1
|
Wang D, Chen H, Han H, Yang W, Sun Q, Cao C, Ning K, Huang Z, Wu T. Interaction of biochar with extracellular polymers of resistant bacteria restrains Pb(II) adsorption onto their composite: Macro and micro scale investigations. BIORESOURCE TECHNOLOGY 2024; 414:131602. [PMID: 39393646 DOI: 10.1016/j.biortech.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Pb(II) sequestration in extracellular polymers-biochar composites (EPS-BC) was explored using macroscopic models and microscopic technology. The results showed that the actual adsorption capacity of EPS-BC was 52.2% lower than the calculated capacity based on adsorption onto pure components due to the interaction of polysaccharide and amide group in extracellular polymers with biochar, which masked the reactive sites related to Pb(II) in EPS-BC. The bond of Pb-O (40.8%) and Pb-OOC (31.5%) mainly contributed to Pb(II) speciation on the EPS-BC surfaces. Furthermore, each Pb atom coordinated with 6O atoms in the first shell and with 0.5C atoms in the second shell, indicating that the carboxyl group in composite was complexed with Pb(II) as a monodentate inner-sphere structure. The findings provide an in-depth understanding of the adsorption mechanism of heavy metals by extracellular polymers coupled with biochar at molecular scale, guiding bioremediation with respect to heavy metal contamination.
Collapse
Affiliation(s)
- Di Wang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenwen Yang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Qi Sun
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Churong Cao
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Kai Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510630, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuochun Huang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Ting Wu
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| |
Collapse
|
2
|
Zhang B, Li R, Zhang H, Han Y, Jia Y, Chen S, Yu X. Mycelium-Doped Straw Biochars for Antibiotic Control. Int J Mol Sci 2024; 25:11387. [PMID: 39518942 PMCID: PMC11546586 DOI: 10.3390/ijms252111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Straw, a predominant agricultural residue, represents a significant waste product. Harnessing its potential is of paramount importance both in terms of research and economic value. In this study, chemically pretreated corn straw was infused with distinct microbial fungal mycelium variants and subsequently transformed into a series of biochars through a process involving carbonization and activation. The findings revealed enhancements in the specific surface area and total pore volume of mycelium-doped straw biochars compared to the original corn straw biochar (BCS). Additionally, discernible disparities were observed in their physical and chemical attributes, encompassing functional groups, surface chemistry, and micro-morphology. Notably, in water-based antibiotic removal experiments focusing on tetracycline hydrochloride (TH) and chloramphenicol (CP), the mycelium-doped straw biochars outperformed BCS. Their maximum adsorption capacities for TH and CP surpassed those of alternative adsorbents, including other biochars. Impressively, even after five cycles, the biochar exhibited a removal rate exceeding 80%, attesting to its robust stability. This study successfully emphasized the efficacy of incorporating fungal mycelium to enhance the adsorption properties of straw-based biochar, introducing a new theoretical basis for the development of lignocellulosic materials.
Collapse
Affiliation(s)
- Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ruqi Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Huiji Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ye Han
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yunzhe Jia
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxiao Yu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Aguilar-Barrientos JP, Pech-Canul MA, Fernández-Herrera MA. Corrosion Inhibition of Carbon Steel in Neutral Chloride Solutions Using Salts of Primary Bile Acids. ACS OMEGA 2024; 9:40980-40991. [PMID: 39372013 PMCID: PMC11447809 DOI: 10.1021/acsomega.4c06362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Due to growing environmental concerns and regulatory pressures, the demand for environmentally friendly corrosion inhibitors has increased. Biosurfactants are biodegradable and have a low toxicity. However, very few studies have reported on their potential use as corrosion inhibitors. The present study reports the novel application of two bile salts (sodium cholate NaC and sodium chenodeoxycholate NaCDC) as environmentally friendly corrosion inhibitors for carbon steel in a neutral 20 mM NaCl solution. The results of potentiodynamic polarization and electrochemical impedance measurements showed that when added at a concentration of 5 mM, the corrosion inhibition efficiencies of NaC and NaCDC were about 60% and 85%, respectively. The poor inhibitory character of NaC was confirmed by XPS analysis, revealing the formation of oxidative corrosion products on the steel surface. For the steel sample immersed in the solution containing NaCDC, the XPS measurements showed clear evidence of the presence of an organic layer and a passive oxide film on the steel surface. While the steroidal skeleton of NaC is characterized by marked biplanarity (considering its hydrophobic and hydrophilic faces), NaCDC features a steroidal ring with a hydrophilic edge (it does not exhibit biplanarity). Thus, the self-assembly and adsorption behavior of these bile salts on the steel surface are different, leading in the case of NaCDC to form a densely packed protective organic layer.
Collapse
Affiliation(s)
- Juan P. Aguilar-Barrientos
- Departamento de Física
Aplicada, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km. 6 Antigua
Carretera a Progreso, Apdo. Postal 73, Cordemex, Merida, Yucatan 97310, Mexico
| | - Máximo A. Pech-Canul
- Departamento de Física
Aplicada, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km. 6 Antigua
Carretera a Progreso, Apdo. Postal 73, Cordemex, Merida, Yucatan 97310, Mexico
| | - María A. Fernández-Herrera
- Departamento de Física
Aplicada, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km. 6 Antigua
Carretera a Progreso, Apdo. Postal 73, Cordemex, Merida, Yucatan 97310, Mexico
| |
Collapse
|
4
|
Saidi T, You D, Bataillon C, Martinelli L. Electrostatic-thermodynamic-kinetic (ELTHEKI) modeling of the coupled $$\text {Ni}$$/$$\text {Ni}\text {O}$$/water system, under physico-chemical conditions of pressurized water reactors. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Zaffora A, Giordano E, Volanti VM, Iannucci L, Grassini S, Gatto I, Santamaria M. Effect of TiO 2 and Al 2O 3 Addition on the Performance of Chitosan/Phosphotungstic Composite Membranes for Direct Methanol Fuel Cells. MEMBRANES 2023; 13:210. [PMID: 36837712 PMCID: PMC9964683 DOI: 10.3390/membranes13020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Composite chitosan/phosphotungstic acid (CS/PTA) with the addition of TiO2 and Al2O3 particles were synthesized to be used as proton exchange membranes in direct methanol fuel cells (DMFCs). The influence of fillers was assessed through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, liquid uptake, ion exchange capacity and methanol permeability measurements. The addition of TiO2 particles into proton exchange membranes led to an increase in crystallinity and a decrease in liquid uptake and methanol permeability with respect to pristine CS/PTA membranes, whilst the effect of the introduction of Al2O3 particles on the characteristics of membranes is almost the opposite. Membranes were successfully tested as proton conductors in a single module DMFC of 1 cm2 as active area, operating at 50 °C fed with 2 M methanol aqueous solution at the anode and oxygen at the cathode. Highest performance was reached by using a membrane with TiO2 (5 wt.%) particles, i.e., a power density of 40 mW cm-2, almost doubling the performance reached by using pristine CS/PTA membrane (i.e., 24 mW cm-2).
Collapse
Affiliation(s)
- Andrea Zaffora
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Elena Giordano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Valentina Maria Volanti
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Leonardo Iannucci
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Sabrina Grassini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Irene Gatto
- Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”(ITAE), Consiglio Nazionale delle Ricerche (CNR), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - Monica Santamaria
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
6
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33013-33032. [PMID: 35018594 DOI: 10.1007/s11356-021-17569-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
A boosted photocatalytic activity was observed for the CdS-AgBr nanocomposite in the degradation of methylene blue (MB). The experimental design method based on the response surface methodology (RSM) approach used to study the simultaneous interaction effects between the influencing variables. Analysis of variance (ANOVA) of the results confirmed a significant model for processing the data because an F value of 32.34 for the suggested model was higher than that of the critical value of F0.05, 14, 13 = 2.55 at 95% confidence interval. This analysis also showed a non-significant lack of fit (LOF) (as a measure of the randomness of the deviations around the obtained data) because the LOF F value of 8.27 was smaller than that of the critical value of F0.05, 10, 3 = 8.79. R2 values near to unity were achieved (the multiple correlation coefficients R2 (R2 = 0.9627), adjusted R2 (adj-R2 = 0.9226), and predicted R2 (pred-R2 = 0.7423)). Six center points suggested by the model included the following conditions: pH, 6.1; CMB, 3.5 mg/L; a dose of the catalyst, 0.68 g/L; and irradiation time, 40.5 min. During the center point runs, the degradation efficiencies were obtained in the range of 38 to 43%. The optimal run included pH, 9; catalyst dosage, 1 g/L; irradiation time, 60 min; and CMB, 2 mg/L, and the best removal efficiency of 98% was achieved during these conditions.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
7
|
Hangarter CM, Anderson RM, Policastro SA. Stress-Affected Oxygen Reduction Reaction Rates on UNS S13800 Stainless Steel. Front Chem 2022; 10:820379. [PMID: 35321477 PMCID: PMC8934858 DOI: 10.3389/fchem.2022.820379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
This work investigates the previously unexplored impact of tensile stress on oxygen reduction reaction (ORR) kinetics of a precipitation-hardened, stainless-steel fastener material, UNS S13800. ORR is known to drive localized and galvanic corrosion in aircraft assemblies and greater understanding of this reaction on structural alloys is important in forecasting component lifetime and service requirements. The mechano-electrochemical behavior of UNSS13800 was examined using amperometry to measure the reduction current response to tensile stress. Mechanical load cycles within the elastic regime demonstrated reversible electrochemical current shifts under chloride electrolyte droplets that exhibited a clear potential dependence. Strain ramping produced current peaks with a strain rate dependence, which was distinct from the chronoamperometric shifts during static tensile load conditions. Finally, mechanistic insight into the dynamic and static responses was obtained by deoxygenation, which demonstrated ORR contributions that were distinct from other reductive processes.
Collapse
|
8
|
Watson M, Nikić J, Tubić A, Isakovski MK, Šolić M, Dalmacija B, Agbaba J. Repurposing spent filter sand from iron and manganese removal systems as an adsorbent for treating arsenic contaminated drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114115. [PMID: 34800773 DOI: 10.1016/j.jenvman.2021.114115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Waterworks which utilise river bank filtration water sources often have to apply aeration and sand filtration to remove iron and manganese during the drinking water treatment process. After some time, the sand becomes saturated and the spent filter sand (SFS) must be disposed of and replaced. In order to valorize this waste stream, this paper investigates the reuse of SFS as an adsorbent for the treatment of arsenic contaminated drinking water. The arsenic removal performance of SFS is compared with two synthetic iron oxide coated sands (IOCS). The sorbents were first characterized by SEM, EDS, BET specific surface area, and point of zero charge (pHpzc) measurements, and then investigated under a variety of conditions. The surface of the SFS was revealed to be coated with iron manganese binary oxide. The Freundlich model best described the isotherm experiment data, indicating a non monolayer adsorption model for arsenic adsorption on the three IOCS investigated. As(III) and As(V) removals were negatively effected by the presence of PO43- and HA anions as they competed with the arsenic species for adsorption sites. However, given the status of SFS as a waste material, the results obtained in this paper suggest it may be successfully reused as a very economically and environmentally sustainable solution for small waterworks requiring both As(V) and As(III) removal during drinking water treatment.
Collapse
Affiliation(s)
- Malcolm Watson
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jasmina Nikić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Aleksandra Tubić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Marijana Kragulj Isakovski
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Marko Šolić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Božo Dalmacija
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jasmina Agbaba
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| |
Collapse
|
9
|
Li J, Li X, Wang Z, Jia Y, Xu K, Wang Z, Wang Z. Adsorption of antimony using amino-functionalized magnetic MIL-101(Cr): Optimization by response surface methodology. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Saito T, Yokoi T, Nakamura A, Matsunaga K. First-principles based theoretical calculations of atomic structures of hydroxyapatite surfaces and their charge states in contact with aqueous solutions. RSC Adv 2021; 11:34004-34014. [PMID: 35497313 PMCID: PMC9042352 DOI: 10.1039/d1ra06311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Surface charge states of biomaterials are often important for the adsorption of cells, proteins, and foreign ions on their surfaces, which should be clarified at the atomic and electronic levels. First-principles calculations were performed to reveal thermodynamically stable surface atomic structures and their charge states in hydroxyapatite (HAp). Effects of aqueous environments on the surface stability were considered using an implicit solvation model. It was found that in an air atmosphere, stoichiometric {0001} and P-rich {101̄0} surfaces are energetically favorable, whereas in an aqueous solution, a Ca-rich {101̄0} surface is the most stable. This difference suggests that preferential surface structures strongly depend on chemical environments with and without aqueous solutions. Their surface potentials at zero charge were calculated to obtain the isoelectric points (pHPZC). pHPZC values for the {0001} surface and the Ca-rich {101̄0} surface were obtained to be 4.8 and 8.7, respectively. This indicates that in an aqueous solution at neutral pH, the {0001} and Ca-rich {101̄0} surfaces are negatively and positively charged, respectively. This trend agrees with experimental data from chromatography and zeta potential measurements. Our methodology based on first-principles calculations enables determining macroscopic charge states of HAp surfaces from atomic and electronic levels.
Collapse
Affiliation(s)
- T Saito
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - T Yokoi
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - A Nakamura
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
| | - K Matsunaga
- Department of Materials Physics, Nagoya University Nagoya 464-8603 Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center Nagoya 456-8587 Japan
| |
Collapse
|
11
|
Ren L, Tang Z, Du J, Chen L, Qiang T. Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126130. [PMID: 34229397 DOI: 10.1016/j.jhazmat.2021.126130] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Novel composite foam (CMCTS-PUF-s) was prepared by immobilizing carboxymethyl chitosan (CMCTS) on polyurethane foam (PUF) in which amino groups in CMCTS reacted with isocyanate groups in polyurethane prepolymer. The adsorption capacity of the optimal composite foam (CMCTS-PUF-5) reached to 118.2 mg/g with 5% CMCTS loading. The removal rate to methylene blue (MB) was up to 97.1%, which was obviously higher than 18.9% of PUF. After recycling for five times, the removal rate still reached 83.2%, which strongly proved the excellent reusability of immobilizing CMCTS modified PUF. The characterization results of FTIR and TG showed that CMCTS was well loaded on PUF by covalent bond. The Young's modulus and tensile strength of CMCTS-PUF-5 were increased by 252% and 97% compared with that of PUF. MIP characterization result showed the porosity of CMCTS-PUF-5 was 73.99% and the pore sizes were mainly distributed between 50 and 150 µm, which provide sufficient diffusion channels and active sites for MB dyes. The adsorption kinetics and isotherm proved pseudo-second-order kinetic model and Langmuir isotherm model could well describe the adsorption process of CMCTS-PUF-5. Therefore, CMCTS-PUF-s presents excellent recoverability, high stability and attractive adsorption efficiency, shows the potential application in future treatment of dye wastewater.
Collapse
Affiliation(s)
- Longfang Ren
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China.
| | - Zheng Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Jinyao Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Lu Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an 710021, China
| |
Collapse
|
12
|
Magnetic Fe3O4/MnO2 core–shell nano-composite for removal of heavy metals from wastewater. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Omrani N, Nezamzadeh-Ejhieh A. A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112223] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ma Y, Sikdar D, Fedosyuk A, Velleman L, Klemme DJ, Oh SH, Kucernak ARJ, Kornyshev AA, Edel JB. Electrotunable Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. ACS NANO 2020; 14:328-336. [PMID: 31808672 DOI: 10.1021/acsnano.9b05257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tuning the properties of optical metamaterials in real time is one of the grand challenges of photonics. Being able to do so will enable a class of adaptive photonic materials for use in applications such as surface enhanced Raman spectroscopy and reflectors/absorbers. One strategy to achieving this goal is based on the electrovariable self-assembly and disassembly of two-dimensional nanoparticle arrays at a metal | liquid interface. As expected, the structure results in plasmonic coupling between NPs in the array but perhaps as importantly between the array and the metal surface. In such a system, the density of the nanoparticle array can be reversibly controlled by the variation of electrode potential. Theory suggests that due to a collective plasmon-coupling effect less than 1 V variation of electrode potential can give rise to a dramatic simultaneous change in optical reflectivity from ∼93% to ∼1% and the amplification of the SERS signal by up to 5 orders of magnitude. This is experimentally demonstrated using a platform based on the voltage-controlled assembly of 40 nm Au-nanoparticle arrays at a TiN/Ag electrode in contact with an aqueous electrolyte. We show that all the physics underpinning the behavior of this platform works precisely as suggested by the proposed theory, setting the electrochemical nanoplasmonics as a promising direction in photonics research.
Collapse
Affiliation(s)
- Ye Ma
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
- School of Materials Science and Engineering , Ocean University of China , Qingdao , 266100 , China
| | - Debabrata Sikdar
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
- Department of Electronics and Electrical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Aleksandra Fedosyuk
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
| | - Leonora Velleman
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
| | - Daniel J Klemme
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Anthony R J Kucernak
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
| | - Alexei A Kornyshev
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Joshua B Edel
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus , London W12 0BZ , U.K
| |
Collapse
|
15
|
Podder M, Majumder C. Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As(III) and As(V) from wastewater. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Zhang Y, Wang G, Wang S, Wang J, Qiu J. Boron-nitride-carbon nanosheets with different pore structure and surface properties for capacitive deionization. J Colloid Interface Sci 2019; 552:604-612. [DOI: 10.1016/j.jcis.2019.05.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|
17
|
Shih YJ, Dong CD, Huang YH, Huang CP. Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:296-305. [PMID: 30991319 DOI: 10.1016/j.scitotenv.2019.04.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
An electrode made of loofah sponge derived activated carbon supported on nickel foam (AC/Ni) was successfully fabricated and used to remove ammonium ion (NH4+) from aqueous solution. A multilayer adsorption isotherm was used to describe ammonium electro-sorption on AC/Ni electrodes at different temperature, initial NH4+ concentration, and electrical field. The cyclic voltammetry (CV) results suggested that the electrical capacitance of AC/Ni electrodes, with the AC being prepared without preheating (OAC) or with low temperature heating (i.e., 300 AC), were higher than those prepared at high preheating temperature (i.e., 400 AC and 500 AC). Increasing the electro-sorption temperature from 10 to 50 °C decreased the monolayer NH4+ adsorption capacity from 5 to ca. 2-3 mg-N g-1, respectively. Background electrolyte, namely, sodium sulfate, exhibited significant competitive effect on the adsorption of ammonium ion at sodium ion concentration > 10-2 M. The activation energy and heat of adsorption were 9-23.2 kJ mol-1 and -3.7--10.7 kJ mol-1, respectively, indicating a physisorption and exothermic adsorption characteristics. Based on the kinetics and thermodynamics analysis, there was slight increase in the activation energy with elevating preheating temperature, which increased the quantity of micro-pores and surface heterogeneity of the AC materials. Overall, results clearly demonstrated that carbon pyrolysis played a role on the capacitive charging behaviors of electrodes and the efficiency of NH4+ electro-sorption on the AC/Ni electrodes.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Yao-Hui Huang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Chen C, Marcus IM, Waller T, Walker SL. Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles. Anal Bioanal Chem 2018; 410:6133-6140. [DOI: 10.1007/s00216-018-1132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
|
19
|
Potential pulse-assisted immobilization of Myrothecium verrucaria bilirubin oxidase at planar and nanoporous gold electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di J, Oh YJ, Oviedo JP, Bykova J, Fang S, Jiang N, Liu Z, Wang R, Kumar P, Qiao R, Priya S, Cho K, Kim M, Lucas MS, Drummy LF, Maruyama B, Lee DY, Lepró X, Gao E, Albarq D, Ovalle-Robles R, Kim SJ, Baughman RH. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017; 357:773-778. [DOI: 10.1126/science.aam8771] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
|
21
|
Barwe S, Masa J, Andronescu C, Mei B, Schuhmann W, Ventosa E. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films. Angew Chem Int Ed Engl 2017; 56:8573-8577. [DOI: 10.1002/anie.201703963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Barwe
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Justus Masa
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Corina Andronescu
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Bastian Mei
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
- Present address: Photocatalytic Synthesis Group, MESA+ Institute for Nanotechnology; University of Twente; Meander 229, P.O. Box 217 7500 AE Enschede The Netherlands
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Edgar Ventosa
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
- Present address: IMDEA Energy Institute; Avda. Ramón de la Sagra 3 28935 Móstoles Madrid Spain
| |
Collapse
|
22
|
Barwe S, Masa J, Andronescu C, Mei B, Schuhmann W, Ventosa E. Selbstassemblierende und selbstheilende Partikelfilme zur Überwindung der Instabilität nanopartikulärer Katalysatorfilme in der alkalischen Elektrolyse. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan Barwe
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Justus Masa
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Corina Andronescu
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Bastian Mei
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
- Photocatalytic Synthesis Group, MESA+ Institute for Nanotechnology; University of Twente; Meander 229, P.O. Box 217 7500 AE Enschede Niederlande
| | - Wolfgang Schuhmann
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Edgar Ventosa
- Analytische Chemie - Center for Electrochemical Sciences, CES; Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
- IMDEA Energy Institute; Avda. Ramón de la Sagra 3 28935 Móstoles Madrid Spanien
| |
Collapse
|
23
|
Wang Z, Yan Y, Qiao L. Protein adsorption on implant metals with various deformed surfaces. Colloids Surf B Biointerfaces 2017; 156:62-70. [PMID: 28514709 DOI: 10.1016/j.colsurfb.2017.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/30/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
The adsorption of proteins has great influence on the biocompatibility, lubrication and corrosion properties of implantable metals. The subsurface microstructure of metals can be easily changed during the manufacturing or service processes and it is easily ignored. The same chemical composition but with various surface microstructures can result in very different adsorption behaviour. In this study, mechanical polishing, electrochemical polishing and shot peening methods were used to generate different gradient deformed surfaces for CoCrMo alloys. The increase of the residual compressive stress and the decrease of grains to a nano-size on the deformed subsurface can effectively enhance the activity of metal atoms and improve the element diffusion, that is helpful in forming a more compact passive film. This can increase the contents of oxides on the surface, and then enhance the electrostatic force and increase the surface's positive charge density as well as adsorption sites. All of the above facilitated the adsorption of the negatively charged albumin onto the alloy surface.
Collapse
Affiliation(s)
- Zhongwei Wang
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, 100083, China
| | - Yu Yan
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, 100083, China.
| | - Lijie Qiao
- Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, 100083, China
| |
Collapse
|
24
|
Wang H, Ding R, Wang C, Ren X, Wang L, Lv B. Iron cation-induced biphase symbiosis of h-WO3/o-WO3·0.33H2O and their crystal phase transition. CrystEngComm 2017. [DOI: 10.1039/c7ce00774d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
h-WO3 and o-WO3·0.33H2O were proved to coexist in the same hexagonal prism nanoparticle via combination of instrumental characterization and the software simulation.
Collapse
Affiliation(s)
- Huixiang Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Ruimin Ding
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Conghui Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Xiaobo Ren
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Liancheng Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Baoliang Lv
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| |
Collapse
|
25
|
|
26
|
Wu T, Wang G, Zhan F, Dong Q, Ren Q, Wang J, Qiu J. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. WATER RESEARCH 2016; 93:30-37. [PMID: 26878480 DOI: 10.1016/j.watres.2016.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Gang Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Zhan
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Dong
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Qidi Ren
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jianren Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
27
|
Gao X, Porada S, Omosebi A, Liu KL, Biesheuvel PM, Landon J. Complementary surface charge for enhanced capacitive deionization. WATER RESEARCH 2016; 92:275-82. [PMID: 26878361 DOI: 10.1016/j.watres.2016.01.048] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 05/11/2023]
Abstract
Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI cell to examine their salt removal at a fixed charging voltage and both reduced and opposite polarity discharge voltages, and subsequently compared to the salt removal of untreated electrodes. Substantially improved salt removal due to chemical surface charge and the use of a discharge voltage of opposite sign to the charging voltage is clearly demonstrated in these CDI cycling tests, an observation which for the first time validates both enhanced CDI and extended-voltage CDI effects predicted by the Donnan model [Biesheuvel et al., Colloids Interf. Sci. Comm., 10.1016/j.colcom.2015.12.001 (2016)]. Our experimental and theoretical results demonstrate that the use of carbon electrodes with optimized chemical surface charge can extend the CDI working voltage window through discharge voltages of opposite sign to the charging voltage, which can significantly enhance the salt adsorption capacity of CDI electrodes. Thus, in addition to carbon pore size distribution, chemical surface charge in carbon micropores is considered foundational for salt removal in CDI cells.
Collapse
Affiliation(s)
- X Gao
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - S Porada
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - A Omosebi
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - K-L Liu
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA; Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Laboratory of Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - J Landon
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA.
| |
Collapse
|
28
|
Aslan M, Zeiger M, Jäckel N, Grobelsek I, Weingarth D, Presser V. Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:114003. [PMID: 26902896 DOI: 10.1088/0953-8984/28/11/114003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limits the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2-activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm(3) g(-1) and 2113 m(2) g(-1), this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to capitalize on the improved pore structure by admixing as received (more hydrophilic) carbon with CO2-treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates into an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg g(-1) SAC for an optimized 2:1 mixture (by mass).
Collapse
Affiliation(s)
- M Aslan
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Zaffora A, Santamaria M, Di Franco F, Habazaki H, Di Quarto F. Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering – deposited Al–Ta alloys. Phys Chem Chem Phys 2016; 18:351-60. [DOI: 10.1039/c5cp04347f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anodic films were grown to 20 V on sputtering-deposited Al–Ta alloys in ammonium biborate and borate buffer solutions.
Collapse
Affiliation(s)
- A. Zaffora
- Electrochemical Materials Science Laboratory
- DICAM
- Università di Palermo
- Palermo
- Italy
| | - M. Santamaria
- Electrochemical Materials Science Laboratory
- DICAM
- Università di Palermo
- Palermo
- Italy
| | - F. Di Franco
- Electrochemical Materials Science Laboratory
- DICAM
- Università di Palermo
- Palermo
- Italy
| | - H. Habazaki
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
| | - F. Di Quarto
- Electrochemical Materials Science Laboratory
- DICAM
- Università di Palermo
- Palermo
- Italy
| |
Collapse
|
30
|
Podder M, Majumder C. Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on Sawdust/MnFe2O4 composite. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
31
|
Shih YJ, Su CC, Huang C. The synthesis, characterization, and application of a platinum modified graphite electrode (Pt/G) exemplified by chloride oxidation. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Gao X, Omosebi A, Landon J, Liu K. Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10920-6. [PMID: 26302134 DOI: 10.1021/acs.est.5b02320] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microporous SpectraCarb carbon cloth was treated using nitric acid to enhance negative surface charges of COO(-) in a neutral solution. This acid-treated carbon was further modified by ethylenediamine to attach -NH2 surface functional groups, resulting in positive surface charges of -NH3(+) via pronation in a neutral solution. Through multiple characterizations, in comparison to pristine SpectraCarb carbon, amine-treated SpectraCarb carbon displays a decreased potential of zero charge but an increased point of zero charge, which is opposed to the effect obtained for acid-treated SpectraCarb carbon. An inverted capacitive deionization cell was constructed using amine-treated cathodes and acid-treated anodes, where the cathode is the negatively polarized electrode and the anode is the positively polarized electrode. Constant-voltage switching operation using NaCl solution showed that the salt removal capacity was approximately 5.3 mg g(-1) at a maximum working voltage of 1.1/0 V, which is an expansion in both the salt capacity and potential window from previous i-CDI results demonstrated for carbon xerogel materials. This improved performance is accounted for by the enlarged cathodic working voltage window through ethylenediamine-derived functional groups, and the enhanced microporosity of the SpectraCarb electrodes for salt adsorption. These results expand the use of i-CDI for efficient desalination applications.
Collapse
Affiliation(s)
- Xin Gao
- Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40511, United States
| | - Ayokunle Omosebi
- Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40511, United States
| | - James Landon
- Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40511, United States
| | - Kunlei Liu
- Center for Applied Energy Research, University of Kentucky , Lexington, Kentucky 40511, United States
- Department of Mechanical Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|
34
|
Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8295-311. [PMID: 26193296 PMCID: PMC4515723 DOI: 10.3390/ijerph120708295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 01/03/2023]
Abstract
The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces.
Collapse
|
35
|
Yusop AHM, Daud NM, Nur H, Kadir MRA, Hermawan H. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep 2015; 5:11194. [PMID: 26057073 PMCID: PMC4460907 DOI: 10.1038/srep11194] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/15/2015] [Indexed: 11/09/2022] Open
Abstract
Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Medical Devices Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Nurizzati Mohd Daud
- Medical Devices Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Medical Devices Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hendra Hermawan
- Medical Devices Technology Group (MediTeg), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
- Dept. of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Quebec City, G1V 0A6, Canada
| |
Collapse
|
36
|
Maleki-Ghaleh H, Khalil-Allafi J, Sadeghpour-Motlagh M, Shakeri MS, Masoudfar S, Farrokhi A, Beygi Khosrowshahi Y, Nadernezhad A, Siadati MH, Javidi M, Shakiba M, Aghaie E. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2605-2617. [PMID: 25064465 DOI: 10.1007/s10856-014-5283-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.
Collapse
Affiliation(s)
- H Maleki-Ghaleh
- Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-11996, Tabriz, Iran,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ter-Ovanessian B, Alemany-Dumont C, Normand B. Electronic and transport properties of passive films grown on different Ni-Cr binary alloys in relation to the pitting susceptibility. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Single frequency electrochemical impedance investigation of zero charge potential for different surface states of Cu–Ni alloys. J APPL ELECTROCHEM 2013. [DOI: 10.1007/s10800-013-0642-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4. J Colloid Interface Sci 2011; 367:415-21. [PMID: 22088764 DOI: 10.1016/j.jcis.2011.10.022] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 11/23/2022]
Abstract
The adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe(2)O(4) prepared by a sol-gel process was investigated. Single batch experiment was employed to test pH effect, sorption kinetics, and isotherm. The interaction mechanism and the regeneration were also explored. The results showed that Pb(II) and Cu(II) removal was strongly pH-dependent with an optimum pH value of 6.0, and the equilibrium time was 3.0 h. The adsorption process could be described by a pseudo-second-order model, and the initial sorption rates were 526.3 and 2631.5 μmol g(-1)min(-1) for Pb(II) and Cu(II) ions, respectively. The equilibrium data were corresponded well with Langmuir isotherm, and the maximum adsorption capacities were 333.3 and 952.4 μmol g(-1) for Pb(II) and Cu(II) ions, respectively. The adsorbed Pb(II) and Cu(II) ions were in the form of the complex with oxygen in carboxyl and hydroxyl groups binding on the surface of magnetic porous MnFe(2)O(4). The sorbent could be reused for five times with high removal efficiency.
Collapse
|
40
|
Kosmulski M. The pH-dependent surface charging and points of zero charge: V. Update. J Colloid Interface Sci 2010; 353:1-15. [PMID: 20869721 DOI: 10.1016/j.jcis.2010.08.023] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years.
Collapse
Affiliation(s)
- Marek Kosmulski
- Department of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|