1
|
Kong H, Gupta S, Pérez-Torres AF, Höhn C, Bogdanoff P, Mayer MT, van de Krol R, Favaro M, Abdi FF. Electrolyte selection toward efficient photoelectrochemical glycerol oxidation on BiVO 4. Chem Sci 2024; 15:10425-10435. [PMID: 38994405 PMCID: PMC11234828 DOI: 10.1039/d4sc01651c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Glycerol, a primary by-product of biodiesel production, can be oxidized into various value-added chemicals, significantly enhancing the techno-economic value of photoelectrochemical (PEC) cells. Several studies have explored various photoelectrode materials and co-catalysts, but the influence of electrolytes on PEC glycerol oxidation has remained relatively unexplored despite its significance. Here, we explore the impact of various acidic (pH = 2) electrolytes, namely NaNO3, NaClO4, Na2SO4, K2SO4, and KPi, on PEC glycerol oxidation using nanoporous thin film BiVO4 as a model photoanode. Our experimental findings reveal that the choice of electrolyte anion and cation significantly affects the PEC performance (i.e., photocurrent, onset potential, stability, and selectivity towards value-added products) of BiVO4 for glycerol oxidation. To explain this interesting phenomenon, we correlate the observed performance trend with the ion specificity in the Hofmeister series as well as the buffering capacity of the electrolytes. Notably, NaNO3 is identified as the optimal electrolyte for PEC glycerol oxidation with BiVO4 when considering various factors such as stability and production rates for glycerol oxidation reaction (GOR) products, surpassing the previously favored Na2SO4. Glycolaldehyde emerges as the most dominant product with ∼50% selectivity in NaNO3. The general applicability of our findings is confirmed by similar observation in electrochemical (EC) GOR with a polycrystalline platinum anode. Overall, these results emphasize the critical role of electrolyte selection in enhancing the efficiency of EC/PEC glycerol oxidation.
Collapse
Affiliation(s)
- Heejung Kong
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Siddharth Gupta
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin 14195 Berlin Germany
| | - Andrés F Pérez-Torres
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Christian Höhn
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Peter Bogdanoff
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Matthew T Mayer
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin 14195 Berlin Germany
| | - Roel van de Krol
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Marco Favaro
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Fatwa F Abdi
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
- School of Energy and Environment, City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong S.A.R. China
| |
Collapse
|
2
|
Fuchs T, Briega-Martos V, Fehrs JO, Qiu C, Mirolo M, Yuan C, Cherevko S, Drnec J, Magnussen OM, Harrington DA. Driving Force of the Initial Step in Electrochemical Pt(111) Oxidation. J Phys Chem Lett 2023; 14:3589-3593. [PMID: 37018542 DOI: 10.1021/acs.jpclett.3c00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step of electrochemical surface oxidation is extraction of a metal atom from its lattice site to a location in a growing oxide. Here we show by fast simultaneous electrochemical and in situ high-energy surface X-ray diffraction measurements that the initial extraction of Pt atoms from Pt(111) is a fast, potential-driven process, whereas charge transfer for the related formation of adsorbed oxygen-containing species occurs on a much slower time scale and is evidently uncoupled from the extraction process. It is concluded that potential plays a key independent role in electrochemical surface oxidation.
Collapse
Affiliation(s)
- Timo Fuchs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Valentín Briega-Martos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jan O Fehrs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Canrong Qiu
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Marta Mirolo
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Chentian Yuan
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jakub Drnec
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olaf M Magnussen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - David A Harrington
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
3
|
Electric Double Layer: The Good, the Bad, and the Beauty. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The electric double layer (EDL) is the most important region for electrochemical and heterogeneous catalysis. Because of it, its modeling and investigation are something that can be found in the literature for a long time. However, nowadays, it is still a hot topic of investigation, mainly because of the improvement in simulation and experimental techniques. The present review aims to present the classical models for the EDL, as well as presenting how this region affects electrochemical data in everyday experimentation, how to obtain and interpret information about EDL, and, finally, how to obtain some molecular point of view insights on it.
Collapse
|
4
|
Jacobse L, Vonk V, McCrum IT, Seitz C, Koper MT, Rost MJ, Stierle A. Electrochemical oxidation of Pt(111) beyond the place-exchange model. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
SO2 electrooxidation reaction on Pt single crystal surfaces in acidic media: Electrochemical and in situ FTIR studies. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Valizadeh A, Aleshkevych P, Najafpour MM. Role of Pt and PtO 2 in the Oxygen-Evolution Reaction in the Presence of Iron under Alkaline Conditions. Inorg Chem 2021; 61:613-621. [PMID: 34902241 DOI: 10.1021/acs.inorgchem.1c03331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxygen-evolution reaction (OER) through water oxidation is an inevitable reaction for water splitting toward storing energy. However, OER is a four-electron and slow reaction, which is also a bottleneck for water splitting. To find the role of Pt and PtO2 on the OER in the presence of Fe, the electrochemistry of Pt foil and PtO2 is investigated in the absence/presence of K2FeO4 as a soluble Fe salt at pH ≈ 13. After the addition of K2FeO4, a remarkable increase in the OER is recorded in the presence of Pt or PtO2. The obtained catalysts were characterized by operando visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, electron-spin resonance spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods. KOH solutions usually contain Fe and/or Ni impurities. It is found that neither Pt nor PtO2 is an OER catalyst in a Ni/Fe-free KOH, and even at an overpotential of 570 mV in purified KOH (pH ≈ 13), no clear OER was observed.
Collapse
Affiliation(s)
- Amirreza Valizadeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran.,Research Center for Basic Sciences and Modern Technologies, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
| |
Collapse
|
7
|
Huang K, Shin K, Henkelman G, Crooks RM. Correlating Surface Structures and Electrochemical Activity Using Shape-Controlled Single-Pt Nanoparticles. ACS NANO 2021; 15:17926-17937. [PMID: 34730934 DOI: 10.1021/acsnano.1c06281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a method for synthesizing and studying shape-controlled, single Pt nanoparticles (NPs) supported on carbon nanoelectrodes. The key advance is that the synthetic method makes it possible to produce single, electrochemically active NPs with a vast range of crystal structures and sizes. Equally important, the NPs can be fully characterized, and, therefore, the electrochemical properties of the NPs can be directly correlated to the size and structure of a single shape. This makes it possible to directly correlate experimental results to first-principles theory. Because just one well-characterized NP is analyzed at a time, the difficulty of applying a theoretical analysis to an ensemble of NPs having different sizes and structures is avoided. In this article, we report on two specific Pt NP shapes having sizes on the order of 200 nm: concave hexoctahedral (HOH) and concave trapezohedral (TPH). The former has {15 6 1} facets and the latter {10 1 1} facets. The electrochemical properties of these single NPs for the formic acid oxidation (FAO) reaction are compared to those of a single, spherical polycrystalline Pt NP of the same size. Finally, density functional theory, performed prior to the electrochemical studies, were used to interpret the experimental results of the FAO experiments.
Collapse
|
8
|
da Silva KN, Sitta E. Oscillatory dynamics during the methanol electrooxidation reaction on Pt(111). Phys Chem Chem Phys 2021; 23:22263-22272. [PMID: 34644370 DOI: 10.1039/d1cp02490f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite several papers describing the oscillatory methanol electrooxidation reaction (OMOR) catalyzed by polycrystalline Pt, these dynamic instabilities are less explored on single crystalline surfaces. Herein, we observed and mapped for the first time the OMOR on Pt(111) in non-adsorbing anion solutions as well as in the presence of small amounts of sulfate anions. Period 1 oscillations with oscillation frequencies from 1.2 to 2.0 Hz were observed for methanol concentrations higher than 1.0 M, with no evolution to more complex patterns. These oscillations occur in the potential range in which PtOH is partially covering the surface without irreversible oxidation processes. Small changes in both the mean potential (Em) and the poisoning rate along the time-series were observed, the so-called drift, and were explained in terms of the accumulation of intermediates at the interface. The presence of sulfate strongly inhibits the OMOR, and the results are discussed in terms of sulfate adlayer formation on {111} domains.
Collapse
Affiliation(s)
- Kaline Nascimento da Silva
- Chemistry Department, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos, 13565-905, Brazil.
| | - Elton Sitta
- Chemistry Department, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos, 13565-905, Brazil. .,Center for Innovation on New Energies, Campinas, 13083-841, Brazil
| |
Collapse
|
9
|
Hersbach TJP, Garcia AC, Kroll T, Sokaras D, Koper MTM, Garcia-Esparza AT. Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. P. Hersbach
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Angel T. Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| |
Collapse
|
10
|
Wen BY, Chen QQ, Radjenovic PM, Dong JC, Tian ZQ, Li JF. In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures. Annu Rev Phys Chem 2021; 72:331-351. [PMID: 33472380 DOI: 10.1146/annurev-physchem-090519-034645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.
Collapse
Affiliation(s)
- Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Qing-Qi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
11
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
12
|
Barbosa AFB, Del Colle V, Previdello BAF, Tremiliosi-Filho G. Electrooxidation of Acetaldehyde on Pt(111) Surface Modified by Random Defects and Tin Decoration. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Reprint of "Effect of tin deposition over electrogenerated random defects on Pt(111) surfaces onto ethanol electrooxidation: Electrochemical and FTIR studies". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bak J, Kim H, Lee S, Kim M, Kim EJ, Roh J, Shin J, Choi CH, Cho E. Boosting the Role of Ir in Mitigating Corrosion of Carbon Support by Alloying with Pt. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Junu Bak
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - SangJae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - MinJoong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eom-Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - JeongHan Roh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - JaeWook Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-0497-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Hanselman S, McCrum IT, Rost MJ, Koper MTM. Thermodynamics of the formation of surface PtO 2 stripes on Pt(111) in the absence of subsurface oxygen. Phys Chem Chem Phys 2020; 22:10634-10640. [PMID: 31701114 DOI: 10.1039/c9cp05107d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper examines the thermodynamics of PtO2 stripes formed as intermediates of Pt(111) surface oxidation as a function of the degree of dilation parallel to the stripes, using density functional theory and atomistic thermodynamics. Internal energy calculations predict 7/8 and 8/9 stripe structures to dominate at standard temperature and pressure, which contain 7 or 8 elevated PtO2 units per 8 or 9 supporting surface Pt atoms, respectively. Moreover, we found a thermodynamic optimum with respect to mean in-stripe Pt-Pt spacing close to that of α-PtO2. Vibrational zero point energies, including bulk layer contributions, make a small but significant contribution to the stripe free energies, leading to the 6/7 stripe being most stable, although the 7/8 structure is still close in free energy. These findings correspond closely to experimental observations, providing insight into the driving force for oxide stripe formation and structure as the initial intermediate of platinum surface oxidation, and aiding our understanding of platinum catalysts and surface roughening under oxidative conditions.
Collapse
Affiliation(s)
- Selwyn Hanselman
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Waidhas F, Haschke S, Khanipour P, Fromm L, Görling A, Bachmann J, Katsounaros I, Mayrhofer KJJ, Brummel O, Libuda J. Secondary Alcohols as Rechargeable Electrofuels: Electrooxidation of Isopropyl Alcohol at Pt Electrodes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00818] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Sandra Haschke
- Lehrstuhl Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Peyman Khanipour
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | - Lukas Fromm
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Lehrstuhl Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, Saint Petersburg 198504, Russia
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | | | | |
Collapse
|
18
|
Yadav A, Pandey R, Liao TW, Zharinov VS, Hu KJ, Vernieres J, Palmer RE, Lievens P, Grandjean D, Shacham-Diamand Y. A platinum-nickel bimetallic nanocluster ensemble-on-polyaniline nanofilm for enhanced electrocatalytic oxidation of dopamine. NANOSCALE 2020; 12:6047-6056. [PMID: 32129392 DOI: 10.1039/c9nr09730a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a new approach to design flexible functional material platforms based on electropolymerized polyaniline (PANI) polymer nanofilms modified with bimetallic nanoclusters (NCs) for efficient electro-oxidation of small organic molecules. Composition defined ligand free Pt0.75Ni0.25 NCs were synthesized in the gas phase using the Cluster Beam Deposition (CBD) technology and characterized using RToF, HAADF-STEM, XAFS and XPS. NCs were then directly deposited on PANI coated templates to construct electrodes. Dopamine (DP) molecules were used as a representative organic analyte and the influence of the NC-PANI hybrid atomistic structure on the electrochemical and electrocatalytic performance was investigated. The as prepared, nearly monodispersed, Pt0.75Ni0.25 NCs of ca. 2 nm diameter featuring a PtOx surface combined with a shallow platelet-like Ni-O(OH) phase formed a densely packed active surface on PANI at ultralow metal coverages. Electrochemical measurements (EIS and CV) show a 2.5 times decrease in charge transfer resistance and a remarkable 6-fold increase at lower potential in the mass activity for Pt0.75Ni0.25 NCs in comparison with their pure Pt counterparts. The enhanced electrochemical performance of the Pt0.75Ni0.25 NC hybrid's interface is ascribed to the formation of mixed Pt metal and Ni-O(OH) phases at the surface of the alloyed PtNi cores of the bimetallic NCs under electrochemical conditions combined with an efficient charge conduction pathway between NCs.
Collapse
Affiliation(s)
- Anupam Yadav
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barbosa AF, Del Colle V, Galiote NA, Tremiliosi-Filho G. Effect of tin deposition over electrogenerated random defects on Pt(111) surfaces onto ethanol electrooxidation: Electrochemical and FTIR studies. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Jacobse L, Rost MJ, Koper MTM. Atomic-Scale Identification of the Electrochemical Roughening of Platinum. ACS CENTRAL SCIENCE 2019; 5:1920-1928. [PMID: 31893221 PMCID: PMC6935890 DOI: 10.1021/acscentsci.9b00782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 05/27/2023]
Abstract
Electrode degradation under oxidizing conditions is a major drawback for large-scale applications of platinum electrocatalysts. Subjecting Pt(111) to oxidation-reduction cycles is known to lead to the growth of nanoislands. We study this phenomenon using a combination of simultaneous in situ electrochemical scanning tunneling microscopy and cyclic voltammetry. Here, we present a detailed analysis of the formed islands, deriving the (evolution of the) average island growth shape. From the island shapes, we determine the densities of atomic-scale defect sites, e.g., steps and facets, which show an excellent correlation with the different voltammetric hydrogen adsorption peaks. Based on this combination of electrochemical scanning tunneling microscopy (EC-STM) and CV data, we derive a detailed atomistic picture of the nanoisland evolution during potential cycling, delivering new insights into the initial stages of platinum electrode degradation.
Collapse
Affiliation(s)
- Leon Jacobse
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- DESY
NanoLab, Deutsches Elektronensynchrotron
DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Marcel J. Rost
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Silva CD, Corradini PG, Mascaro LH, Lemos S, Pereira EC. Using a multiway chemometric tool in the evaluation of methanol electro-oxidation mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Barbosa AFB, Del Colle V, Gómez-Marín AM, Angelucci CA, Tremiliosi-Filho G. Effect of the Random Defects Generated on the Surface of Pt(111) on the Electro-oxidation of Ethanol: An Electrochemical Study. Chemphyschem 2019; 20:3045-3055. [PMID: 31342615 DOI: 10.1002/cphc.201900544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Indexed: 11/06/2022]
Abstract
In the present work, the Pt(111) surface was disordered by controlling the density of {110}- and {100}-type defects. The cyclic voltammogram (CV) of a disordered surface in acid media consists of three contributions within the hydrogen adsorption/desorption region: one from the well-ordered Pt(111) symmetry and the other two transformed from the {111}-symmetry with contributions of {110}- and {100}-type surface defects. The ethanol oxidation reaction (EOR) was studied on these disordered surfaces. Electrochemical studies were performed in 0.1 M HClO4 +0.1 M ethanol using cyclic voltammetry and chronoamperometry. Changes in current densities associated to the specific potentials at which each oxidation peak appears suggest that different surface domains of disordered platinum oxidize ethanol independently. Additionally, as the surface-defect density increases, the EOR is catalysed better. This tendency is directly observed from the CV parameters because the onset and peak potentials are shifted to less positive values and accompanied by increases in the oxidation-peak current on disordered surfaces. Similarly, the CO oxidation striping confirmed this same tendency. Chronoamperometric experiments showed two opposite behaviors at short oxidation times (0.1 s). The EOR was quickly catalyzed on the most disordered surface, Pt(111)-16, and was then rapidly deactivated. These results provide fundamental information on the EOR, which contributes to the atomic-level understanding of real catalysts.
Collapse
Affiliation(s)
- Amaury F B Barbosa
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil.,Federal Institute of Alagoas-Campus Penedo, Rod. Engenheiro Joaquim Gonçalves, s/n, 57200-000 -, Penedo, Alagoas, Brazil
| | - Vinicius Del Colle
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil.,Department of Chemistry, Federal University of Alagoas-Campus Arapiraca, Av. Manoel Severino Barbosa s/n, 57309-005 -, Arapiraca, Alagoas, Brazil
| | - Ana M Gómez-Marín
- Department of Chemistry, Division of Fundamental Sciences, Technological Institute of Aeronautics, 12228-900 -, São José dos Campos, São Paulo, Brazil
| | - Camilo A Angelucci
- Federal University of ABC, Center for Natural and Human Sciences, Av. Dos Estados, 5001, 09210-580 -, Santo André, São Paulo, Brazil
| | - Germano Tremiliosi-Filho
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590 -, São Carlos, São Paulo, Brazil
| |
Collapse
|
23
|
Maagaard T, Tiwari A, Chorkendorff I, Horch S. On the Possibilities and Considerations of Interfacing Ultra‐High Vacuum Equipment with an Electrochemical Setup. Chemphyschem 2019; 20:3024-3029. [DOI: 10.1002/cphc.201900588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas Maagaard
- SurfCat, DTU PhysicsThe Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Aarti Tiwari
- SurfCat, DTU PhysicsThe Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Ib Chorkendorff
- SurfCat, DTU PhysicsThe Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Sebastian Horch
- SurfCat, DTU PhysicsThe Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
24
|
Effect of mass transfer process on hydrogen adsorption on polycrystalline platinum electrode in sulfuric acid solution. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and Perspectives of Electrochemical CO 2 Reduction on Copper in Aqueous Electrolyte. Chem Rev 2019; 119:7610-7672. [PMID: 31117420 DOI: 10.1021/acs.chemrev.8b00705] [Citation(s) in RCA: 1593] [Impact Index Per Article: 265.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.
Collapse
Affiliation(s)
- Stephanie Nitopi
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Erlend Bertheussen
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Soren B Scott
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Xinyan Liu
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Albert K Engstfeld
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Sebastian Horch
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Brian Seger
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ifan E L Stephens
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Department of Materials, Imperial College London, Royal School of Mines, London SW7 2AZ, United Kingdom
| | - Karen Chan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher Hahn
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ib Chorkendorff
- Section for Surface Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
26
|
Zhao X, Gunji T, Kaneko T, Yoshida Y, Takao S, Higashi K, Uruga T, He W, Liu J, Zou Z. An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. J Am Chem Soc 2019; 141:8516-8526. [PMID: 31050410 DOI: 10.1021/jacs.9b02049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A method enabling the accurate and precise correlation between structures and properties is critical to the development of efficient electrocatalysts. To this end, we developed an integrated single-electrode method (ISM) that intimately couples electrochemical rotating disk electrodes, in situ/operando X-ray absorption fine structures, and aberration-corrected transmission electron microscopy on identical electrodes. This all-in-one method allows for the one-to-one, in situ/operando, and atomic-scale correlation between structures of electrocatalysts with their electrochemical reactivities, distinct from common methods that adopt multisamples separately for electrochemical and physical characterizations. Because the atomic step is one of the most fundamentally structural elements in electrocatalysts, we demonstrated the feasibility of ISM by exploring the roles of atomic steps in the reactivity of electrocatalysts. In situ and atomic-scale evidence shows that low-coordinated atomic steps not only generate reactive species at low potentials and strengthen surface contraction but also act as templates to disturb interfacial water networks and thus affect the reactivity of electrocatalysts. This template role interprets the long-standing puzzle regarding why high-index facets are active for the oxygen reduction reaction in acidic media. The ISM as a fundamentally new method for workflows should aid the study of many other electrocatalysts regarding their nature of active sites and operative mechanisms.
Collapse
Affiliation(s)
- Xiao Zhao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takao Gunji
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Shinobu Takao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute , SPring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Wenxiang He
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| |
Collapse
|
27
|
Bizzotto F, Ouhbi H, Fu Y, Wiberg GKH, Aschauer U, Arenz M. Examining the Structure Sensitivity of the Oxygen Evolution Reaction on Pt Single‐Crystal Electrodes: A Combined Experimental and Theoretical Study. Chemphyschem 2019; 20:3154-3162. [DOI: 10.1002/cphc.201900193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Bizzotto
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Hassan Ouhbi
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Yongchun Fu
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: College of Chemistry and Chemical EngineeringHunan University 410082 Changsha China
| | - Gustav K. H. Wiberg
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: Department of Physical ScienceHarold Washington College, City colleges of Chicago 30 E Lake St Chicago IL 60601 USA
| | - Ulrich Aschauer
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Matthias Arenz
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
28
|
Tam B, Duca M, Wang A, Fan M, Garbarino S, Guay D. Promotion of Glycerol Oxidation by Selective Ru Decoration of (100) Domains at Nanostructured Pt Electrodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian Tam
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
| | - Matteo Duca
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
| | - Andrew Wang
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
| | - Mengyang Fan
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
| | - Sébastien Garbarino
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
- PRIMA Québec 505 Bd de Maisonneuve Ouest Montréal H3A 3C2 Canada
| | - Daniel Guay
- Institut National de la Recherche Scientifique-ÉnergieMatériaux et Télécommunications (INRS - EMT) 1650 Boulevard Lionel Boulet Varennes Québec J3X 1S2 Canada
| |
Collapse
|
29
|
Gómez-Marín A, Feliu J, Edson T. Reaction Mechanism for Oxygen Reduction on Platinum: Existence of a Fast Initial Chemical Step and a Soluble Species Different from H2O2. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Gómez-Marín
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900 São Paulo, Brazil
| | - Juan Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apt 99, E-03080 Alicante, Spain
| | - Ticianelli Edson
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
| |
Collapse
|
30
|
Hersbach TJP, Mints VA, Calle-Vallejo F, Yanson AI, Koper MTM. Anisotropic etching of rhodium and gold as the onset of nanoparticle formation by cathodic corrosion. Faraday Discuss 2018; 193:207-222. [PMID: 27722596 DOI: 10.1039/c6fd00078a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cathodic corrosion is a phenomenon in which negatively polarized metal electrodes are degraded by cathodic etching and nanoparticle formation. Though these changes are dramatic and sometimes even visible by eye, the exact mechanisms underlying cathodic corrosion are still unclear. This work aims to improve the understanding of cathodic corrosion by studying its onset on rhodium and gold electrodes, which are subjected to various constant cathodic potentials in 10 M NaOH. After this polarization, the electrodes are studied using cyclic voltammetry and scanning electron microscopy, allowing a corrosion onset potential of -1.3 V vs. NHE for rhodium and -1.6 V vs. NHE for gold to be defined. The mildness of the potentials on both metals suggests that cathodic corrosion is less extreme and more ubiquitous than expected. Furthermore, we are able to observe well-defined rectangular etch pits on rhodium. Combined with rhodium cyclic voltammetry, this indicates a strong preference for forming (100) sites during corrosion. In contrast, a (111) preference is indicated on gold by voltammetry and the presence of well-oriented quasi-octahedral nanoparticles. This different etching behavior is suggested to be caused by preferential adsorption of sodium ions to surface defects, as is confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Thomas J P Hersbach
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | - Vladislav A Mints
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | - Federico Calle-Vallejo
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | - Alexei I Yanson
- Cosine Measurement Systems, Oosteinde 36, 2361 HE Warmond, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
31
|
Jacobse L, Huang YF, Koper MTM, Rost MJ. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). NATURE MATERIALS 2018; 17:277-282. [PMID: 29434306 DOI: 10.1038/s41563-017-0015-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a 'nucleation and early growth' regime of nanoisland formation, and a 'late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the 'late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the 'nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.
Collapse
Affiliation(s)
- Leon Jacobse
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yi-Fan Huang
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Marcel J Rost
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
32
|
Arán-Ais RM, Solla-Gullón J, Herrero E, Feliu JM. On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M, Kovács G, Aleksandrov HA, Neyman KM, Matolín V, Libuda J. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Baroody HA, Jerkiewicz G, Eikerling MH. Modelling oxide formation and growth on platinum. J Chem Phys 2017; 146:144102. [DOI: 10.1063/1.4979121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Heather A. Baroody
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Michael H. Eikerling
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
35
|
Huang YF, Koper MTM. Electrochemical Stripping of Atomic Oxygen on Single-Crystalline Platinum: Bridging Gas-Phase and Electrochemical Oxidation. J Phys Chem Lett 2017; 8:1152-1156. [PMID: 28225278 PMCID: PMC5357804 DOI: 10.1021/acs.jpclett.7b00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
To understand the interaction between Pt and surface oxygenated species in electrocatalysis, this paper correlates the electrochemistry of atomic oxygen on Pt formed in the gas phase with electrochemically generated oxygen species on a variety of single-crystal platinum surfaces. The atomic oxygen adsorbed on single-crystalline Pt electrodes, made by thermal dissociation of molecular oxygen, is used for voltammetry measurements in acidic electrolytes (HClO4 and H2SO4). The essential knowledge of coverage, binding energy, and surface construction of atomic oxygen is correlated with the charge, potential, and shape of voltammograms, respectively. The differences of the voltammograms between the oxide made by thermal dissociation of molecular oxygen and electrochemical oxidation imply that atomic oxygen is not an intermediate of the electrochemical oxidation of Pt(111). The reconstruction of (100) terrace and step and the low-potential stripping of atomic oxygen on (111) step site provide insight into the first stages of degradation of Pt-based electrocatalysts.
Collapse
|
36
|
Ruge M, Drnec J, Rahn B, Reikowski F, Harrington DA, Carlà F, Felici R, Stettner J, Magnussen OM. Structural Reorganization of Pt(111) Electrodes by Electrochemical Oxidation and Reduction. J Am Chem Soc 2017; 139:4532-4539. [DOI: 10.1021/jacs.7b01039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ruge
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Jakub Drnec
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Björn Rahn
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Finn Reikowski
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - David A. Harrington
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Francesco Carlà
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Roberto Felici
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Jochim Stettner
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
37
|
Aoki KJ, Chen J, Zeng X, Wang Z. Decrease in the double layer capacitance by faradaic current. RSC Adv 2017. [DOI: 10.1039/c7ra01770g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study describes the reverse of the well-known double layer effects on charge transfer kinetics in the relationship between a cause and an effect.
Collapse
Affiliation(s)
| | - Jingyuan Chen
- Department of Applied Physics
- University of Fukui
- Fukui
- 910-0017 Japan
| | - Xiangdong Zeng
- Department of Applied Physics
- University of Fukui
- Fukui
- 910-0017 Japan
| | - Zhaohao Wang
- Department of Applied Physics
- University of Fukui
- Fukui
- 910-0017 Japan
| |
Collapse
|
38
|
Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Temmel SE, Fabbri E, Pergolesi D, Lippert T, Schmidt TJ. Investigating the Role of Strain toward the Oxygen Reduction Activity on Model Thin Film Pt Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01836] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra E. Temmel
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Emiliana Fabbri
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Daniele Pergolesi
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Thomas Lippert
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Laboratory
of Inorganic Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Thomas J. Schmidt
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Laboratory
of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
40
|
Fernández PS, Tereshchuk P, Angelucci CA, Gomes JF, Garcia AC, Martins CA, Camara GA, Martins ME, Da Silva JLF, Tremiliosi-Filho G. How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces? Phys Chem Chem Phys 2016; 18:25582-25591. [PMID: 27711508 DOI: 10.1039/c6cp04768h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycerol electrooxidation reaction (GEOR) has attracted huge interest in the last decade due to the very low price and availability of this polyol. In this work, we studied the GEOR on Pt(111) electrodes by introducing different densities of random defects. Our results showed that the generation of defects on Pt(111) slightly modified the GEOR onset potential, however it generates changes in the voltammetric oxidation charges and also in the relative production of CO2 to carbonyl containing compounds, C[double bond, length as m-dash]O. The voltammetric profiles in the forward scan show two oxidation peaks. FTIR data show that the first one is connected with the GlOH dissociative adsorption to form CO (and others intermediates) while the second one, at higher potentials, matches the onsets of the CO oxidation to CO2 and the C[double bond, length as m-dash]O production. FTIR also confirms that the lower activity of defected electrodes at lower potentials is connected to a higher CO poisoning. DFT calculations show that the presence of CO molecules on a Pt defected surface keeps water and GlOH molecules far from the surface and linked by H bonds. This paper is the last of a series of three works where we explore the GEOR on an important number of different Pt surfaces. These works show that it is difficult to oxidize GlOH at potentials lower than 0.6 V (under our experimental conditions) without suffering an important electrode poisoning (mainly by CO). Since the structure of nanoparticles might be mimicked by defected single crystals, these sets of reports provide a considerable amount of information concerning the influence of such surfaces towards GlOH reaction in acidic media. Therefore, if the well-known "nano"-effect does not produce substantial changes in the activity of Pt materials, they are not useful to be applied in a Direct Glycerol Fuel Cell (DGFC). On the other hand, it is very interesting that the density of electrode defects permits us to tune the relative production of CO2 to C[double bond, length as m-dash]O.
Collapse
Affiliation(s)
- Pablo S Fernández
- Chemistry Institute, State University of Campinas, PO Box 6154, 13083-970, Campinas SP, Brazil.
| | - Polina Tereshchuk
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP, Brazil
| | - Camilo A Angelucci
- Center of Natural and Human Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André, Brazil
| | - Janaina F Gomes
- Chemical Engineering Department, Federal University of São Carlos, P.O. Box 676, 13565-905, São Carlos, SP, Brazil
| | - Amanda C Garcia
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP, Brazil
| | - Cauê A Martins
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, 79804-970, Dourados, MS, Brazil
| | - Giuseppe A Camara
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, C.P. 549, 79070-900, Campo Grande, MS, Brazil
| | - María E Martins
- Physical Chemistry Research Institute (INIFTA), Exact Sciences Faculty, CCT La Plata-CONICET, C.P. 1900, La Plata, Argentina
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP, Brazil
| | - Germano Tremiliosi-Filho
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
41
|
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nat Commun 2016; 7:12653. [PMID: 27554398 PMCID: PMC4999510 DOI: 10.1038/ncomms12653] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. The corrosion mechanism of metals at cathodic potentials is still poorly understood. Here the authors report the cathodic corrosion onset potential of platinum in concentrated sodium hydroxide, showing etching anisotropy, and present a framework to determine such characteristics for other metals/solutions.
Collapse
|
42
|
Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat Commun 2016; 7:12440. [PMID: 27514695 PMCID: PMC4990643 DOI: 10.1038/ncomms12440] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. Understanding degradation of platinum catalysts during oxygen reduction is vital for improving proton-exchange membrane fuel cells. Here, the authors identify intermediate stages in the oxidation of Pt(111) and Pt(100) in perchloric acid using in situ shell-isolated nanoparticle-enhanced Raman spectroscopy.
Collapse
|
43
|
Du L, Kong F, Chen G, Du C, Gao Y, Yin G. A review of applications of poly(diallyldimethyl ammonium chloride) in polymer membrane fuel cells: From nanoparticles to support materials. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62480-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
|
45
|
Qu J, Ye F, Chen D, Feng Y, Yao Q, Liu H, Xie J, Yang J. Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications. Adv Colloid Interface Sci 2016; 230:29-53. [PMID: 26821984 DOI: 10.1016/j.cis.2015.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The heterogeneously structured nanomaterials usually exhibit enhanced catalytic properties in comparison with each one of the constituent materials due to the synergistic effect among their different domains. Within the last decade, the development of wet-chemistry methods leads to the blossom of research in materials with heterogeneous nanostructures, which creates great opportunities also a tremendous challenge to apply these materials for highly efficient energy conversion. We herein would systematically introduce the latest research developments in Pt-based nanomaterials with heterogeneous structures, e.g. core-shell, hollow interiors, stellated/dendritic morphologies, dimeric, or composite construction, and their potential applications as electrocatalysts toward direct methanol fuel cell reactions, including methanol oxidation reaction and oxygen reduction reaction in acidic conditions, aiming at the summarization of the fundamentals and technical approaches in synthesis, fabrication and processing of heterogeneous nanomaterials so as to provide the readers a systematic and coherent picture of the filed. This review will focus on the intrinsic relationship between the catalytic properties and the physical or/and chemical effects in the heterogeneous nanomaterials, providing for technical bases for effectively developing novel electrocatalyts with low cost, enhanced activity and high selectivity.
Collapse
|
46
|
Role of the interfacial water structure on electrocatalysis: Oxygen reduction on Pt(1 1 1) in methanesulfonic acid. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Jinnouchi R, Kodama K, Suzuki T, Morimoto Y. Kinetically induced irreversibility in electro-oxidation and reduction of Pt surface. J Chem Phys 2015; 142:184709. [PMID: 25978907 DOI: 10.1063/1.4920974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A mean field kinetic model was developed for electrochemical oxidations and reductions of Pt(111) on the basis of density functional theory calculations, and the reaction mechanisms were analyzed. The model reasonably describes asymmetric shapes of cyclic voltammograms and small Tafel slopes of relevant redox reactions observed in experiments without assuming any unphysical forms of rate equations. Simulations using the model indicate that the oxidation of Pt(111) proceeds via an electrochemical oxidation from Pt to PtOH and a disproportionation reaction from PtOH to PtO and Pt, while its reduction proceeds via two electrochemical reductions from PtO to PtOH and from PtOH to Pt.
Collapse
Affiliation(s)
- Ryosuke Jinnouchi
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Kensaku Kodama
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Takahisa Suzuki
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Yu Morimoto
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
48
|
Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2850-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Perales-Rondón JV, Herrero E, Feliu JM. On the activation energy of the formic acid oxidation reaction on platinum electrodes. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Ganassin A, Colic V, Tymoczko J, Bandarenka AS, Schuhmann W. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media. Phys Chem Chem Phys 2015; 17:8349-55. [DOI: 10.1039/c4cp04791e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid–liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts.
Collapse
Affiliation(s)
- Alberto Ganassin
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Viktor Colic
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Jakub Tymoczko
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Aliaksandr S. Bandarenka
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
- Physik-Department ECS
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|