1
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bhartia B, Das S, Jayaraman S, Sharma M, Ting YP, Troadec C, Madapusi SP, Puniredd SR. Universal Single-Step Approach to the Immobilization of Cyclodextrins in a Supercritical Medium for Capturing Drug, Dye, and Metal Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379523 DOI: 10.1021/acs.langmuir.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
By utilizing nanoreactor-like structures, the immobilization of macromolecules such as calixarenes and cyclodextrins (CD) with bucket-like structures provides new possibilities for engineered surface-molecule systems. The practical use of any molecular system depends on the availability of a universal procedure for immobilizing molecules with torus-like structures on various surfaces while maintaining identical operating parameters. There are currently several steps, including toxic solvent-based approaches using modified β-CD to covalently attach to surfaces with multistep reactions. However, the existing multistep process results in molecular orientation, restricts the accessibility of the hydrophobic barrel of β-CD's for practical use, and is effectively unable to use the surfaces immobilized with β-CD for a variety of applications. In this study, it was demonstrated that β-CD attached to the oxide-based semiconductor and metal surfaces through a condensation reaction between the hydroxyl-terminated oxide-based semiconductor/metal oxide and β-CD in supercritical carbon dioxide (SCCO2) as a medium. The primary benefit of SCCO2-assisted grafting of unmodified β-CD on various oxide-based metal and semiconductor surfaces is that it is a simple, efficient, one-step process and that it is ligand-free, scalable, substrate-independent, and uses minimal energy. Various physical microscopy and chemical spectroscopic methods were used to analyze the grafted β-CD oligomers. The application of the grafted β-CD films was demonstrated by the immobilization of rhodamine B (RhB), a dye, and dopamine, a drug. The in situ nucleation and growth of silver nanoclusters (AgNCs) in the molecular systems were studied for antibacterial and tribological properties by utilizing the guest-host interaction ability of β-CD.
Collapse
Affiliation(s)
- Bhavesh Bhartia
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Subhabrata Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | | | - Mohit Sharma
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cedric Troadec
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Srinivasan Palavedu Madapusi
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai International Academic City, P.O. Box No. 345055, Dubai, UAE
| | - Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos Level 6, Singapore 138669, Singapore
| |
Collapse
|
3
|
Kiamiloglou D, Girousi S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. BIOSENSORS 2023; 13:651. [PMID: 37367016 PMCID: PMC10296722 DOI: 10.3390/bios13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Vitamins comprise a group of organic chemical compounds that contribute significantly to the normal functioning of living organisms. Although they are biosynthesized in living organisms, some are also obtained from the diet to meet the needs of organisms, which is why they are characterized as essential chemical compounds. The lack, or low concentrations, of vitamins in the human body causes the development of metabolic dysfunctions, and for this reason their daily intake with food or as supplements, as well as the control of their levels, are necessary. The determination of vitamins is mainly accomplished by using analytical methods, such as chromatographic, spectroscopic, and spectrometric methods, while studies are carried out to develop new and faster methodologies and techniques for their analysis such as electroanalytical methods, the most common of which are voltammetry methods. In this work, a study is reported that was carried out on the determination of vitamins using both electroanalytical techniques, the common significant of which is the voltammetry technique that has been developed in recent years. Specifically, the present review presents a detailed bibliographic survey including, but not limited to, both electrode surfaces that have been modified with nanomaterials and serve as (bio)sensors as well as electrochemical detectors applied in the determination of vitamins.
Collapse
Affiliation(s)
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Yang Y, Dong H, Yin H, Zhang Y, Zhou Y, Xu M, Wang X. Fabrication of nonenzymatic electrochemical interface for ratiometric and simultaneous detection of hydrogen peroxide, dopamine, and ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Jin XZ, Li H, Wang Y, Yang ZY, Qi XD, Yang JH, Wang Y. Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27083-27095. [PMID: 35638614 DOI: 10.1021/acsami.2c05875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermoelectric (PTE) conversion can achieve the recovery of low-quality light or heat efficiently. Much effort has been devoted to the exploitation of the inorganic heterogeneous asynchronous (separate) PTE conversion system. Here, a full organic PTE film with a pseudobilayer architecture (PBA) according to the homogeneous synchronous (all-in-one) PTE conversion hypothesis was prepared via successive drop-casting a PEDOT:PSS/helical carbon nanotube (HCNT) mixture and PEDOT:PSS onto a vacuum ultraviolet treated substrate. Our results prove that the heptagon-pentagon pairs embedded in HCNTs promote a denser arrangement of the molecular chains of PEDOT, which enhances the crystallinity and affects the thermoelectric properties. The weak connection and hollow structure of HCNTs inhibit the dissipation of heat, and the zT value of the film reaches over 0.01. The PBA film shows better photothermal conversion performance than a neat PEDOT:PSS film and stably generates a temperature difference of over 25.68 °C without external cooling. A flexible PTE chip demo was manufactured, and the ideal open-circuit voltage (simulated via COMSOL) of that reaches over 1.5 mV under weak NIR stimulation (83.12 mW/cm2), which is the best value reported for an organic all-in-one PTE device, and the real maximum output power reaches 2.55 nW (166.01 mW/cm2). The chip has incredible ultraflexibility, and its inner resistance changes less than 1.42% after 10000 bending cycles and displays ultrahigh stability (similarity >90%) in a continuous periodic output. Our work fills the deficit of homogeneous synchronous PTE research for a PEDOT:PSS composite and is a preliminary attempt in an ultraflexible integrated all-in-one PTE chip design.
Collapse
Affiliation(s)
- Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huan Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Ying Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhen-Yu Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
6
|
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Chen G, Jin Y, Su W, Li Y, Zhang W, Qing T. C/Sn deposition on a helical carbon nanofiber matrix as a high performance anode for lithium-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj00206j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C/Sn/HCNF composites were successfully prepared by solution phase synthesis and carbon thermal reduction. Within the hybrid composite, the HCNFs, Sn and carbon layer show a synergistic effect in improving coulombic efficiency and electrical capacity.
Collapse
Affiliation(s)
- Ge Chen
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yongzhong Jin
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
- Sichuan province Key Laboratory for Corrosion and Protection of material, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wei Su
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
- Sichuan province Key Laboratory for Corrosion and Protection of material, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yuming Li
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wenjun Zhang
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Ting Qing
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
8
|
A facile nonenzymatic electrochemical sensor based on copper oxide nanoparticles deposited on activated carbon for the highly sensitive detection of methyl parathion. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Jin XZ, Qi XD, Wang Y, Yang JH, Li H, Zhou ZW, Wang Y. Polypyrrole/Helical Carbon Nanotube Composite with Marvelous Photothermoelectric Performance for Longevous and Intelligent Internet of Things Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8808-8822. [PMID: 33565860 DOI: 10.1021/acsami.0c22123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical carbon nanotube (HCNT) is a vital member of carbon nanomaterials, but little effort was devoted to explore its unique characteristics and applications during the past few decades. Here, we report an organic thermoelectric composite with an excellent photothermoelectric (PTE) effect by conformally wrapping polypyrrole (PPy) on the intricate surface of HCNTs, which have been confirmed to have remarkable near-infrared (NIR) photothermal conversion capability and ultralow heat transportation characteristics. The results indicate that with the increasing HCNT content, PPy shell thickness reduces and exhibits denser as well as partial orientation, while the inter-ring angle slowly decreases and the bipolaron becomes dominant in carrier composition gradually. Consequently, the Seebeck coefficient increases monotonically, whereas the electrical conductivity remains nearly invariant. The final composite combines the benign thermoelectric properties, excellent photothermal response performance, and the lowest thermal conductivity of the carbon-based thermoelectric composite yet reported (0.064 W m-1 K-1). A single strip NIR light-stimulated adjustable delay switch was designed and fabricated, with the open-circuit voltage and short-circuit current under a 400 mW cm-2 NIR-stimulated approach to 720 μV and 62 nA with the discrepancy of consecutive periodic output signals less than 4.2%, exhibiting incredible stability and reliability and demonstrating the highest output voltage of a single strip among the reported organic PTE composite at room temperature. Our work fills in a gap of HCNT research, which hitherto existed in the PTE and thermoelectric field.
Collapse
Affiliation(s)
- Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Jing-Hui Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Zuo-Wan Zhou
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Hei Y, Liu J, Bi Y, Bai J, Hu Z, Ma C, Liu J, Zhou M. Sweet potato derived three-dimensional carbon aerogels with a hierarchical meso-macroporous and branching nanostructure for electroanalysis. Analyst 2021; 146:1216-1223. [PMID: 33367324 DOI: 10.1039/d0an02210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, sweet potatoes (Ipomoea batatas) are used as low-cost precursors to synthesize carbon aerogels with a hierarchical meso-macroporous and branching nanostructure (HMM-BNCA). An HMM-BNCA-modified glassy carbon electrode (GCE) (HMM-BNCA/GCE) exhibits high electrocatalytic activity for some electroactive biomolecules. For ascorbic acid (AA), the HMM-BNCA/GCE exhibits low oxidation peak potential and detection limit (-0.005 V and 0.45 μM, S/N = 3), high sensitivities (195.43 and 121.00 μA mM-1 cm-2) and wide linear ranges (10-1250 μM and 1250-4750 μM), which are superior to those obtained at the GCE and carbon nanotube (CNT)-modified GCE (CNT/GCE). The HMM-BNCA/GCE exhibits significant resistance to fouling and the interfering substances for the detection of AA. The successful and accurate detection of AA in real samples (such as vitamin C injections and vitamin C soft drinks) in this work demonstrates the feasibility and tremendous potential of HMM-BNCA/GCE for the analysis of AA in complex systems.
Collapse
Affiliation(s)
- Yashuang Hei
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jingju Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Yanni Bi
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jing Bai
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Jian Liu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P.R. China.
| |
Collapse
|
11
|
Atta NF, Galal A, Hassan SH. Comparative Study of Metallocene Modified Gold Nanoparticles Polymer Electrodes for Effective Determination of Dopamine. ELECTROANAL 2020. [DOI: 10.1002/elan.202060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nada F. Atta
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| | - Ahmed Galal
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| | - Samar H. Hassan
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| |
Collapse
|
12
|
Gurusamy T, Murugan R, Durairaj A, Ramanujam K. Confinement Catalysis of Non‐covalently Functionalized Carbon Nanotube in Ascorbic Acid Sensing. ELECTROANAL 2020. [DOI: 10.1002/elan.202060119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tamilselvi Gurusamy
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Raja Murugan
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Akalyaa Durairaj
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Kothandaraman Ramanujam
- Clean Energy Lab Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
13
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
14
|
Shimizu LC, Gama EG, Machado DS, Carlos IA, de Oliveira GM. A new method to produce graphite decorated by electrodeposited metal: The case of silver electrodeposition process inside a graphite paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Adhikari J, Rizwan M, Keasberry NA, Ahmed MU. Current progresses and trends in carbon nanomaterials‐based electrochemical and electrochemiluminescence biosensors. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juthi Adhikari
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Mohammad Rizwan
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
- School of Natural SciencesBangor University Bangor Wales UK
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| |
Collapse
|
16
|
Electrochemical Sensors for Simultaneous Determination of Small Biomolecules By 3D Layered Hollow Honeycomb-like Ni-NiO@CPVP Modified Glassy Carbon Electrode. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60010-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Osman AM, Abulkibash AM, Atieh MA. Time-biased square wave differential electrolytic potentiometry for determination of ascorbic acid in a complex matrix at multi-walled carbon nanotubes modified silver electrodes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 2019; 586:113415. [DOI: 10.1016/j.ab.2019.113415] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
20
|
Anojčić J, Guzsvány V, Kónya Z, Mikov M. Rapid, trace-level direct cathodic voltammetric determination of dopamine by oxidized multiwalled carbon nanotube–modified carbon paste electrode in selected samples of pharmaceutical importance. IONICS 2019. [DOI: 10.1007/s11581-019-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Kummari S, Kumar VS, Satyanarayana M, Gobi KV. Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhao P, Chen C, Ni M, Peng L, Li C, Xie Y, Fei J. Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Mikrochim Acta 2019; 186:134. [PMID: 30707325 DOI: 10.1007/s00604-019-3238-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
An electrochemical dopamine sensor with a temperature-controlled switch was constructed by using a mixture of thermo-sensitive block copolymers (type tBA-PDEA-tBA), graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs). If the temperature is below 26 °C, the polymer on the glassy carbon electrode (GCE) is stretched, the distance between the MWCNTs is large, and the charge transfer resistance (Rct) of the composite also is large. In the presence of dopamine, the electron transfer at the electrode is strongly retarded and in the "off" state. At above 38 °C, the polymer is shrunk and the Rct is much smaller. The presence of dopamine results in a rapid electron transfer at the GCE, and this is referred to as the "on" state. At temperatures between 26 and 38 °C, the polymer shrinks slightly and has a "spring-like" state. There is a linear relationship between the response current (typically measured at a potential as low as 0.16 V vs. Ag/AgCl) and temperature. The response to dopamine is linear in the 0.06 to 4.2 μM and 4.2 to 18.2 μM concentration range, and the detection limit is 42 nM. Conceivably, this approach provides a novel approach towards the design of electrochemical sensors based on the use of thermo-sensitive polymers. Graphical abstract Schematic presentation of reversible and temperature-controlled electrochemical response of dopamine on the thermo-sensitive block copolymers (tBA-PDEA-tBA) / multi-walled carbon nanotubes (MWCNTs) / graphene oxide (GO) / glassy carbon electrode (GCE).
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105
| | - Chao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, People's Republic of China, 411105
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105
| | - Longqi Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105
| | - Chunyan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, People's Republic of China, 411105.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, People's Republic of China, 411105.
| |
Collapse
|
23
|
Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:248-254. [PMID: 30889697 DOI: 10.1016/j.msec.2019.01.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
A novel multiwalled carbon nanotube (MWCNT) based sensor was fabricated as a highly precise and stable electrochemical sensor. The synthesized sensor which consists of ZnNi bimetallic nanoalloy called the ZnNi NPs@f-MWCNT sensor, have been used for the simultaneous detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). The ZnNi NPs@f-MWCNT sensor obtained based on the microwave irradiation process, and its characterization was performed by using several physical techniques such as XRD, XPS, TEM, Raman, etc. The characterization showed that this sensor has excellent properties such as rich pore channels, excellent structural durability, and large surface area. These properties facilitated mass transfer and electron conductions. It was observed that the obtained sensor gave high electrochemical activity and wide linear responses (0.3-1.1 mM AA, 0.2-1.2 mM DA, 0.2-1.1 mM UA) in the detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). In addition to these properties, it has been found that the sensor has excellent anti-interferents properties towards AlCl3, KCl3, glucose, etc. and ZnNi NPs@f-MWCNT sensor was further applied to determine uric acid (UA), dopamine (DA) and ascorbic acid (AA) in real samples.
Collapse
Affiliation(s)
- Aysun Savk
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Buse Özdil
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Buse Demirkan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Mehmet Salih Nas
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey; Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Mehmet Harbi Calimli
- Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Mehmet Hakkı Alma
- Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatih Şen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey.
| |
Collapse
|
24
|
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Kaya SI, Kurbanoglu S, Ozkan SA. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Crit Rev Anal Chem 2018; 49:101-125. [DOI: 10.1080/10408347.2018.1489217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Baig N, Rana A, Kawde AN. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadeem Baig
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Azeem Rana
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
27
|
Li X, Wang Y, Liu J, Sun M, Bo X, Wang HL, Zhou M. Amperometric ascorbic acid biosensor based on carbon nanoplatelets derived from ground cherry husks. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Guo J, Ma X. Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosens Bioelectron 2017; 94:415-419. [DOI: 10.1016/j.bios.2017.03.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
|
29
|
Electrocatalytic detection of ascorbic acid using N,N,N’,N’-tetramethyl-para-phenylene-diamine (TMPD) mediated oxidation at unmodified gold electrodes; reaction mechanism and analytical application. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Khan MMI, Baek GW, Kim K, Kwon HI, Jin SH. Simultaneous Detection of Dopamine and Uric Acid on Indium Tin Oxides Modified with Cost-effective Gas-phase Synthesized Single Walled Carbon Nanotubes. ELECTROANAL 2017. [DOI: 10.1002/elan.201700173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Geun Woo Baek
- Department of Electronic Engineering, Incheon National University; Incheon 22012 Korea
| | - Kyuwon Kim
- Department of Chemistry; Incheon National University; Incheon 22012 Korea
| | - Hyuck-In Kwon
- School of Electrical and Electronics Engineering; Chung-Ang University; Seoul 156-756 Korea
| | - Sung Hun Jin
- Department of Electronic Engineering, Incheon National University; Incheon 22012 Korea
| |
Collapse
|
31
|
Turak F, Güzel R, Dinç E. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography. J Food Drug Anal 2017; 25:285-292. [PMID: 28911669 PMCID: PMC9332539 DOI: 10.1016/j.jfda.2016.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H3PO4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances.
Collapse
Affiliation(s)
- Fatma Turak
- Department of Chemistry, Faculty of Science and Art, Yildiz Teknik University, İstanbul,
Turkey
| | - Remziye Güzel
- Department of Chemistry, Faculty of Education, Dicle University, Diyarbakir,
Turkey
| | - Erdal Dinç
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara,
Turkey
- Corresponding author. Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandoğan, Ankara, Turkey. E-mail address: (E. Dinç)
| |
Collapse
|
32
|
Fan S, Zhao M, Ding L, Li H, Chen S. Preparation of Co 3 O 4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 2017; 89:846-852. [DOI: 10.1016/j.bios.2016.09.108] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
33
|
Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
35
|
A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 2016; 82:119-26. [DOI: 10.1016/j.bios.2016.03.074] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
|
36
|
Tyszczuk-Rotko K, Sadok I. The New Application of Boron Doped Diamond Electrode Modified with Nafion and Lead Films for Simultaneous Voltammetric Determination of Dopamine and Paracetamol. ELECTROANAL 2016. [DOI: 10.1002/elan.201600099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Ilona Sadok
- Faculty of Chemistry; Maria Curie-Skłodowska University; 20-031 Lublin Poland
| |
Collapse
|
37
|
|
38
|
Sakthinathan S, Lee HF, Chen SM, Tamizhdurai P. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite. J Colloid Interface Sci 2016; 468:120-127. [DOI: 10.1016/j.jcis.2016.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
39
|
Biswas S, Das R, Basu M, Bandyopadhyay R, Pramanik P. Synthesis of carbon nanoparticle embedded graphene for sensitive and selective determination of dopamine and ascorbic acid in biological fluids. RSC Adv 2016. [DOI: 10.1039/c6ra16774h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have prepared carbon nanoparticle embedded graphene (CNEG) by carbonizing a ternary composite of GO/melamine-formaldehyde resin/Zn(OAc)2.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rashmita Das
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Malini Basu
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Panchanan Pramanik
- Department of Chemistry and Nanoscience
- GLA University
- Mathura – 281 406
- India
| |
Collapse
|
40
|
Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.164] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Guo Z, Huang GQ, Li J, Wang ZY, Xu XF. Graphene oxide-Ag/poly-l-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Yang C, Denno ME, Pyakurel P, Venton BJ. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal Chim Acta 2015; 887:17-37. [PMID: 26320782 PMCID: PMC4557208 DOI: 10.1016/j.aca.2015.05.049] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, USA
| | | | | | - B Jill Venton
- Department of Chemistry, University of Virginia, USA.
| |
Collapse
|
43
|
Ouyang X, Luo L, Ding Y, Liu B, Xu D, Huang A. Simultaneous determination of uric acid, dopamine and ascorbic acid based on poly(bromocresol green) modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Gutiérrez A, Gasnier A, Pedano ML, Gonzalez-Dominguez JM, Ansón-Casaos A, Hernández-Ferrer J, Galicia L, Rubianes MD, Martínez MT, Rivas GA. Electrochemical Sensor for the Quantification of Dopamine Using Glassy Carbon Electrodes Modified with Single-Wall Carbon Nanotubes Covalently Functionalized with Polylysine. ELECTROANAL 2015. [DOI: 10.1002/elan.201500053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Zhang B, Zhang X, Huang D, Li S, Yuan H, Wang M, Shen Y. Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide. Talanta 2015; 141:73-9. [PMID: 25966383 DOI: 10.1016/j.talanta.2015.03.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
This work reports on an experimental investigation of Co9S8 hollow spheres with excellent interfacial charge transfer ability for the electrochemical detection of hydrogen peroxide and glucose in alkaline environment. The result reveals that the Co9S8 hollow spheres exhibit excellent electrocatalytic activity for the reduction of hydrogen peroxide. An electrochemical sensor based on Co9S8 can be further realized, exhibiting a linear response range from 0.0001 to 11.11mM for hydrogen peroxide with a low detection limit of 0.02μM, and a high sensitivity of 267.2mA mol(-1)cm(-2), which is one of the highest values among the non-enzymatic sensors based on inorganic oxides. The Co9S8 sensor also exhibits good response toward glucose at different concentrations. These results demonstrate that the as-prepared Co9S8 hollow spheres have a potential application in the development of sensors for enzyme-free detection of H2O2 and glucose.
Collapse
Affiliation(s)
- Bingyan Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaofan Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dekang Huang
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shaohui Li
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huailiang Yuan
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
46
|
Fanjul-Bolado P, Santos DH, Montoya VM, Costa-García A. Uric Acid Determination by Adsorptive Stripping Voltammetry on Multiwall Carbon Nanotubes Based Screen-Printed Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron 2015; 65:31-8. [DOI: 10.1016/j.bios.2014.09.099] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023]
|
48
|
Wang X, Zhang F, Xia J, Wang Z, Bi S, Xia L, Li Y, Xia Y, Xia L. Modification of electrode surface with covalently functionalized graphene oxide by l-tyrosine for determination of dopamine. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Kaur B, Satpati B, Srivastava R. Synthesis of NiCo2O4/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. NEW J CHEM 2015. [DOI: 10.1039/c4nj01360c] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high electrocatalytic activity of the sensor can be attributed to the highly dispersed NiCo2O4 on Nano-ZSM-5 matrix.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| |
Collapse
|
50
|
Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta 2015; 131:243-8. [DOI: 10.1016/j.talanta.2014.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022]
|