb-NPG. The surface coverage of lipoic acid on the hb-NPG was analyzed using thermogravimetric analysis (TGA) and reductive desorption. The roughness factor determinations suggest that the fabricated hb-NPG electrode has tremendous potential for biosensor development by changing the scaling relations between volume and surface area which may lead to improved analytical performance. We have chosen to take advantage of the surface architectures of hb-NPG due to the presence of a large specific surface area for functionalization and rapid transport pathways for faster response. It is shown that the hb-NPG electrode has a higher sensitivity for the amperometric detection of glucose than does an NPG electrode of the same geometric surface area.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Dharmendra Neupane
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Jay K. Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
10
|
3D-Structured Au(NiMo)/Ti Catalysts for the Electrooxidation of Glucose. Catalysts 2022. [DOI: 10.3390/catal12080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, 3D-structured NiMo coatings have been constructed via the widely used electrodeposition method on a Ti surface and decorated with very small Au crystallites by galvanic displacement (Au(NiMo)/Ti). The catalysts have been characterized using scanning electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma optical emission spectroscopy. Different Au(NiMo)/Ti catalysts, which had Au loadings of 1.8, 2.3, and 3.9 µgAu cm−2, were prepared. The electrocatalytic activity of the Au(NiMo)/Ti catalysts was examined with respect to the oxidation of glucose in alkaline media by cyclic voltammetry. It was found that the Au(NiMo)/Ti catalysts with Au loadings in the range of 1.8 up to 3.9 µgAu cm−2 had a higher activity compared to that of NiMo/Ti. A direct glucose-hydrogen peroxide (C6H12O6-H2O2) single fuel cell was constructed with the different Au-loading-containing Au(NiMo)/Ti catalysts as the anode and Pt as the cathode. The fuel cells exhibited an open circuit voltage of ca. 1.0 V and peak power densities up to 8.75 mW cm−2 at 25 °C. The highest specific peak power densities of 2.24 mW µgAu−1 at 25 °C were attained using the Au(NiMo)/Ti catalyst with the Au loading of 3.9 µg cm−2 as the anode.
Collapse
|
11
|
Efficient detection of glucose by graphene-based non-enzymatic sensing material based on carbon dot. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Expression, purification, characterization and direct electrochemistry of two HiPIPs from Acidithiobacillus caldus SM-1. Anal Biochem 2022; 650:114724. [DOI: 10.1016/j.ab.2022.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
|
13
|
Othman A, Bilan HK, Katz E, Smutok O. Highly Porous Gold Electrodes – Preparation and Characterization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Othman
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Hubert K. Bilan
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Evgeny Katz
- Clarkson University Chemistry Department 8 Clarkson Avenue 13699-5810 Potsdam UNITED STATES
| | - Oleh Smutok
- Clarkson University Department of Chemistry and Biomolecule Science 13699 Potsdam UNITED STATES
| |
Collapse
|
14
|
A Label-Free Colorimetric Assay Based on Gold Nanoparticles for the Detection of H2O2 and Glucose. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The significance of sensing hydrogen peroxide (H2O2) is due to its ubiquity, being a potential biomarker as well as an end-product of several oxidation reactions. Herein, based on gold nanoparticles (AuNPs) and coupled with single-stranded DNA (ssDNA) and ceria nanoparticles (CeO2), we developed a novel colorimetric method to detect H2O2 and glucose in NaCl solutions. In the presence of H2O2, ssDNA adsorbed on the surface of CeO2 could be released and subsequently decorated AuNPs, resulting in a distinct color change of the aqueous solution from purple to red, which could be observed by the naked eye. Since H2O2 can be produced in the process of glucose oxidation by glucose oxidase (GOx), this approach can also be employed to detect glucose. By employing this sensing system, the detection limits for H2O2 and glucose are about 0.21 μM and 3.01 µM, respectively. Additionally, monitoring the content of glucose in blood serum samples was successfully achieved by the proposed strategy. This work opens a potential avenue for the quantitative detection of H2O2 and glucose in clinical diagnostics.
Collapse
|
15
|
Wang R, Liu X, Zhao Y, Qin J, Xu H, Dong L, Gao S, Zhong L. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core–shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Arikan K, Burhan H, Sahin E, Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. CHEMOSPHERE 2022; 291:132718. [PMID: 34756949 DOI: 10.1016/j.chemosphere.2021.132718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, a glucose sensor modified with activated carbon supported gold-nickel (AuNi@AC) metal nanoparticles was prepared for the early diagnosis of diabetes. Electrochemical tests were carried out by determining the optimum working conditions of the prepared glucose sensor. The characterization analyses of the designed glucose sensor were performed by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. It was determined that the average particle size of the nanoparticles in the AuNi alloy structure was 2.03 ± 0.37 nm. The determined detection limit of the AuNi@AC nanosensor was calculated as 0.41 μM as a result of the high linear range provided up to 1.7 mM. In addition, the sensitivity of AuNi@AC nanosensor to glucose, which has a high sensitivity value of 1955 μA mM-1 cm-2, was determined.
Collapse
Affiliation(s)
- Kubilay Arikan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Elif Sahin
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
17
|
Mohammadpour-Haratbar A, Mazinani S, Sharif F, Bazargan AM. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Appl Biochem Biotechnol 2022; 194:2542-2564. [PMID: 35171465 DOI: 10.1007/s12010-022-03833-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Nonenzymatic biosensors do not require enzyme immobilization nor face degradation problem. Hence, nonenzymatic biosensors have recently attracted growing attention due to the stability and reproducibility. Here, a comparative study was conducted to quantitatively evaluate the glucose sensing of pure/oxidized Ni, Co, and their bimetal nanostructures grown on electrospun carbon nanofibers (ECNFs) to provide a low-cost free-standing electrode. The prepared nanostructures exhibited sensitivity (from 66.28 to 610.6 μA mM-1 cm-2), linear range of 2-10 mM, limit of detection in the range of 1 mM, and the response time (< 5 s), besides outstanding selectivity and applicability for glucose detection in the human serum. Moreover, the oxidizable interfering species, such as ascorbic acid (AA), uric acid (UA), and dopamine (DA), did not cause interference. Co-C and Ni-C phase diagrams, solid-state diffusion phenomena, and rearrangement of dissolved C atoms after migration from metal particles were discussed. This study undoubtedly provides new prospects on the nonenzymatic biosensing performance of mono-metal, bimetal, and oxide compounds of Ni and Co elements, which could be quite helpful for the fabrication of biomolecules detecting devices.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran.
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Ali Mohammad Bazargan
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran
| |
Collapse
|
18
|
Zumpano R, Manghisi M, Polli F, D’Agostino C, Ietto F, Favero G, Mazzei F. Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection. Anal Bioanal Chem 2022; 414:2055-2064. [DOI: 10.1007/s00216-021-03838-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
|
19
|
Kashefi-Kheyrabadi L, Nguyen HV, Go A, Baek C, Jang N, Lee JM, Cho NH, Min J, Lee MH. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens Bioelectron 2022; 195:113649. [PMID: 34555637 PMCID: PMC8447555 DOI: 10.1016/j.bios.2021.113649] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Considering the worldwide health crisis associated with highly contagious severe respiratory disease of COVID-19 outbreak, the development of multiplexed, simple and rapid diagnostic platforms to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in high demand. Here, a nucleic acid amplification-free electrochemical biosensor based on four-way junction (4-WJ) hybridization is presented for the detection of SARS-CoV-2. To form a 4-WJ structure, a Universal DNA-Hairpin (UDH) probe is hybridized with two adaptor strands and a SARS-CoV-2 RNA target. One of the adaptor strands is functionalized with a redox mediator that can be detected using an electrochemical biosensor. The biosensor could simultaneously detect 5.0 and 6.8 ag/μL of S and Orf1ab genes, respectively, within 1 h. The biosensor was evaluated with 21 clinical samples (16 positive and 5 negative). The results revealed a satisfactory agreement with qRT-PCR. In conclusion, this biosensor has the potential to be used as an on-site, real-time diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Leila Kashefi-Kheyrabadi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nayoon Jang
- Department Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 02844, Republic of Korea
| | - Jiwon Michelle Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nam-Hyuk Cho
- Department Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 02844, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea,Corresponding author
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea,Corresponding author
| |
Collapse
|
20
|
Chen Z, Hu Y, He X, Xu Y, Liu X, Zhou Y, Hao L, Ruan Y. One-step fabrication of soft calcium superhydrophobic surfaces by a simple electrodeposition process. RSC Adv 2021; 12:297-308. [PMID: 35424497 PMCID: PMC8978675 DOI: 10.1039/d1ra06019h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
A simple, one-step electrodeposition process was rapidly performed on a metal substrate to fabricate calcium superhydrophobic surfaces in an electrolyte containing calcium chloride (CaCl2), myristic acid (CH3(CH2)12COOH), and ethanol, which can avoid the intricate post-processing of surface treatment. The morphology and surface chemical compositions of the fabricated superhydrophobic surfaces were systematically examined by means of SEM, XRD, and FTIR, respectively. The results indicate that the deposited surfaces were mainly composed of calcium myristate, which can dramatically lower surface free energy. The shortest process for constructing a superhydrophobic surface is about 0.5 min, and the maximum contact angle of the as-prepared surfaces can reach as high as 166°, showing excellent superhydrophobicity. By adjusting the electrodeposition time, the structure of the cathodic surface transforms from the turfgrass structure, loose flower structures, larger and dense flower structures, secondary flower structures, and then into tertiary or more flower structures. The superhydrophobic surfaces showed excellent rebound performance with a high-speed camera. After a pressing force, their hardness increases, but the superhydrophobic performance is not weakened. Inversely, the bouncing performance is enhanced. This electrodeposition process offers a promising approach for large areas of superhydrophobic surfaces on conductive metals and strongly impacts the dynamics of water droplets. We investigated a one-step method for calcium superhydrophobic surface preparation and researched the formation process of loose, flower-like microstructures. Also, we found that the pressing force strongly impacts the dynamics of water droplets.![]()
Collapse
Affiliation(s)
- Zhi Chen
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Yongbo Hu
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Xu He
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Yihao Xu
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Xuesong Liu
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Yizhou Zhou
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| | - Limei Hao
- Department of Applied Physics, School of Science, Xi'an University of Science & Technology Xi'an 710054 China
| | - Ying Ruan
- School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China +86-29-88431664 +86-29-88431664
| |
Collapse
|
21
|
Pital A, Kim J, Stockton A. Colloid precipitation and interactions at a flowing solution-solution interface in confined geometries. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Pak M, Moshaii A, Nikkhah M, Abbasian S, Siampour H. Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
The dependence of Cu 2O morphology on different surfactants and its application for non-enzymatic glucose detection. Colloids Surf B Biointerfaces 2021; 208:112087. [PMID: 34500204 DOI: 10.1016/j.colsurfb.2021.112087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Herein, the Cu2O yolk-shell nanospheres, nanocubes and microcubes were successfully prepared by a simple seed-medium process. The formation of the Cu2O yolk-shell nanospheres can be attributed to the self-assembly process caused by the introduction of the seed medium. The formation mechanism of our obtained Cu2O yolk-shell nanospheres and the dependence of Cu2O morphology on different surfactants have been studied. The obtained samples were applied in the field of non-enzymatic glucose detection. The electrochemical response characteristics of the modified electrodes toward glucose were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrode modified with C-Cu2O (obtained by using CTAB as surfactant) shared the highest sensitivity of 3123 μAmM-1 cm-2, whereas, the electrode modified with S-Cu2O (obtained by using SDBS as surfactant) exhibited the lowest LOD of 0.87 μM and the widest linear range of 0.05-10.65 mM. All obtained sensors showed fast response to the addition of glucose. The obtained electrodes showed better responses to glucose than other coexisting interferences, indicating that the obtained electrodes had the acceptable selectivity to glucose. In addition, the stability for 5 consecutive weeks had also been studied and exhibited satisfactory results. The obtained electrode was also used to detect the glucose content in real serum. The acceptable selectivity, stability together with the excellent sensing ability in real serum make the obtained electrodes a potential for practical applications.
Collapse
|
24
|
S. S, A. C. J, Raj K, N. L. P, G. K, K. L. N. Cobalt metal-organic framework for low concentration detection of glucose. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sangeetha S.
- Department of Chemistry, A P S College of Arts and Science, Bangalore, Karnataka, Indian
- Department of Chemistry, Jindal Public School, Bengaluru, Karnataka, India
| | - Jayasree A. C.
- Department of Chemistry, St. Joseph’s College (Autonomous), Bangalore, Karnataka, India
| | - Kalyan Raj
- Department of Chemistry, B M S College of Engineering, Bangalore, Karnataka, India
| | - Prasad N. L.
- Department of Chemistry, Bangalore City University, Bangalore, Karnataka, India
| | - Krishnamurthy G.
- Department of Studies in Chemistry, Bangalore University, Bangalore, Karnataka, India
| | - Nagashree K. L.
- Department of Chemistry, B M S College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
25
|
German N, Ramanaviciene A, Ramanavicius A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers (Basel) 2021; 13:polym13132173. [PMID: 34209068 PMCID: PMC8271668 DOI: 10.3390/polym13132173] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Biosensors for the determination of glucose concentration have a great significance in clinical diagnosis, and in the food and pharmaceutics industries. In this research, short-chain polyaniline (PANI) and polypyrrole (Ppy)-based nanocomposites with glucose oxidase (GOx) and 6 nm diameter AuNPs (AuNPs(6 nm)) were deposited on the graphite rod (GR) electrode followed by the immobilization of GOx. Optimal conditions for the modification of GR electrodes by conducting polymer-based nanocomposites and GOx were elaborated. The electrodes were investigated by cyclic voltammetry and constant potential amperometry in the presence of the redox mediator phenazine methosulfate (PMS). The improved enzymatic biosensors based on GR/PANI-AuNPs(6 nm)-GOx/GOx and GR/Ppy-AuNPs(6 nm)-GOx/GOx electrodes were characterized by high sensitivity (65.4 and 55.4 μA mM−1 cm−2), low limit of detection (0.070 and 0.071 mmol L−1), wide linear range (up to 16.5 mmol L−1), good repeatability (RSD 4.67 and 5.89%), and appropriate stability (half-life period (τ1/2) was 22 and 17 days, respectively). The excellent anti-interference ability to ascorbic and uric acids and successful practical application for glucose determination in serum samples was presented for GR/PANI-AuNPs(6 nm)-GOx/GOx electrode.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (N.G.); (A.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (N.G.); (A.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Division of Materials Science and Electronics, State Scientific Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
26
|
Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.
Collapse
|
27
|
Electrochemical Discrimination of Salbutamol from Its Excipients in Ventolin TM at Nanoporous Gold Microdisc Arrays. SENSORS 2021; 21:s21123975. [PMID: 34207616 PMCID: PMC8226559 DOI: 10.3390/s21123975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
Abstract
The emergence of specific drug–device combination products in the inhalable pharmaceutical industry demands more sophistication of device functionality in the form of an embedded sensing platform to increase patient safety and extend patent coverage. Controlling the nebuliser function at a miniaturised, integrated electrochemical sensing platform with rapid response time and supporting novel algorithms could deliver such a technology offering. Development of a nanoporous gold (NPG) electrochemical sensor capable of creating a unique fingerprint signal generated by inhalable pharmaceuticals provided the impetus for our study of the electrooxidation of salbutamol, which is the active bronchodilatory ingredient in VentolinTM formulations. It was demonstrated that, at NPG-modified microdisc electrode arrays, salbutamol is distinguishable from the chloride excipient present at 0.0154 M using linear sweep voltammetry and can be detected amperometrically. In contrast, bare gold microdisc electrode arrays cannot afford such discrimination, as the potential for salbutamol oxidation and chloride adsorption reactions overlap. The discriminative power of NPG originates from the nanoconfinement effect for chloride in the internal pores of NPG, which selectively enhances the electron transfer kinetics of this more sluggish reaction relative to that of the faster, diffusion-controlled salbutamol oxidation. Sensing was performed at a fully integrated three-electrode cell-on-chip using Pt as a quasi-reference electrode.
Collapse
|
28
|
Beluomini MA, Stradiotto NR, Boldrin MV. Electrosynthesis of three-dimensional nanoporous nickel on screen-printed electrode used for the determination of narirutin in citrus wastewater. Food Chem 2021; 353:129427. [PMID: 33714111 DOI: 10.1016/j.foodchem.2021.129427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
In this study, an electrochemical sensor was designed for the detection of narirutin using three-dimensional nanostructured porous nickel on screen-printed electrode (3DnpNi/SPE). The modified electrode was successfully synthesized by the dynamic hydrogen bubble template method. The 3DnpNi/SPE was characterized by spectroscopic, microscopic, and electrochemical methods. The results showed that the 3DnpNi/SPE presents good electrocatalytic activity for the oxidation of narirutin. The quantification of narirutin was conducted by differential pulse voltammetry, which showed a wide concentration range (1.0 × 10-7 - 1.0 × 10-5 mol L-1), with low detection limit (3.9 × 10-8 mol L-1), and excellent sensitivity (0.31 A L mol-1). The proposed electrode was applied toward the determination of narirutin in yellow water sample from the citrus industry, where it presented a good degree of accuracy. The 3DnpNi/SPE showed repeatability, long-term stability, and selectivity. The results obtained showed agreement with those obtained by HPLC/DAD method. Chemical compounds studied in this article.
Collapse
Affiliation(s)
- Maísa Azevedo Beluomini
- Analytical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara 14800-060, São Paulo State, Brazil.
| | - Nelson Ramos Stradiotto
- Analytical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara 14800-060, São Paulo State, Brazil; Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara 14800-060, São Paulo State, Brazil
| | - Maria Valnice Boldrin
- Analytical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), 55 Prof. Francisco Degni St., Araraquara 14800-060, São Paulo State, Brazil
| |
Collapse
|
29
|
Zhang BL, Zhang XP, Chen BZ, Fei WM, Cui Y, Guo XD. Microneedle-assisted technology for minimally invasive medical sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Huang X, Liang Z, Wen J, Liu Y, Taallah A, Yao X, Zhang Z, Yu T, Zhang S. Orderly aligned manganese-based nanotube arrays with controllable secondary structures. RSC Adv 2021; 11:8277-8281. [PMID: 35423315 PMCID: PMC8695065 DOI: 10.1039/d0ra10210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
By combining a hard template with a dynamic negative template, orderly aligned micrometer-length manganese nanotubes (Mn-NTs) decorated with nanopores on their walls as the secondary structure are successfully grown by electrodeposition in aqueous solution. These nanopores were characterized and analyzed statistically. It is found that these nanopores evolve along the growth direction of the Mn-NTs and their morphology is well controlled by the deposition potential. In addition, the morphology evolution of the nanopores exhibits distinguished size distribution compared with that found in conventional nanoporous foam grown solely by the dynamic template approach, which is attributed to the nanoconfinement of the hard template.
Collapse
Affiliation(s)
- Xiaoyan Huang
- College of Physics, Sichuan University Chengdu 610065 China
| | - Zhuoxi Liang
- College of Physics, Sichuan University Chengdu 610065 China
| | - Jiqiu Wen
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Yong Liu
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Ayoub Taallah
- College of Physics, Sichuan University Chengdu 610065 China
| | - Xin Yao
- College of Physics, Sichuan University Chengdu 610065 China
| | - Zhiyou Zhang
- College of Physics, Sichuan University Chengdu 610065 China
| | - Tian Yu
- College of Physics, Sichuan University Chengdu 610065 China
- Department of Electrical and Computer Engineering, University of California Los Angeles California 90095 USA
| | - Sijie Zhang
- College of Physics, Sichuan University Chengdu 610065 China
| |
Collapse
|
31
|
Vinoth V, Pugazhenthiran N, Viswanathan Mangalaraja R, Syed A, Marraiki N, Valdés H, Anandan S. Development of an electrochemical enzyme-free glucose sensor based on self-assembled Pt-Pd bimetallic nanosuperlattices. Analyst 2021; 145:7898-7906. [PMID: 33016273 DOI: 10.1039/d0an01526a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The huge demand for the clinical diagnosis of diabetes mellitus has prompted the development of great-performance sensing platforms for glucose detection. Non-enzymatic glucose sensors are getting closer to their use in realistic applications. In this work, polyvinylpyrrolidone (PVP)-conjugated bimetallic Pt-Pd nanosuperlattices were synthesized precisely through a simple synthesis procedure, leading to controllable spherical morphologies with significantly fine and precise nanostructures in a size range of ∼3-5 nm by the reduction of Pt and Pd precursors in ethylene glycol, using an ultrasonic method. High-resolution transmission electron microscopy (HRTEM) measurements evidenced the formation of Pt-Pd bimetallic nanosuperlattices (BMNSLs). The superlattice-fringe patterns (111) of bimetallic Pt-Pd NSLs were identified in the HRTEM images, clearly showing their crystalline nature. The prepared material was used in the electrochemical oxidation of glucose using voltammetry analyses. The experimental evidence indicates that the Pt-Pd BMNSL modified glassy carbon electrode is effective for the selective amperometric detection of glucose in the presence of galactose, sucrose, fructose, lactose, and ascorbic acid. Moreover, its application in the detection of glucose in real serum and urine samples was assessed and good recoveries are achieved. The results show that a Pt-Pd bimetallic nanosuperlattice with high surface area, catalytic activity, and superior selectivity could be a promising material in the generation of novel electrodes for low-cost non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Victor Vinoth
- Clean Technologies laboratory, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hernández-Saravia LP, Martinez T, Llanos J, Bertotti M. A Cu-NPG/SPE sensor for non-enzymatic and non-invasive electrochemical glucose detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Formation and Electrochemical Evaluation of Polyaniline and Polypyrrole Nanocomposites Based on Glucose Oxidase and Gold Nanostructures. Polymers (Basel) 2020; 12:polym12123026. [PMID: 33348805 PMCID: PMC7766309 DOI: 10.3390/polym12123026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/04/2023] Open
Abstract
Nanocomposites based on two conducting polymers, polyaniline (PANI) and polypyrrole (Ppy), with embedded glucose oxidase (GOx) and 6 nm size gold nanoparticles (AuNPs(6nm)) or gold-nanoclusters formed from chloroaurate ions (AuCl4−), were synthesized by enzyme-assisted polymerization. Charge (electron) transfer in systems based on PANI/AuNPs(6nm)-GOx, PANI/AuNPs(AuCl4−)-GOx, Ppy/AuNPs(6nm)-GOx and Ppy/AuNPs(AuCl4−)-GOx nanocomposites was investigated. Cyclic voltammetry (CV)-based investigations showed that the reported polymer nanocomposites are able to facilitate electron transfer from enzyme to the graphite rod (GR) electrode. Significantly higher anodic current and well-defined red-ox peaks were observed at a scan rate of 0.10 V s−1. Logarithmic function of anodic current (log Ipa), which was determined by CV-based experiments performed with glucose, was proportional to the logarithmic function of a scan rate (log v) in the range of 0.699–2.48 mV s−1, and it indicates that diffusion-controlled electrochemical processes were limiting the kinetics of the analytical signal. The most efficient nanocomposite structure for the design of the reported glucose biosensor was based on two-day formed Ppy/AuNPs(AuCl4−)-GOx nanocomposites. GR/Ppy/AuNPs(AuCl4−)-GOx was characterized by the linear dependence of the analytical signal on glucose concentration in the range from 0.1 to 0.70 mmol L−1, the sensitivity of 4.31 mA mM cm−2, the limit of detection of 0.10 mmol L−1 and the half-life period of 19 days.
Collapse
|
34
|
Vesztergom S, Dutta A, Rahaman M, Kiran K, Zelocualtecatl Montiel I, Broekmann P. Hydrogen Bubble Templated Metal Foams as Efficient Catalysts of CO
2
Electroreduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soma Vesztergom
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
- Department of Physical Chemistry Eötvös Loránd University Pázmány Péter sétány 1/A Budapest 1117 Hungary
| | - Abhijit Dutta
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | - Motiar Rahaman
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | - Kiran Kiran
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | | | - Peter Broekmann
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| |
Collapse
|
35
|
Ebrahimi Vafaye S, Rahman A, Safaeian S, Adabi M. An electrochemical aptasensor based on electrospun carbon nanofiber mat and gold nanoparticles for the sensitive detection of Penicillin in milk. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00684-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Ramesh R, Niauzorau S, Ni Q, Azeredo BP, Wang L. Optical characterization and modeling of nanoporous gold absorbers fabricated by thin-film dealloying. NANOTECHNOLOGY 2020; 31:405706. [PMID: 32541102 DOI: 10.1088/1361-6528/ab9cf4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work studies the optical reflectance of nanoporous gold (NPG) thin films of varying pore volume fraction (PVF) synthesized by chemical dealloying of Ag-Au alloy precursors. The fabricated samples are characterized by scanning electron microscopy, and spectral hemispherical reflectance is measured with an integrating sphere. The effective isotropic optical constants of NPG with varying PVF are modeled for the wavelength range from 0.4 to 1.6 μm using the Bruggeman effective medium theory. As the thickness of the NPG thin films is more than ten times larger than the effective penetration depth, the spectral reflectance is simply modeled with the Fresnel coefficients at the interface of air and semi-infinite NPG with different incident angles and polarizations. Consistent with the modeling results, the optical measurement data shows that the spectral normal reflectance of NPG significantly decreases with larger PVF values in the near-infrared regime. On the other hand, the reflectance increases greatly only within visible range at larger oblique angles for transverse-electric polarized waves compared to transverse-magnetic waves. Moreover, the NPG samples demonstrate good thermal stability from room temperature up to 100 °C with little changes in the temperature-dependent spectral hemispherical reflectance.
Collapse
Affiliation(s)
- Rajagopalan Ramesh
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287
- The Polytechnic School, Arizona State University, Mesa, AZ 85212
| | | | - Qing Ni
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287
| | - Bruno P Azeredo
- The Polytechnic School, Arizona State University, Mesa, AZ 85212
| | - Liping Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
37
|
Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0531-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ren Z, Mao H, Luo H, Deng X, Liu Y. One-step formation of a hybrid material of graphene and porous Ni with highly active Ni(OH) 2 used for glucose detection. NANOTECHNOLOGY 2020; 31:185501. [PMID: 31931499 DOI: 10.1088/1361-6528/ab6ab7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hybrid material of graphene and porous Ni with highly active Ni(OH)2 was formed through a one-step electrochemical exfoliation assisted method. The porous Ni with a pore size of 2-10 micrometers obtained by a hydrogen bubble template method was used as the cathode while the graphite foil was used as the anode with only (NH4)2SO4 as the electrolyte. Both the high surface areas of porous Ni and the oxygen radicals in graphene favored the formation of the Ni(OH)2. It is confirmed by energy dispersion spectrum, transmission electron microscope, Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy analysis. Both the active area and the glucose sensing property of the as-prepared hybrid material were estimated by electrochemical methods of cyclic voltammetry with current-voltage (C-V) curve, chronoamperometry with current-time (I-t) curve and electrochemical impedance spectroscopy analysis, respectively. It shows an extraordinary active area as well as a low charge transfer resistance and absorption resistance. As a result, a high sensitivity of 6504 μA/mM-1 cm-2 within a linear range of 4 μM-1.0 mM was obtained for glucose detection.
Collapse
Affiliation(s)
- Zhaodi Ren
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Siampour H, Abbasian S, Moshaii A, Omidfar K, Sedghi M, Naderi-Manesh H. Seed-mediated Electrochemically Developed Au Nanostructures with Boosted Sensing Properties: An Implication for Non-enzymatic Glucose Detection. Sci Rep 2020; 10:7232. [PMID: 32350345 PMCID: PMC7190711 DOI: 10.1038/s41598-020-64082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
A new approach has been developed to improve sensing performances of electrochemically grown Au nanostructures (AuNSs) based on the pre-seeding of the electrode. The pre-seeding modification is simply carried out by vacuum thermal deposition of 5 nm thin film of Au on the substrate followed by thermal annealing at 500 °C. The electrochemical growth of AuNSs on the pre-seeded substrates leads to impressive electrochemical responses of the electrode owing to the seeding modification. The dependence of the morphology and the electrochemical properties of the AuNSs on various deposition potentials and times have been investigated. For the positive potentials, the pre-seeding leads to the growth of porous and hole-possess networks of AuNSs on the surface. For the negative potentials, AuNSs with carved stone ball shapes are produced. The superior electrode was achieved from AuNSs developed at 0.1 V for 900 s with pre-seeding modification. The sensing properties of the superior electrode toward glucose detection show a high sensitivity of 184.9 µA mM−1 cm−2, with a remarkable detection limit of 0.32 µM and a wide range of linearity. The excellent selectivity and reproducibility of the sensors propose the current approach as a large-scale production route for non-enzymatic glucose detection.
Collapse
Affiliation(s)
- Hossein Siampour
- Department of Physics, Tarbiat Modares University, P.O Box, 14115-175, Tehran, Iran
| | - Sara Abbasian
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box, 19395-5531, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, P.O Box, 14115-175, Tehran, Iran.
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mosslim Sedghi
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| |
Collapse
|
40
|
Bollella P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E722. [PMID: 32290306 PMCID: PMC7221854 DOI: 10.3390/nano10040722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Porous gold (PG) layers modified electrodes have emerged as valuable enzyme support to realize multiple enzyme-based bioelectrochemical devices like biosensors, enzymatic fuel cells (EFCs), smart drug delivery devices triggered by enzyme catalyzed reactions, etc. PG films can be synthesized by using different methods such as dealloying, electrochemical (e.g., templated electrochemical deposition, self-templated electrochemical deposition, etc.) self-assembly and sputter deposition. This review aims to summarize the recent findings about PG synthesis and electrosynthesis, its characterization and application for enzyme-based electrodes used for biosensors and enzymatic fuel cells (EFCs) development.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, 13699-5810 NY, USA
| |
Collapse
|
41
|
Gao X, Du X, Liu D, Gao H, Wang P, Yang J. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 2020; 10:1365. [PMID: 31992829 PMCID: PMC6987199 DOI: 10.1038/s41598-020-58403-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@Ni) are prepared by oleylamine reduction of their metal precursors. At an appropriate Au/Ni ratio, the core-shell Au@Ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good selectivity and biological compatibility of Au with the remarkable tolerance of Ni for chlorine ions (Cl-) and poisoning intermediates in catalytic oxidation of glucose. This electrode exhibits a low operating voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L-1 to 10 mmol L-1 with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 μA cm-2 mM-1, and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by the adsorption of Cl- in solution.
Collapse
Affiliation(s)
- Xuejin Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xinzhao Du
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Pu Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
42
|
Mounesh, Venugopal Reddy KR. The electrochemical investigation of carboxamide-PEG2-biotin-CoPc using composite MWCNTs on modified GCE: the sensitive detections for glucose and hydrogen peroxide. NEW J CHEM 2020. [DOI: 10.1039/c9nj05807a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electroanalytical study of a synthesized novel tetra-cobalt(ii) carboxamide-PEG2-biotin phthalocyanine (CoTPEG2BAPc) composite with MWCNTs to create a biosensor with a high response to glucose in the presence of H2O2.
Collapse
Affiliation(s)
- Mounesh
- Department of Chemistry
- Vijayanagara Srikrishnadevaraya University
- Ballari-583 105
- India
| | - K. R. Venugopal Reddy
- Department of Chemistry
- Vijayanagara Srikrishnadevaraya University
- Ballari-583 105
- India
| |
Collapse
|
43
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
44
|
Hu T, Xu K, Qiu S, Han Y, Chen J, Xu J, Chen K, Sun Z, Yi H, Ni Z. Colorimetric detection of urine glucose using a C/CdTe QDs–GOx aerogel based on a microfluidic assay sensor. J Mater Chem B 2020; 8:7160-7165. [DOI: 10.1039/d0tb00328j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive fluorescent microfluidic sensor based on carbon quantum dots (CQDs), cadmium telluride quantum dots (CdTe QDs) aerogel and glucose oxidase (GOx) for urinal glucose detection was fabricated via a simple method.
Collapse
Affiliation(s)
- Tao Hu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro–Nano Biomedical Instruments
- Southeast University
- Nanjing 211189
- China
| | - Kangkai Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro–Nano Biomedical Instruments
- Southeast University
- Nanjing 211189
- China
| | - Shanhu Qiu
- Department of Endocrinology
- Zhongda Hospital, Institute of Diabetes
- School of Medicine
- Southeast University
- Nanjing
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro–Nano Biomedical Instruments
- Southeast University
- Nanjing 211189
- China
| | - Juan Chen
- Department of Endocrinology
- Zhongda Hospital, Institute of Diabetes
- School of Medicine
- Southeast University
- Nanjing
| | - Jian Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro–Nano Biomedical Instruments
- Southeast University
- Nanjing 211189
- China
| | - Ke Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro–Nano Biomedical Instruments
- Southeast University
- Nanjing 211189
- China
| | - Zilin Sun
- Department of Endocrinology
- Zhongda Hospital, Institute of Diabetes
- School of Medicine
- Southeast University
- Nanjing
| | - Hong Yi
- Department of Endocrinology
- Zhongda Hospital, Institute of Diabetes
- School of Medicine
- Southeast University
- Nanjing
| | - Zhonghua Ni
- Department of Endocrinology
- Zhongda Hospital, Institute of Diabetes
- School of Medicine
- Southeast University
- Nanjing
| |
Collapse
|
45
|
Şavk A, Cellat K, Arıkan K, Tezcan F, Gülbay SK, Kızıldağ S, Işgın EŞ, Şen F. Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. Sci Rep 2019; 9:19228. [PMID: 31848405 PMCID: PMC6917712 DOI: 10.1038/s41598-019-55746-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
In this work, highly monodispersed palladium-nickel (Pd-Ni) nanoparticles supported on reduced graphene oxide (rGO) were synthesized by the microwave-assisted methodology. The synthesized nanoparticles were used for modification of a glassy carbon electrode (GCE) to produce our final product as PdNi@rGO/GCE, which were utilized for non-enzymatic detecting of glucose. In the present study, electrochemical impedance spectroscopy (EIS), chronoamperometry (CA) and, cyclic voltammetry (CV) methods were implemented to investigate the sensing performance of the developed glucose electrode. The modified electrode, PdNi@rGO/GCE, exhibited very noticeable results with a linear working range of 0.05-1.1 mM. Moreover, an ultralow detection limit of 0.15 μM was achieved. According to the results of amperometric signals of the electrodes, no significant change was observed, even after 250 h of operation period. In addition, the highly monodisperse PdNi@rGO/GCE was utilized to electrochemical detection of glucose in real serum samples. In light of the results, PdNi@rGO/GCE has shown an excellent sensing performance and can be used successfully in serum samples for glucose detection and it is suitable for practical and clinical applications.
Collapse
Affiliation(s)
- Aysun Şavk
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Kemal Cellat
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Kubilay Arıkan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Fatih Tezcan
- Mersin University, Science and Letters Faculty, Chemistry Department, 33343, Mersin, Turkey
| | - Senem Karahan Gülbay
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey
| | - Servet Kızıldağ
- College of Vocational School of Health Services, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Elif Şahin Işgın
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Şen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
46
|
Liu P, Ling X, Zhong C, Deng Y, Han X, Hu W. Porous Zinc Anode Design for Zn-air Chemistry. Front Chem 2019; 7:656. [PMID: 31632950 PMCID: PMC6779696 DOI: 10.3389/fchem.2019.00656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
Zinc-air battery has drawn increasing attention from the whole world owing to its large energy capacity, stable working voltage, environmentally friendship, and low price. A special porous Zn with three-dimensional (3D) network frame structure, whose multistage average pore sizes can be tuned from 300 to 8 um, is synthesized in this work. It is found that there is a competition between Zn2+ and NH 4 + for their reduction on the supports. And the decrease of Zn2+ concentration and increase of NH 4 + concentration can facilitate the decrease of pore size. Potential-dynamic polarization was tested with 3-electrodes cell, aiming to characterize the electrochemical activity and corrosion properties of porous Zn and commercial Zn foil electrodes. After optimization, the porous Zn prepared with the parameters of 3 M NaBr, 1 M C2H3O2NH4, and 0.01 M C4H6O4Zn shows the most negative corrosion potential of -1.45 V among all the samples, indicating the remarkable anti-corrosion property. Its discharge specific capacity is up to 812 mAh g-1. And discharge-charge test of the porous Zn shows an initial discharge platform of 1.33 V and an initial charge platform of 1.96 V, performing a small overpotential. What's more, the porous Zn exhibits a much longer cycle life than commercial Zn foil. Our work will not only shed light on the design and synthesis of other porous metal materials, but also further promote the development of Zn-based battery electrochemistry.
Collapse
Affiliation(s)
- Peiyuan Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China
| | - Xiaofei Ling
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China
| | - Cheng Zhong
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China
| | - Wenbin Hu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| |
Collapse
|
47
|
Jin K, He F, Xie Q. Electrocatalytic oxidation and detection of ethanol on an electroplated Pt/3D honeycomb-like nano-Au/Au disk electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Li D, Podlaha EJ. Template-Assisted Electrodeposition of Porous Fe-Ni-Co Nanowires with Vigorous Hydrogen Evolution. NANO LETTERS 2019; 19:3569-3574. [PMID: 31117749 DOI: 10.1021/acs.nanolett.9b00532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel method to fabricate porous Fe-Ni-Co nanowires directly by electrodepositing into polycarbonate membranes is reported when the electrolyte pH < 0.5. Hydrogen bubbles are used as a dynamic porous template created by operating in electrolytes with very low pH to drive the proton reduction reaction. The electrolyte pH was adjusted with sulfuric acid, and the added sulfate ions are thought to help reduce bubble coalescence, but not detachment at the electrode surface, to facilitate metal deposition within the nanopores. Porous nanowires were obtained when the electrolyte pH was less than 1.0. The average alloy composition was found to be pH sensitive, which shifted from an Fe-rich porous alloy to a Ni-rich porous alloy as the electrolyte pH decreased.
Collapse
Affiliation(s)
- Deyang Li
- Department of Chemical Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Elizabeth J Podlaha
- Department of Chemical Engineering , Northeastern University , Boston , Massachusetts 02115 , United States
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
49
|
Zhao X, Ren H, Luo L. Gas Bubbles in Electrochemical Gas Evolution Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5392-5408. [PMID: 30888828 DOI: 10.1021/acs.langmuir.9b00119] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical gas evolution reactions are of vital importance in numerous electrochemical processes including water splitting, chloralkaline process, and fuel cells. During gas evolution reactions, gas bubbles are vigorously and constantly forming and influencing these processes. In the past few decades, extensive studies have been performed to understand the evolution of gas bubbles, elucidate the mechanisms of how gas bubbles impact gas evolution reactions, and exploit new bubble-based strategies to improve the efficiency of gas evolution reactions. In this feature article, we summarize the classical theories as well as recent advancements in this field and provide an outlook on future research topics.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Hang Ren
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Long Luo
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
50
|
Chang AS, Memon NN, Amin S, Chang F, Aftab U, Abro MI, dad Chandio A, Shah AA, Ibupoto MH, Ansari MA, Ibupoto ZH. Facile Non‐enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. ELECTROANAL 2019. [DOI: 10.1002/elan.201800865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Sidra Amin
- National Centre of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro - 7f080 Pakista
| | - Fouzia Chang
- National Centre of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro - 7f080 Pakista
| | - Umair Aftab
- Mehran University of Engineering and Technology Jamshoro 7f080 Pakistan
| | | | - Ali dad Chandio
- Department of MetallurgyNED University of Engineering and Technology Karachi 7eb70 Pakistan
| | - Aqeel Ahmed Shah
- Department of MetallurgyNED University of Engineering and Technology Karachi 7eb70 Pakistan
| | | | | | | |
Collapse
|