1
|
Majer-Baranyi K, Székács A, Adányi N. Application of Electrochemical Biosensors for Determination of Food Spoilage. BIOSENSORS 2023; 13:bios13040456. [PMID: 37185531 PMCID: PMC10135962 DOI: 10.3390/bios13040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Food security is significantly affected by the mass production of agricultural produce and goods, the growing number of imported foods, and new eating and consumption habits. These changed circumstances bring food safety issues arising from food spoilage to the fore, making food safety control essential. Simple and fast screening methods have been developed to detect pathogens and biomarkers indicating the freshness of food for safety. In addition to the traditional, sequential, chemical analytical and microbiological methods, fast, highly sensitive, automated methods suitable for serial tests have appeared. At the same time, biosensor research is also developing dynamically worldwide, both in terms of the analytes to be determined and the technical toolkit. Consequently, the rapid development of biosensors, including electrochemical-based biosensors, has led to significant advantages in the quantitative detection and screening of food contaminants. These techniques show great specificity for the biomarkers tested and provide adequate analytical accuracy even in complex food matrices. In our review article, we summarize, in separate chapters, the electrochemical biosensors developed for the most important food groups and the food safety issues they can ensure, with particular respect to meat and fish products, milk and dairy products, as well as alcoholic and non-alcoholic beverages.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary
| |
Collapse
|
2
|
Xu X, Zhu L, Wang X, Lan X, Chu H, Tian H, Xu W. Sandwich capture ultrasensitive sensor based on biohybrid interface for the detection of Cronobacter sakazakii. Appl Microbiol Biotechnol 2022; 106:4287-4296. [PMID: 35616722 DOI: 10.1007/s00253-022-11978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
A simple, rapid and ultrasensitive visual sensing method for the detection of Cronobacter sakazakii (C. sakazakii) based on a biohybrid interface was established. During the entire sensing process, quadruple-cascade amplification showed its superior sensing performance. First, the prepared immunomagnetic beads (IMB) were used to isolate and enrich specific targets from the food matrix. After adding the fusion aptamer, the aptamer sequence specifically recognized the target and formed the immune sandwich structure of antibody-target-fusion aptamer. In addition, the fusion aptamer also included the template sequence of exponential amplification reaction (EXPAR), which contained the antisense sequence of the G-rich sequence. Therefore, a large number of G-rich sequences can be generated after EXPAR can be triggered in the presence of Bst. DNA polymerase, nicking endonuclease, cDNA, and dNTP. They were self-assembled into G-quadruplex structures and then combined with hemin to form G4/hemin DNAzyme, resulting in visible coloration and measuring absorbance at 450 nm for quantitative detection. The assay showed a limit of detection (LOD) of 2 CFU/mL in pure culture and 12 CFU/g in milk powder in optimal conditions. This method provides a promising strategy for rapid and point-of-care testing (POCT) since it does not require DNA extraction, medium culturing, and expensive instrumentation. KEY POINTS: •Single-cell level detection of C. sakazakii with ultrasensitive and rapidness •The fusion aptamer integrated recognition and amplification •Sensing analysis of C. sakazakii based on cascade amplification of biohybrid interface.
Collapse
Affiliation(s)
- Xiuyuan Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China. .,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Sun M, Ma B, Yuan S, Xin L, Zhao C, Liu H. Mercury thermometer-inspired test strip for concentration cell-based potentiometric detection of salivary α-amylase. Anal Chim Acta 2022; 1206:339770. [DOI: 10.1016/j.aca.2022.339770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
|
4
|
Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HMN. Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. CHEMOSPHERE 2022; 292:133320. [PMID: 34952020 DOI: 10.1016/j.chemosphere.2021.133320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.
Collapse
Affiliation(s)
- Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, 144402, Punjab, India
| | - Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Preparation and characterization of graphene nanosheets dispersed pyrrole-chorobenzaldehyde-heptaldehyde conjugated terpolymer nanocomposites for DNA detection. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Ayhan K, Coşansu S, Orhan-Yanıkan E, Gülseren G. Advance methods for the qualitative and quantitative determination of microorganisms. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Xia J, Qiu S, Zeng H, Liu C, Liu Q. A rapid detection of
Escherichia coli
O157
:
H7
by competition visual antigen macroarray. J Food Saf 2020. [DOI: 10.1111/jfs.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Junfang Xia
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Shi Qiu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Haijuan Zeng
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Cheng Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Qing Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
8
|
Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics (Basel) 2020; 10:diagnostics10080517. [PMID: 32722552 PMCID: PMC7460409 DOI: 10.3390/diagnostics10080517] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Due to rapidly spreading infectious diseases and the high incidence of other diseases such as cancer or metabolic syndrome, there is a continuous need for the development of rapid and accurate diagnosis methods. Screen-printed electrodes-based biosensors have been reported to offer reliable results, with high sensitivity and selectivity and, in some cases, low detection limits. There are a series of materials (carbon, gold, platinum, etc.) used for the manufacturing of working electrodes. Each version comes with advantages, as well as challenges for their functionalization. Thus, the aim is to review the most promising biosensors developed using screen-printed electrodes for the detection/quantification of proteins, biomarkers, or pathogenic microorganisms.
Collapse
|
9
|
A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Bigham T, Dooley JS, Ternan NG, Snelling WJ, Héctor Castelán M, Davis J. Assessing microbial water quality: Electroanalytical approaches to the detection of coliforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Wu Y, Xiong Y, Chen X, Luo D, Gao B, Chen J, Huang X, Leng Y, Xiong Y. Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples. J Dairy Sci 2019; 102:10877-10886. [PMID: 31521366 DOI: 10.3168/jds.2019-17067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/27/2019] [Indexed: 11/19/2022]
Abstract
The traditional gold nanoparticle (AuNP) growth-based plasmonic ELISA (pELISA) strictly and directly controlled by reducing reagents can achieve high sensitivity, but it remains fragile toward the surrounding environment. This work developed a sandwich pELISA for Cronobacter detection in powdered infant formula samples by mediating AuNP growth through DNA. In this assay, DNA adsorbed on the surface of gold nanoseeds guided the anisotropic crystal growth with hydroxylamine as a reducing reagent, and the catalase-hydrogen peroxide (Cat-H2O2) system was introduced to bridge the DNA-directed AuNP growth and pELISA, as such DNA can be cleaved into fragments by the hydroxyl radical generated from oxidation of H2O2 through Fenton reagents. Under optimized conditions, the proposed pELISA can qualitatively detect Cronobacter species (Cronobacter muytjensii ATCC 51329) by the naked eye with a cut-off limit of 3 × 105 cfu/mL. This method also revealed a good linear range (3 × 102 to 3 × 107 cfu/mL) for quantitative detection of C. muytjensii ATCC 51329 with a limit of detection of 1.6 × 102 cfu/mL, which is approximately 162.5 times lower than that of horseradish peroxidase-based conventional ELISA (2.6 × 104 cfu/mL). By taking advantage of highly stable DNA-directed AuNP growth, the proposed method shows a good performance in powdered infant formula samples spiked with different concentrations of C. muytjensii ATCC 51329 with average recoveries ranging from 90.79 to 119.09% and coefficient of variation ranging from 4.24 to 9.55%. These values corresponded to an acceptable accuracy and precision for the proposed method. In brief, this work shows potential for screening other analytes in food safety, clinical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Yunqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xuelan Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Dan Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Bao Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
12
|
Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem 2019; 49:510-533. [DOI: 10.1080/10408347.2018.1561243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Central Unit of Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Alizadeh N, Salimi A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. ELECTROANAL 2018. [DOI: 10.1002/elan.201800598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Negar Alizadeh
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
| | - Abdollah Salimi
- Department of ChemistryUniversity of Kurdistan 66177-15175 Sanandaj Iran
- Research Center for NanotechnologyUniversity of Kurdistan 66177-15175 Sanandaj Iran
| |
Collapse
|
14
|
Mishra GK, Barfidokht A, Tehrani F, Mishra RK. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018; 7:E141. [PMID: 30200448 PMCID: PMC6164425 DOI: 10.3390/foods7090141] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/24/2023] Open
Abstract
Rapid and precise analytical tools are essential for monitoring food safety and screening of any undesirable contaminants, allergens, or pathogens, which may cause significant health risks upon consumption. Substantial developments in analytical techniques have empowered the analyses and quantitation of these contaminants. However, conventional techniques are limited by delayed analysis times, expensive and laborious sample preparation, and the necessity for highly-trained workers. Therefore, prompt advances in electrochemical biosensors have supported significant gains in quantitative detection and screening of food contaminants and showed incredible potential as a means of defying such limitations. Apart from indicating high specificity towards the target analytes, these biosensors have also addressed the challenge of food industry by providing high analytical accuracy within complex food matrices. Here, we discuss some of the recent advances in this area and analyze the role and contributions made by electrochemical biosensors in the food industry. This article also reviews the key challenges we believe biosensors need to overcome to become the industry standard.
Collapse
Affiliation(s)
- Geetesh Kumar Mishra
- Multiscale Fluid Mechanics Lab, School of Mechanical Engineering, Sungkyunkwan University, Suwon 44-746, Korea.
| | - Abbas Barfidokht
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Farshad Tehrani
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Rupesh Kumar Mishra
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Biosciences and Biotechnology, Banasthali University, Rajasthan 304022, India.
| |
Collapse
|
15
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
16
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
17
|
Recent Advances in Electrochemical Immunosensors. SENSORS 2017; 17:s17040794. [PMID: 28387718 PMCID: PMC5422067 DOI: 10.3390/s17040794] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Immunosensors have experienced a very significant growth in recent years, driven by the need for fast, sensitive, portable and easy-to-use devices to detect biomarkers for clinical diagnosis or to monitor organic pollutants in natural or industrial environments. Advances in the field of signal amplification using enzymatic reactions, nanomaterials such as carbon nanotubes, graphene and graphene derivatives, metallic nanoparticles (gold, silver, various oxides or metal complexes), or magnetic beads show how it is possible to improve collection, binding or transduction performances and reach the requirements for realistic clinical diagnostic or environmental control. This review presents these most recent advances; it focuses first on classical electrode substrates, then moves to carbon-based nanostructured ones including carbon nanotubes, graphene and other carbon materials, metal or metal-oxide nanoparticles, magnetic nanoparticles, dendrimers and, to finish, explore the use of ionic liquids. Analytical performances are systematically covered and compared, depending on the detection principle, but also from a chronological perspective, from 2012 to 2016 and early 2017.
Collapse
|
18
|
Güner A, Çevik E, Şenel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 2017; 229:358-365. [PMID: 28372186 DOI: 10.1016/j.foodchem.2017.02.083] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/13/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
An electrochemical immunosensor for the common food pathogen Escherichia coli O157:H7 was developed. This novel immunosensor based on the PPy/AuNP/MWCNT/Chi hybrid bionanocomposite modified pencil graphite electrode (PGE). This hybrid bionanocomposite platform was modified with anti-E. coli O157:H7 monoclonal antibody. The prepared bionanocomposite platform and immunosensor was characterized by using cyclic voltammetry (CV). Under the optimum conditions, the results have shown the order of the preferential selectivity of the method is gram negative pathogenic species E. coli O157:H7. Concentrations of E. coli O157:H7 from 3×101 to 3×107cfu/mL could be detected. The detection limit was ∼30cfu/mL in PBS buffer. Briefly, we developed a high sensitive electrochemical immunosensor for specific detection of E. coli O157:H7 contamination with the use of sandwich assay evaluated in this study offered a reliable means of quantification of the bacteria. For the applications in food quality and safety control, our immunosensor showed reproducibility and stability.
Collapse
Affiliation(s)
- Ahmet Güner
- Vocational School of Health Services, Fatih University, Maltepe, Istanbul 34844, Turkey
| | - Emre Çevik
- Department of Genetics and Bioengineering, Faculty of Engineering, Fatih University, B.Cekmece, Istanbul 34500, Turkey; Biotechnology Research Lab, EMC Technology Inc, ARGEM Building, Technocity, Avcılar, Istanbul 34320, Turkey
| | - Mehmet Şenel
- Biotechnology Research Lab, EMC Technology Inc, ARGEM Building, Technocity, Avcılar, Istanbul 34320, Turkey.
| | - Lokman Alpsoy
- Department of Medical Biology, Faculty of Medicine, Fatih University, B.Cekmece, Istanbul 34500, Turkey
| |
Collapse
|
19
|
The Development of a Portable SPR Bioanalyzer for Sensitive Detection of Escherichia coli O157:H7. SENSORS 2016; 16:s16111856. [PMID: 27827923 PMCID: PMC5134515 DOI: 10.3390/s16111856] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to develop a portable surface plasmon resonance (SPR) bioanalyzer for the sensitive detection of Escherichia coli O157:H7 in comparison with an enzyme-linked immunosorbent assay (ELISA). The experimental setup mainly consisted of an integrated biosensor and a homemade microfluidic cell with a three-way solenoid valve. In order to detect Escherichia coli O157:H7 using the SPR immunoassay, 3-mercaptopropionic acid (3-MPA) was chemisorbed onto a gold surface via covalent bond for the immobilization of biological species. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were used as crosslinker reagents to enable the reaction between 3-MPA and Escherichia coli O157:H7 antibodies by covalent –CO–NH– amide bonding. The experimental results were obtained from the Escherichia coli O157:H7 positive samples prepared by 10-, 20-, 40-, 80-, and 160-fold dilution respectively, which show that a good linear relationship with the correlation coefficient R of 0.982 existed between the response units from the portable SPR bioanalyzer and the concentration of Escherichia coli O157:H7 positive samples. Moreover, the theoretical detection limit of 1.87 × 103 cfu/mL was calculated from the positive control samples. Compared with the Escherichia coli O157:H7 ELISA kit, the sensitivity of this portable SPR bioanalyzer is four orders of magnitude higher than the ELISA kit. The results demonstrate that the portable SPR bioanalyzer could provide an alternative method for the quantitative and sensitive determination of Escherichia coli O157:H7 in field.
Collapse
|
20
|
Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. SENSORS 2016; 16:s16101761. [PMID: 27775661 PMCID: PMC5087545 DOI: 10.3390/s16101761] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
Abstract
In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.
Collapse
|
21
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Wang Y, Huang J. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Biosens Bioelectron 2016; 75:315-9. [DOI: 10.1016/j.bios.2015.08.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
|
22
|
Fei J, Dou W, Zhao G. Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1721-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Brandão D, Liébana S, Campoy S, Cortés M, Alegret S, Pividori M. Simultaneous electrochemical magneto genosensing of foodborne bacteria based on triple-tagging multiplex amplification. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Li Z, Fu Y, Fang W, Li Y. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin. SENSORS 2015; 15:19212-24. [PMID: 26251911 PMCID: PMC4570367 DOI: 10.3390/s150819212] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Zhanming Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Weihuan Fang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Yanbin Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
25
|
Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron 2015; 65:31-8. [DOI: 10.1016/j.bios.2014.09.099] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023]
|
26
|
Kong D, Liu L, Xing C, Kuang H, Xu C. Sensitive and highly specific detection ofCronobacter sakazakiibased on monoclonal sandwich ELISA. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2014.998634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Wang D, Dou W, Zhao G, Chen Y. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum. J Microbiol Methods 2014; 106:110-118. [PMID: 25193438 DOI: 10.1016/j.mimet.2014.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
Abstract
In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification.
Collapse
Affiliation(s)
- Dan Wang
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Wenchao Dou
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| | - Guangying Zhao
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China.
| | - Yan Chen
- Food Safety Key Lab of Zhejiang Province, College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, PR China
| |
Collapse
|
28
|
Adley CC. Past, Present and Future of Sensors in Food Production. Foods 2014; 3:491-510. [PMID: 28234333 PMCID: PMC5302250 DOI: 10.3390/foods3030491] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial contamination management is a crucial task in the food industry. Undesirable microbial spoilage in a modern food processing plant poses a risk to consumers' health, causing severe economic losses to the manufacturers and retailers, contributing to wastage of food and a concern to the world's food supply. The main goal of the quality management is to reduce the time interval between the filling and the detection of a microorganism before release, from several days, to minutes or, at most, hours. This would allow the food company to stop the production, limiting the damage to just a part of the entire batch, with considerable savings in terms of product value, thereby avoiding the utilization of raw materials, packaging and strongly reducing food waste. Sensor systems offer major advantages over current systems as they are versatile and affordable but need to be integrated in the existing processing systems as a process analytical control (PAT) tool. The desire for good selectivity, low cost, portable and usable at working sites, sufficiently rapid to be used at-line or on-line, and no sample preparation devices are required. The application of biosensors in the food industry still has to compete with the standard analytical techniques in terms of cost, performance and reliability.
Collapse
Affiliation(s)
- Catherine C Adley
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
29
|
Chen GZ, Yin ZZ, Lou JF. Electrochemical Immunoassay of Escherichia coli O157:H7 Using Ag@SiO2 Nanoparticles as Labels. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:247034. [PMID: 24872904 PMCID: PMC4020444 DOI: 10.1155/2014/247034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/09/2014] [Indexed: 06/01/2023]
Abstract
Silica coated silver (Ag@SiO2) nanoparticles were prepared and characterized by transmission electron microscope (TEM) and UV-vis absorption, and the nanoparticles were used as labels in sandwich-type immunosensor of Escherichia coli O157:H7 (E. coli O157:H7). The labels involved in immunoreaction were dissolved by mixed acid of hydrofluoric acid and nitric acid, and the released Ag(+) ions were electrochemical stripping analyzed (via differential pulse voltammetry, DPV) at poly(acrylic acid)/poly(diallyldimethylammonium chloride)/carbon nanotubes (PAA/PDCNT) modified glass carbon electrode (GCE), which obviously enhanced the signal of Ag(+) stripping. Then, the number of E. coli O157:H7 could be indirectly reflected by the signal intensity of labeled Ag(+). And the results showed that the DPV signals were proportional to the logarithm of the E. coli O157:H7 concentration in the range from 20 cfu/mL to 8.0 × 10(3) cfu/mL with the detection limit of 13 cfu/mL.
Collapse
Affiliation(s)
- Guang-Zhu Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jv-Feng Lou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
30
|
Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1181-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|