• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4605585)   Today's Articles (230)   Subscriber (49373)
For: Liu Y, Pan L, Xu X, Lu T, Sun Z, Chua DH. Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.086] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Number Cited by Other Article(s)
1
Ghorbanian A, Rowshanzamir S, Mehri F. Enhanced brackish water desalination in capacitive deionization with composite Zn-BTC MOF-incorporated electrodes. Sci Rep 2024;14:14999. [PMID: 38951566 PMCID: PMC11217474 DOI: 10.1038/s41598-024-66023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]  Open
2
Bakola V, Kotrotsiou O, Ntziouni A, Dragatogiannis D, Plakantonaki N, Trapalis C, Charitidis C, Kiparissides C. Development of Composite Nanostructured Electrodes for Water Desalination via Membrane Capacitive Deionization. Macromol Rapid Commun 2024;45:e2300640. [PMID: 38184786 DOI: 10.1002/marc.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Indexed: 01/08/2024]
3
Zhang H, Wan K, Yan J, Li Q, Guo Y, Huang L, Arulmani SRB, Luo J. The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH2: Density functional theory calculation and experiments. J Environ Sci (China) 2024;135:118-129. [PMID: 37778789 DOI: 10.1016/j.jes.2023.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023]
4
Elewa MM, El Batouti M, Al-Harby NF. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. MATERIALS (BASEL, SWITZERLAND) 2023;16:4872. [PMID: 37445186 DOI: 10.3390/ma16134872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
5
Vijayan P. P, Chithra P.G, Krishna S V A, Ansar E.B, Parameswaranpillai J. Development and Current Trends on Ion Exchange Materials. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
6
El-Deen AG, El-kholly HK, Ali MEM, Ibrahim HS, Zahran M, Helal M, Choi JH. Polystyrene sulfonate coated activated graphene aerogel for boosting desalination performance using capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
7
Wang C, Ren LF, Ying D, Jia J, Shao J. Enhancing performance of capacitive deionization under high voltage by suppressing anode oxidation using a novel membrane coating electrode. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
8
Liu Y, Wang K, Xu X, Eid K, Abdullah AM, Pan L, Yamauchi Y. Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. ACS NANO 2021;15:13924-13942. [PMID: 34498859 DOI: 10.1021/acsnano.1c03417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
9
Feng J, Liu L, Meng Q. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes. J Colloid Interface Sci 2021;582:447-458. [PMID: 32896674 DOI: 10.1016/j.jcis.2020.08.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
10
The Effect of Slurry Wet Mixing Time, Thermal Treatment, and Method of Electrode Preparation on Membrane Capacitive Deionisation Performance. Processes (Basel) 2020. [DOI: 10.3390/pr9010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
11
Zhao X, Wei H, Zhao H, Wang Y, Tang N. Electrode materials for capacitive deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114416] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
12
McNair R, Cseri L, Szekely G, Dryfe R. Asymmetric Membrane Capacitive Deionization Using Anion-Exchange Membranes Based on Quaternized Polymer Blends. ACS APPLIED POLYMER MATERIALS 2020;2:2946-2956. [PMID: 32905369 PMCID: PMC7469241 DOI: 10.1021/acsapm.0c00432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
13
Kaya SI, Karabulut TC, Kurbanoglu S, Ozkan SA. Chemically Modified Electrodes in Electrochemical Drug Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304140433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
14
Tan G, Lu S, Xu N, Gao D, Zhu X. Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO2 Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:5843-5852. [PMID: 32243751 DOI: 10.1021/acs.est.9b07182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
15
Li D, Ning XA, Yuan Y, Hong Y, Zhang J. Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater. J Environ Sci (China) 2020;91:62-72. [PMID: 32172983 DOI: 10.1016/j.jes.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
16
Delgado A, Jiménez M, Iglesias G, Ahualli S. Electrical double layers as ion reservoirs: applications to the deionization of solutions. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
17
Dorji P, Kim DI, Jiang J, Choi J, Phuntsho S, Hong S, Shon HK. Bromide and iodide selectivity in membrane capacitive deionisation, and its potential application to reduce the formation of disinfection by-products in water treatment. CHEMOSPHERE 2019;234:536-544. [PMID: 31229715 DOI: 10.1016/j.chemosphere.2019.05.266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
18
Hand S, Shang X, Guest JS, Smith KC, Cusick RD. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:3748-3756. [PMID: 30821148 DOI: 10.1021/acs.est.8b06709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
19
Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
20
Bhat AP, Reale ER, del Cerro M, Smith KC, Cusick RD. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. WATER RESEARCH X 2019;3:100027. [PMID: 31193985 PMCID: PMC6549939 DOI: 10.1016/j.wroa.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 05/30/2023]
21
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019;150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
22
Kim M, Cerro MD, Hand S, Cusick RD. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. WATER RESEARCH 2019;148:388-397. [PMID: 30399553 DOI: 10.1016/j.watres.2018.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
23
Cheng Y, Hao Z, Hao C, Deng Y, Li X, Li K, Zhao Y. A review of modification of carbon electrode material in capacitive deionization. RSC Adv 2019;9:24401-24419. [PMID: 35527893 PMCID: PMC9069735 DOI: 10.1039/c9ra04426d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/21/2019] [Indexed: 11/21/2022]  Open
24
Shen J, Li Y, Wang C, Luo R, Li J, Sun X, Shen J, Han W, Wang L. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
25
Ahmed MA, Tewari S. Capacitive deionization: Processes, materials and state of the technology. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Chen L, Wang C, Liu S, Hu Q, Zhu L, Cao C. Investigation of the long-term desalination performance of membrane capacitive deionization at the presence of organic foulants. CHEMOSPHERE 2018;193:989-997. [PMID: 29874775 DOI: 10.1016/j.chemosphere.2017.11.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
27
Li M, Park HG. Pseudocapacitive Coating for Effective Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2018;10:2442-2450. [PMID: 29272105 DOI: 10.1021/acsami.7b14643] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
28
Hand S, Cusick RD. Characterizing the Impacts of Deposition Techniques on the Performance of MnO2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017;51:12027-12034. [PMID: 28902989 DOI: 10.1021/acs.est.7b03060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
29
Hassanvand A, Wei K, Talebi S, Chen GQ, Kentish SE. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation. MEMBRANES 2017;7:E54. [PMID: 28906442 PMCID: PMC5618139 DOI: 10.3390/membranes7030054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
30
Chang Y, Zhang G, Han B, Li H, Hu C, Pang Y, Chang Z, Sun X. Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications. ACS APPLIED MATERIALS & INTERFACES 2017;9:29753-29759. [PMID: 28805056 DOI: 10.1021/acsami.7b08181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
31
Design shape of CDI cell applied with APSf and SPEEK and performance in MCDI. Macromol Res 2017. [DOI: 10.1007/s13233-017-5064-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
32
Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization. Sci Rep 2016;6:32784. [PMID: 27608826 PMCID: PMC5016738 DOI: 10.1038/srep32784] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022]  Open
33
Zhu G, Wang W, Li X, Zhu J, Wang H, Zhang L. Design and fabrication of a graphene/carbon nanotubes/activated carbon hybrid and its application for capacitive deionization. RSC Adv 2016. [DOI: 10.1039/c5ra23547b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
34
Application of poly(vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono- and divalent salts. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
35
Ronen A, Walker SL, Jassby D. Electroconductive and electroresponsive membranes for water treatment. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0060] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
36
Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
37
Niu R, Li H, Ma Y, He L, Li J. An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
38
Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J. Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
39
Dong Q, Wang G, Wu T, Peng S, Qiu J. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. J Colloid Interface Sci 2015;446:373-8. [DOI: 10.1016/j.jcis.2014.12.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022]
40
Kim T, Dykstra J, Porada S, van der Wal A, Yoon J, Biesheuvel P. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. J Colloid Interface Sci 2015;446:317-26. [DOI: 10.1016/j.jcis.2014.08.041] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/17/2022]
41
Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI). Macromol Res 2015. [DOI: 10.1007/s13233-015-3049-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
42
Liu Y, Chen T, Lu T, Sun Z, Chua DH, Pan L. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.179] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
43
Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DHC. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci Rep 2015;5:8458. [PMID: 25675835 PMCID: PMC4327409 DOI: 10.1038/srep08458] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022]  Open
44
Enhanced capacitive deionization performance of graphene by nitrogen doping. J Colloid Interface Sci 2015;445:143-150. [PMID: 25617614 DOI: 10.1016/j.jcis.2015.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/26/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022]
45
Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.086] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
46
Liu Y, Xu X, Lu T, Sun Z, Chua DHC, Pan L. Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization. RSC Adv 2015. [DOI: 10.1039/c5ra00620a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
47
Liu Y, Nie C, Liu X, Xu X, Sun Z, Pan L. Review on carbon-based composite materials for capacitive deionization. RSC Adv 2015. [DOI: 10.1039/c4ra14447c] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA