1
|
Yin H, Bai X, Zhang F, Yang Z. Dual single atomic Ni sites constructing Janus hollow graphene for boosting electrochemical sensing of glucose. Mikrochim Acta 2024; 191:314. [PMID: 38720024 DOI: 10.1007/s00604-024-06377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
Single atom catalysts (SACs) have attracted attention due to their excellent catalysis activity under specific reactions and conditions. However, the low density of SACs greatly limits catalytic performance. The three-dimensional graphene hollow nanospheres (GHSs) with very thin shell structure can be used as excellent carrier materials. Not only can its outer surface be used to anchor metal single atoms, but its inner surface can also provide rich sites. Here, a novel step-by-step assembly strategy is reported to anchor nickel single atoms (Ni SAs) on the inner and outer surfaces of GHSs (Ni SAs/GHSs/Ni SAs), which significantly increases the loading capacity of Ni SAs (4.8 wt%). Compared to conventional materials that only anchor Ni SAs to the outer surface of the carrier (Ni SAs/GHSs), Ni SAs/GHSs/Ni SAs exhibits significantly higher electrocatalytic activity toward glucose oxidation in alkaline media. The sensitivity of Ni SAs/GHSs/Ni SAs/GCE is nearly five times higher than that of Ni SAs/GHSs/GCE. Moreover, the sensor based on Ni SAs/GHSs/Ni SAs can detect glucose in a wide concentration range of 0.8 µM-1.1244 mM with a low detection limit of 0.19 µM (S/N = 3). This study not only provides an effective sensing material for glucose detection, but also opens a new avenue to construct high-density metal SACs.
Collapse
Affiliation(s)
- Hang Yin
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Xiao Bai
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China.
| |
Collapse
|
2
|
Li H, Xiao N, Jiang M, Long J, Li Z, Zhu Z. Advances of Transition Metal-Based Electrochemical Non-enzymatic Glucose Sensors for Glucose Analysis: A Review. Crit Rev Anal Chem 2024:1-37. [PMID: 38635407 DOI: 10.1080/10408347.2024.2339955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.
Collapse
Affiliation(s)
- Haotian Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Nan Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengyi Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjun Long
- Danyang Development Zone, Jiangsu Yuwell-POCT Biological Technology Co., Ltd, Danyang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Zhang Z, Huang L, Chen Y, Qiu Z, Meng X, Li Y. Portable glucose sensing analysis based on laser-induced graphene composite electrode. RSC Adv 2024; 14:1034-1050. [PMID: 38174264 PMCID: PMC10759202 DOI: 10.1039/d3ra06947h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10-5 to 2.5 × 10-3 mol L-1. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM-1 cm-2 and an ultra-low limit of detection (S/N = 3) of 0.2 × 10-5 mol L-1. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.
Collapse
Affiliation(s)
- Zhaokang Zhang
- College of Chemical Engineering, Fuzhou University Fuzhou 350108 China
| | - Lu Huang
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University Weifang 261053 China
| | - Yanxia Li
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| |
Collapse
|
4
|
Ramesh M, Sankar C, Umamatheswari S, Raman RG, Jayavel R, Choi D, Ramu AG. Silver-functionalized bismuth oxide (AgBi 2O 3) nanoparticles for the superior electrochemical detection of glucose, NO 2- and H 2O 2. RSC Adv 2023; 13:20598-20609. [PMID: 37441044 PMCID: PMC10333811 DOI: 10.1039/d2ra08140g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, silver-functionalized bismuth oxide (AgBi2O3) nanoparticles (SBO NPs) were successfully synthesized by a highly efficient hydrothermal method. The as-synthesized SBO nanoparticles were characterized using FT-IR, P-XRD, XPS, HR-SEM, and HR-TEM analytical methods. It was found that the NPs were in spherical shape and hexagonal crystal phase. The newly prepared SBO electrode was further utilized for the detection of glucose, NO2- and H2O2 by cyclic voltammetry (CV) and amperometric methods. The electrodes exhibited high sensitivity (2.153 μA mM-1 cm-2 for glucose, 22 μA mM-1 cm-2 for NO2- and 1.72 μA mM-1 cm-2 for H2O2), low LOD (0.87 μM for glucose, 2.8 μM for NO2- and 1.15 μM for H2O2) and quick response time (3 s for glucose, 2 s for both NO2- and H2O2 respectively). The sensor exhibited outstanding selectivity despite the presence of various interferences. The developed sensor exhibited good repeatability, reproducibility, and stability. In addition, the sensor was used to measure glucose, H2O2 in human serum, and NO2- in milk and river water samples, demonstrating its potential for use in the real sample.
Collapse
Affiliation(s)
- M Ramesh
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University) Tiruchirappalli 620 022 Tamil Nadu India +91-8438288510
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College Tiruchirappalli 621 105 Tamil Nadu India
| | - S Umamatheswari
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University) Tiruchirappalli 620 022 Tamil Nadu India +91-8438288510
| | - R Ganapathi Raman
- Department of Physics, Saveetha Engineering College Thandalam Chennai-602 105 India
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University Chennai 600025 Tamil Nadu India
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-City 30016 South Korea +82-1094126765
| | - A G Ramu
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-City 30016 South Korea +82-1094126765
| |
Collapse
|
5
|
Tian S, Wang M, Fornasiero P, Yang X, Ramakrishna S, Ho SH, Li F. Recent advances in MXenes-based glucose biosensors. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Ahmed MA, Mohamed AA. A systematic review of layered double hydroxide-based materials for environmental remediation of heavy metals and dye pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Sohrabi H, Dezhakam E, Nozohouri E, Majidi MR, Orooji Y, Yoon Y, Khataee A. Advances in layered double hydroxide based labels for signal amplification in ultrasensitive electrochemical and optical affinity biosensors of glucose. CHEMOSPHERE 2022; 309:136633. [PMID: 36191760 DOI: 10.1016/j.chemosphere.2022.136633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Since the development of enzyme electrodes, the research area of glucose biosensing has seen outstanding progress and improvement. Numerous sensing platforms have been developed based on different immobilization techniques and improved electron transfer between the enzyme and electrode. Interestingly, these platforms have consistently used innovative nanostructures and nanocomposites. In recent years, layered double hydroxides (LDHs) have become key tools in the field of analytical chemistry owing to their outstanding features and benefits, such as facile synthesis, cost-effectiveness, substantial surface area, excellent catalytic performance, and biocompatibility. LDHs are often synthesized as nanomaterial composites or manufactured with specific three-dimensional structures. The purpose of this review is to illustrate the biosensing prospects of LDH-based glucose sensors and the need for improvement. First, various clinical and conventional approaches for glucose determination are discussed. The definitions, types, and various synthetic methodologies of LDHs are then explained. Subsequently, we discuss the various research studies regarding LDH-based electrochemical and optical assays, focusing on modified systems, improved electron transfers pathways (through developments in surface science), and different sensing designs based on nanomaterials. Finally, a summary of the current limitations and future challenges in glucose analysis is described, which may facilitate further development and applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
8
|
Fan M, Zhu S, Zhang Q, Wang X, Zhang L, Chang Z, Chong R. Sensitive photoelectrochemical sensing of glucose using hematite decorated with NiAl-layered double hydroxides. Food Chem 2022; 405:134883. [DOI: 10.1016/j.foodchem.2022.134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
9
|
Preparation of three dimensional Cu2O/Au/GO hybrid electrodes and its application as a non-enzymatic glucose sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
11
|
Radhakrishnan S, Lakshmy S, Santhosh S, Kalarikkal N, Chakraborty B, Rout CS. Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. BIOSENSORS 2022; 12:467. [PMID: 35884271 PMCID: PMC9313175 DOI: 10.3390/bios12070467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/09/2023]
Abstract
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. This review article looks at both enzymatic and nonenzymatic glucose sensors made from 2D materials. On the other hand, we concentrated on discussing the complexities of many significant papers addressing the construction of sensors and the usage of prepared sensors so that readers might grasp the concepts underlying such devices and related detection strategies. We also discuss several tuning approaches for improving electrochemical glucose sensor performance, as well as current breakthroughs and future plans in wearable and flexible electrochemical glucose sensors based on 2D materials as well as photoelectrochemical sensors.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Shilpa Santhosh
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure and Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra, India
- Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| |
Collapse
|
12
|
Binder free 3D core-shell NiFe layered double hydroxide (LDH) nanosheets (NSs) supported on Cu foam as a highly efficient non-enzymatic glucose sensor. J Colloid Interface Sci 2022; 615:865-875. [PMID: 35182856 DOI: 10.1016/j.jcis.2022.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 01/16/2023]
Abstract
Rational design with fine-tuning of the electrocatalyst material is vital for achieving the desired sensitivity, selectivity, and stability for an electrochemical sensor. In this study, a three-dimensional (3D) hierarchical core-shell catalyst was employed as a self-standing, binder-free electrode for non-enzymatic glucose sensing. The catalyst was prepared by decorating the shell of NiFe layered double hydroxide (LDH) nanosheets (NSs) on the core of Cu nanowires (NWs) grown on a Cu foam support. The optimized 3D core-shell Cu@NiFe LDH sensor demonstrated higher sensitivity (7.88 mA mM-1cm-2), lower limit of detection (0.10 µM) and wider linear range (1 µM to 0.9 mM) in glucose sensing with a low working potential (0.4 V). The applied sensor also showed excellent stability, reproducibility, interference ability as well as practicability in real environment. The detection of real samples further suggests its great feasibility for practical applications. The superior electrocatalytic performance is collectively ascribed to the excellent electro-conductivity of the Cu substrate, the distinct self-standing 3D porous nanostructure, the ultrathin homogenous architecture, and the appropriate loading amount of NiFe LDH NSs. This study then provides a non-enzymatic glucose sensor with 3D Cu@NiFe LDH electrode for ultrahigh sensitivity and stability.
Collapse
|
13
|
Khorshidi M, Asadpour S, Sarmast N, Dinari M. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Zhu J, Liu S, Hu Z, Zhang X, Yi N, Tang K, Dexheimer MG, Lian X, Wang Q, Yang J, Gray J, Cheng H. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 2021; 193:113606. [PMID: 34507206 PMCID: PMC8556579 DOI: 10.1016/j.bios.2021.113606] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glucose sensors outperform enzymatic ones in terms of cost, sensitivity, stability, and operating duration. Though highly sensitive, it is still desirable to further improve the sensitivity of non-enzymatic glucose sensors to detect a trace amount of glucose in sweat and other biofluids. Among the demonstrated effective approaches using bimetals or 3D porous structures, the porous laser-induced graphene (LIG) on flexible polymers showcases good conductivity and a simple fabrication process for the integration of sensing materials. The uniform electroless plating of the nickel and gold layer on LIG electrodes demonstrates significantly enhanced sensitivity and a large linear range for glucose sensing. The sensor with the porous LIG foam exhibits a high sensitivity of 1080 μA mM-1 cm-2, whereas a further increased sensitivity of 3500 μA mM-1 cm-2 is obtained with LIG fibers (LIGF). Impressively, a large linear range (0-30 mM) can be achieved by changing the bias voltage from 0.5 to 0.1 V due to the Au coating. Because the existing non-enzymatic glucose sensors are limited to use in basic solutions, their application in wearable electronics is elusive. In addition to the reduced requirement for the basic solution, this work integrates a porous encapsulating reaction cavity containing alkali solutions with a soft, skin-interfaced microfluidic component to provide integrated microfluidic non-enzymatic glucose sensors for sweat sampling and glucose sensing. The accurate glucose measurements from the human sweat and cell culture media showcase the practical utility, which opens up opportunities for the non-enzymatic glucose sensors in wearable electronics.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhihui Hu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; School of Logistics Engineering, Wuhan University of Technology, Wuhan, 430063, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ning Yi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kairui Tang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael Gregory Dexheimer
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jennifer Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
15
|
Kim A, Varga I, Adhikari A, Patel R. Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2809. [PMID: 34835574 PMCID: PMC8624839 DOI: 10.3390/nano11112809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Layered double hydroxides (LDHs) have attracted considerable attention as promising materials for electrochemical and optical sensors owing to their excellent catalytic properties, facile synthesis strategies, highly tunable morphology, and versatile hosting ability. LDH-based electrochemical sensors are affordable alternatives to traditional precious-metal-based sensors, as LDHs can be synthesized from abundant inorganic precursors. LDH-modified probes can directly catalyze or host catalytic compounds that facilitate analyte redox reactions, detected as changes in the probe's current, voltage, or resistance. The porous and lamellar structure of LDHs allows rapid analyte diffusion and abundant active sites for enhanced sensor sensitivity. LDHs can be composed of conductive materials such as reduced graphene oxide (rGO) or metal nanoparticles for improved catalytic activity and analyte selectivity. As optical sensors, LDHs provide a spacious, stable structure for synergistic guest-host interactions. LDHs can immobilize fluorophores, chemiluminescence reactants, and other spectroscopically active materials to reduce the aggregation and dissolution of the embedded sensor molecules, yielding enhanced optical responses and increased probe reusability. This review discusses standard LDH synthesis methods and overviews the different electrochemical and optical analysis techniques. Furthermore, the designs and modifications of exemplary LDHs and LDH composite materials are analyzed, focusing on the analytical performance of LDH-based sensors for key biomarkers and pollutants, including glucose, dopamine (DA), H2O2, metal ions, nitrogen-based toxins, and other organic compounds.
Collapse
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA;
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| |
Collapse
|
16
|
Goodnight L, Butler D, Xia T, Ebrahimi A. Non-Enzymatic Detection of Glucose in Neutral Solution Using PBS-Treated Electrodeposited Copper-Nickel Electrodes. BIOSENSORS 2021; 11:409. [PMID: 34821625 PMCID: PMC8615574 DOI: 10.3390/bios11110409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 05/24/2023]
Abstract
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 ± 0.45 μA cm-2/log10(mole.L-1) at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment.
Collapse
Affiliation(s)
- Lindsey Goodnight
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
| | - Derrick Butler
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
| | - Aida Ebrahimi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA; (L.G.); (D.B.); (T.X.)
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Shen M, Li W, Chen L, Chen Y, Ren S, Han D. NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam as a highly sensitive electrochemical non-enzymatic glucose sensor. Anal Chim Acta 2021; 1177:338787. [PMID: 34482893 DOI: 10.1016/j.aca.2021.338787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
The detection of glucose in human blood is of great importance in the diagnosis and prevention of diabetes. In this work, we fabricated a novel electrochemical non-enzymatic glucose sensor, NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam (NiCo-LDH@ Au/Cu) by galvanic replacement and electrodeposition methods. Owing to the synergistic effect of three-dimensional (3D) architecture of Cu foam, high electrocatalytic activity of Au nanoparticles and NiCo-LDH nanoflake arrays, the NiCo-LDH@Au/Cu electrode exhibits excellent electrocatalytic ability for glucose oxidation in NaOH solution. Under optimized conditions, the NiCo-LDH@Au/Cu electrode shows excellent activity with a linear range from 0.5 to 3000 μM at the potential of 0.50 V (vs. Ag/AgCl), a low detection limit of 0.23 μM (S/N = 3), an ultra-prompt response time of 0.5 s, and a high sensitivity of 23100 μA mM-1 cm-2, as well as good selectivity and stability. Furthermore, the as-fabricated non-enzymatic glucose sensor was successfully applied to the glucose detection in human serum as a promising candidate in the development of electrochemical non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Mao Shen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Wei Li
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Lei Chen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Yuxiang Chen
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Shibin Ren
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China.
| | - Deman Han
- College of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
18
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
19
|
Jouyban A, Amini R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem Toxicol 2021; 151:112099. [PMID: 33677039 DOI: 10.1016/j.fct.2021.112099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
This article was focused on the elaboration of NiFe-Polyaniline glucose sensors via electrochemical technique. Firstly, the PANi (polyaniline) fibers were synthesized by oxidation of the monomer aniline on FTO (fluorine tin oxide) substrate. Secondly, the Nickel-Iron nanoparticles (NiFe (NPs)) were obtained by the Chronoamperometry method on the Polyaniline surface. The NiFe-PANi hybrid electrode was characterized by scanning electron microscopy (SEM), force atomic microscopy (AFM), Fourier-transformed infrared (FTIR), and X-ray diffraction (XRD). The electrochemical glucose sensing performance of the NiFe alloy nanoparticle was studied by cyclic voltammetry and amperometry. The fabricated glucose sensor Ni-Fe hybrid material exhibited many remarkable sensing performances, such as low-response time (4 s), sensitivity (1050 μA mM-1 cm-2), broad linear range (from 10 μM -1 mM), and low limit of detection (LOD) (0.5 μM, S/N = 3). The selectivity, reliability, and stability of the NiFe hybrid material for glucose oxidation were also investigated. All the results demonstrated that the NiFe-PANi/FTO hybrid electrode is very promising for application in electrochemical glucose sensing.
Collapse
Affiliation(s)
- Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria.
| | - Abderrahim Guittoum
- Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, Bp 399, Alger-Gare, Algiers, Algeria
| | - Nassima Benbrahim
- Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
21
|
Fatema KN, Oh WC. A comparative electrochemical study of non-enzymatic glucose, ascorbic acid, and albumin detection by using a ternary mesoporous metal oxide (ZrO 2, SiO 2 and In 2O 3) modified graphene composite based biosensor. RSC Adv 2021; 11:4256-4269. [PMID: 35424336 PMCID: PMC8694395 DOI: 10.1039/d0ra09886h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we present an electrochemical investigation of a ternary mesoporous metal oxide (ZrO2, SiO2 and In2O3) modified graphene composite for non-enzymatic glucose, ascorbic acid, and albumin detection in urine at physiological pH. Synergetic property of ZrO2-Ag-G-SiO2 and In2O3-G-SiO2 were investigated via cyclic voltammetry (CV) using FTO glass and copper-foil electrodes with no prerequisite of solid antacid expansion. The mesoporous ZrO2-Ag-G-SiO2 and In2O3-G-SiO2 composites were synthesized and characterized using XRD, SEM, TEM, Raman spectroscopy, XPS, DRS, BET, and photocurrent measurements. Upon increasing the glucose concentration from 0 to 3 mM, CV results indicated two anodic peaks at +0.18 V and +0.42 V versus Ag/AgCl, corresponding to Zr3+ and Zr4+, respectively, considering the presence of glucose in urine. Moreover, the effects of high surface area In2O3-G-SiO2 were observed upon the examination of ZrO2-Ag-G-SiO2. In2O3-G-SiO2 demonstrated a decent electrochemical pattern in glucose, ascorbic acid, and albumin sensing. Nevertheless, insignificant synergistic effects were observed in In2O3-G, ZrO2-G, and ZrO2-G-SiO2. In2O3-G-SiO2 performed well under a wide range of electrolytes and urine, and showed no activity toward uric acid, suggesting potential for biodetection in urine.
Collapse
Affiliation(s)
- Kamrun Nahar Fatema
- Department of Advanced Materials Science & Engineering, Hanseo University Seosan-si Chungnam Korea 356-706 +82-41-688-3352 +82-41-660-1337
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University Seosan-si Chungnam Korea 356-706 +82-41-688-3352 +82-41-660-1337
- College of Materials Science and Engineering, Anhui University of Science & Technology Huainan 232001 PR China
| |
Collapse
|
22
|
Preparation and comparison of colloid based Ni50Co50(OH)2/BOX electrocatalyst for catalysis and high performance nonenzymatic glucose sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
3D shell-core structured NiCu-OH@Cu(OH)2 nanorod: A high-performance catalytic electrode for non-enzymatic glucose detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Khalafallah D, Zhi M, Hong Z. Development Trends on Nickel‐Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem 2020. [DOI: 10.1002/cctc.202001018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
- Mechanical Design and Materials Department Faculty of Energy Engineering Aswan University P.O. Box 81521 Aswan Egypt
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material School of Materials Science and Engineering Zhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| |
Collapse
|
25
|
Shishegari N, Sabahi A, Manteghi F, Ghaffarinejad A, Tehrani Z. Non-enzymatic sensor based on nitrogen-doped graphene modified with Pd nano-particles and NiAl layered double hydroxide for glucose determination in blood. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Chandrasekaran NI, Matheswaran M. Electrochemical activity of 3D hairy hollow sphered Mn‐Cu‐Al layered hydroxide nanocomposites: A short survey on glucose analyte. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Manickam Matheswaran
- Department of Chemical Engineering National Institute of Technology Tiruchirappalli India
| |
Collapse
|
27
|
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 2020; 165:112331. [PMID: 32729477 DOI: 10.1016/j.bios.2020.112331] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Abstract
Diabetes is a pathological condition that requires the continuous monitoring of glucose level in the blood. Its control has been tremendously improved by the application of point-of-care devices. Conventional enzyme-based sensors with electrochemical and optical transduction systems can successfully measure the glucose concentration in human blood, but they suffer from the low stability of the enzyme. Non-enzymatic wearable electrochemical and optical sensors, with low-cost, high stability, point-of-care testing and online monitoring of glucose levels in biological fluids, have recently been developed and can help to manage and control diabetes worldwide. Advances in nanoscience and nanotechnology have enabled the development of novel nanomaterials that can be implemented for the use in enzyme-free systems to detect glucose. This review summarizes recent developments of enzyme-free electrochemical and optical glucose sensors, as well as their respective wearable and commercially available devices, capable of detecting glucose at physiological pH conditions without the need to pretreat the biological fluids. Additionally, the evolution of electrochemical glucose sensor technology and a couple of widely used optical detection systems along with the glucose detection mechanism is also discussed. Finally, this review addresses limitations and challenges of current non-enzymatic electrochemical, optical, and wearable glucose sensor technologies and highlights opportunities for future research directions.
Collapse
|
28
|
Lanzalaco S, Molina BG. Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules 2020; 25:E2446. [PMID: 32456314 PMCID: PMC7287907 DOI: 10.3390/molecules25102446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Polymer materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. The present study reviews the field of electrochemical biosensors fabricated on modified plastics and polymers, focusing the attention, in the first part, on modified conducting polymers to improve sensitivity, selectivity, biocompatibility and mechanical properties, whereas the second part is dedicated to modified "environmentally friendly" polymers to improve the electrical properties. These ecofriendly polymers are divided into three main classes: bioplastics made from natural sources, biodegradable plastics made from traditional petrochemicals and eco/recycled plastics, which are made from recycled plastic materials rather than from raw petrochemicals. Finally, flexible and wearable lab-on-a-chip (LOC) biosensing devices, based on plastic supports, are also discussed. This review is timely due to the significant advances achieved over the last few years in the area of electrochemical biosensors based on modified polymers and aims to direct the readers to emerging trends in this field.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ d’Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/ d’Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain
| | - Brenda G. Molina
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ d’Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/ d’Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain
| |
Collapse
|
29
|
Rossini PDO, Laza A, Azeredo NF, Gonçalves JM, Felix FS, Araki K, Angnes L. Ni-based double hydroxides as electrocatalysts in chemical sensors: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Guo S, Zhang C, Yang M, Zhou Y, Bi C, Lv Q, Ma N. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide. Anal Chim Acta 2020; 1109:130-139. [PMID: 32252896 DOI: 10.1016/j.aca.2020.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
A novel three-dimensional nickel hydroxide/polyurethane (Ni(OH)2/PU) electrode was prepared by a simple and environmentally friendly method and used for non-enzymatic detection of glucose. The Ni(OH)2/PU electrode was obtained by one-pot hydrothermal method of loading nickel hydroxide on a cheap, easily available and flexible polyurethane sponge, which is facile and energy-saving. The porous structure of the polyurethane sponge provides a large surface area and a rich electrochemical active site for the electrode, which is beneficial to the oxidation reaction of glucose on the surface of the electrode with Ni(OH)2. The Ni(OH)2/PU electrode structure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The cyclic voltammetry test was used to study the catalytic performance of Ni(OH)2/PU electrode for oxidation of glucose and the chronoamperometry was used to investigate the detection performance of Ni(OH)2/PU electrode on glucose. The results indicate that this non-enzymatic glucose sensor had a high sensitivity of 2845 μA mM-1 cm-2, a low detection limit of 0.32 μM (S/N = 3), a detection range of 0.01-2.06 mM and response time of less than 5 s. In addition, the Ni(OH)2/PU electrode had excellent selectivity, reproducibility and stability and also exhibited effective detection of glucose in fetal bovine serum (FBS). In summary, Ni(OH)2/PU electrode had broad prospects as an excellent candidate for non-enzymatic glucose sensors. The study also opens up a facile and energy-saving approach for preparing three-dimensional (3D) functionalized polymer electrode via hydrothermal method as electrochemical sensors.
Collapse
Affiliation(s)
- Shixi Guo
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.
| | - Ming Yang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yanli Zhou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Changlong Bi
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Qingtao Lv
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| |
Collapse
|
31
|
Chu D, Li F, Song X, Ma H, Tan L, Pang H, Wang X, Guo D, Xiao B. A novel dual-tasking hollow cube NiFe 2O 4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J Colloid Interface Sci 2020; 568:130-138. [PMID: 32088443 DOI: 10.1016/j.jcis.2020.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Binary transition metal oxides as electroactive materials have continuously aroused grumous attention due to their high theoretical specific capacitance, high valtage window, and multiple oxidation states. However, the tiny specific surface area, poor conductivity and unsatisfactory cycle stability limit their practical application. Hence, a synthetic strategy is designed to fabricate a dual-tasking hollow cube nickel ferrite (NiFe2O4) - based composite (NiFe2O4-NiCo-LDH@rGO) with hierarchical structure. The composite is constructed by firstly preparing hollow NiFe2O4 from cube-like Ni - Fe bimetallic organic framework (NiFe-MOF), and then integrating nickel cobalt layered double hydroxide (NiCo-LDH) nanowires, together with reduced graphene oxide (rGO) via pyrolysis in conjuction with hydrothermal method. The NiFe2O4 possessing cubic hollow structure contributes to a huge accessible surface area, meanwhile alleviates large volume expansion/contraction effect, which facilitates suffcient permeation of the electrolyte and rapid ion/charge transport, and results in high cycling stability. The introduction of layered NiCo-LDH results in hierarchical structure and thus offers maximum contact areas with electrolyte, which heightens the specific capacitance of obtained composite and enhances the electro-catlytic activity towards oxidation of glucose. Furthermore, rGO layer greatly improves the electrical conductivity and ion diffusion/transport capability of composite. Benefiting from the unique structure and individual components of NiFe2O4-NiCo-LDH@rGO composite, the electrode delivers a high specific capacitance (750 C g-1) and superb durability. Simultaneously, the asymmetrical device based on NiFe2O4-NiCo-LDH@rGO as positive electrode delivers remarkable energy density (50 Wh kg-1). Moreover, NiFe2O4-NiCo-LDH@rGO exhibits good sensing performance with a sensitivity of 111.86 µA/µM cm-2, the wide linear range of 3.500 × 10-5 - 4.525 × 10-3 M, and the detection limit of 12.94 × 10-6 M with a signal to noise ratio of 3. Consequently, the NiFe2O4-NiCo-LDH@rGO could provide a prospective notion constructing bifunctional materials with hollow-cube hierarchical structure in the field of supercapacitors and electrochemical sensors.
Collapse
Affiliation(s)
- Dawei Chu
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Fengbo Li
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Xiumei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Dongxuan Guo
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Boxin Xiao
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| |
Collapse
|
32
|
Şavk A, Aydın H, Cellat K, Şen F. A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112355] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113783] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Zhang H, Yu Y, Shen X, Hu X. A Cu2O/Cu/carbon cloth as a binder-free electrode for non-enzymatic glucose sensors with high performance. NEW J CHEM 2020. [DOI: 10.1039/c9nj05256a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An electrode prepared via potentiostatic electrochemical deposition exhibits a 60 nM detection limit and a 1 linear range of 1 to 1555 μM.
Collapse
Affiliation(s)
- Haoze Zhang
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Yawei Yu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiaodong Shen
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiulan Hu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| |
Collapse
|
35
|
Chia HL, Mayorga-Martinez CC, Gusmão R, Novotny F, Webster RD, Pumera M. A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chem Commun (Camb) 2020; 56:7909-7912. [DOI: 10.1039/d0cc02770g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel pnictogen-based composite, pnictogen–Au@AgNRs, for the development of a highly sensitive non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Hui Ling Chia
- NTU Institute for Health Technologies
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 637335
- Singapore
| | - Carmen C. Mayorga-Martinez
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Rui Gusmão
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Filip Novotny
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Martin Pumera
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- Faculty of Chemical Technology
- University of Chemistry and Technology Prague
- Dejvice
| |
Collapse
|
36
|
Hao X, Jia J, Chang Y, Jia M, Wen Z. Monodisperse copper selenide nanoparticles for ultrasensitive and selective non-enzymatic glucose biosensor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
|
38
|
Aziz A, Asif M, Ashraf G, Azeem M, Majeed I, Ajmal M, Wang J, Liu H. Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Mikrochim Acta 2019; 186:671. [DOI: 10.1007/s00604-019-3776-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
|
39
|
Darabdhara G, Das MR, Singh SP, Rengan AK, Szunerits S, Boukherroub R. Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci 2019; 271:101991. [PMID: 31376639 DOI: 10.1016/j.cis.2019.101991] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
The exceptional electrical, thermal, optical and mechanical properties have made two dimensional sp2 hybridized graphene a material of choice in both academic as well as industrial research. In the last few years, researchers have devoted their efforts towards the development of graphene/polymer, graphene/metal nanoparticle and graphene/ceramic nanocomposites. These materials display excellent mechanical, electrical, thermal, catalytic, magnetic and optical properties which cannot be obtained separately from the individual components. Fascinating physical and chemical properties are displayed by noble metal nanomaterials and thus they represent model building blocks for modifying nanoscale structures for diverse applications extending from catalysis, optics to nanomedicine. Insertion of noble metal (Au, Ag) nanoparticles (NPs) into chemically derived graphene is thus of primary importance to open new avenues for both materials in various fields where the specific properties of each material act synergistically to provide hybrid materials with exceptional performances. This review attempts to summarize the different synthetic procedures for the preparation of Ag and Au NPs/reduced graphene oxide (rGO) composites. The synthesis processes of metal NPs/rGO composites are categorised into in-situ and ex-situ techniques. The in-situ approach consists of simultaneous reduction of metal salts and GO to obtain metal NPs/rGO nanocomposite materials, while in the ex-situ process, the metal NPs of desired size and shape are first synthesized and then transferred onto the GO or rGO matrix. The application of the Ag NPs and Au NPs/rGO composite materials in the area of biomedical (drug delivery and photothermal therapy) and biosensing are the focus of this review article.
Collapse
Affiliation(s)
- Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, India.
| | - Surya P Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind K Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
40
|
Vishnu N, Sahatiya P, Kong CY, Badhulika S. Large area, one step synthesis of NiSe 2 films on cellulose paper for glucose monitoring in bio-mimicking samples for clinical diagnostics. NANOTECHNOLOGY 2019; 30:355502. [PMID: 31067525 DOI: 10.1088/1361-6528/ab2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is an urgent need to develop low cost electrochemical sensors wherein the sensor can be disposed after recording data, thereby eliminating the issue of inaccuracy arising from repeated sensing measurements, which plagues most conventional electrochemical sensors. This work is the first demonstration of a NiSe2 based disposable, one time use electrochemical glucose sensor in bio-mimicking real samples wherein NiSe2 was hydrothermally grown NiSe2 on a biodegradable cellulose paper. Both physicochemical (x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscope) and electrochemical (impedance spectroscopy and cyclic voltammetry (CV)) characterization techniques confirmed the growth and presence of NiSe2 on a cellulose paper. Electrochemical techniques like CV and amperometric (i-t) were utilized for the selective and sensitive oxidation of glucose. The results suggests that the proposed NiSe2 sensor is effective in a linear range of 0.1-1 mM with fast response time (3.9 s), low detection limit (24.8 ± 0.1 μM) and high sensitivity (0.25 A M-1 cm-2) at a potential applied (E app = 0.55 V versus Ag∣AgCl). Prior to the real sample analyses i.e. glucose detection in human urine, the fabricated NiSe2 sensor was tested for selectivity towards glucose in co-existing interferences (dopamine, ascorbic acid, uric acid, urea, sodium chloride, fructose, lactose and cysteine). Finally, glucose in artificial blood serum and urine samples was demonstrated with the fabricated NiSe2 sensor and the results are comparable to the conventional laboratory methods. The present methodology presents a novel possibility towards the design of next generation, affordable point-of-care devices for a broad range of clinical diagnostics.
Collapse
Affiliation(s)
- Nandimalla Vishnu
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | | | | | | |
Collapse
|
41
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|
42
|
Shahrokhian S, Khaki Sanati E, Hosseini H. Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH) 2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode. NANOSCALE 2019; 11:12655-12671. [PMID: 31237600 DOI: 10.1039/c9nr02720c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were directly grown on a glassy carbon electrode to fabricate an enzyme-free glucose sensor. By virtue of an open structure containing a hollow conductive core and a highly porous catalytic active shell, which were both synthesized by the in situ method, hierarchical self-standing core-shell nanotubes were obtained. They provided an enlarged active surface area, highly accessible catalytic sites, faster electron transfer, effortless electrolyte ion diffusion pathways, and structural stability, thus leading to improved electrocatalytic performances and durability towards glucose electro-oxidation; this was reflected by the fast sensitive responses of the as-prepared sensor towards glucose and comparable results with the automatic biochemistry analyzer used in hospitals in real sample analysis. Moreover, the commercialization capability of the proposed sensor was evaluated analogously by directly grown hierarchical Cu(OH)2@CoNi-LDH core-shell nanotubes on graphite screen-printed exposable electrodes through a 3-step in situ method. Cu(OH)2@CoNi-LDH NS-NTs/GSPE showed accurate responses towards glucose, lack of any fouling effect of the electrocatalyst layer over a wide range of glucose concentrations and comparable results with that of a commercial glucometer in real sample analysis, which revealed high sensitivity, selectivity, and durability of the low-cost on-site sensor as well as excellent versatility of its fabrication method. Thus, the self-supporting, cost-affordable, facile, and fast electrode fabrication procedure with versatility and meticulous structural controllability presented in this research provides a new architecture for the advancement of high-performance electrochemical sensors and miniaturized detection devices.
Collapse
Affiliation(s)
- Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran. and Institute for Nanoscience and Technology, Sharif University of Technology, Tehran, Iran
| | - Elnaz Khaki Sanati
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| | - Hadi Hosseini
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| |
Collapse
|
43
|
Cui N, Guo P, Yuan Q, Ye C, Yang M, Yang M, Chee KWA, Wang F, Fu L, Wei Q, Lin CT, Gao J. Single-Step Formation of Ni Nanoparticle-Modified Graphene-Diamond Hybrid Electrodes for Electrochemical Glucose Detection. SENSORS 2019; 19:s19132979. [PMID: 31284502 PMCID: PMC6650927 DOI: 10.3390/s19132979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/16/2019] [Accepted: 06/29/2019] [Indexed: 01/23/2023]
Abstract
The development of accurate, reliable devices for glucose detection has drawn much attention from the scientific community over the past few years. Here, we report a single-step method to fabricate Ni nanoparticle-modified graphene–diamond hybrid electrodes via a catalytic thermal treatment, by which the graphene layers are directly grown on the diamond surface using Ni thin film as a catalyst, meanwhile, Ni nanoparticles are formed in situ on the graphene surface due to dewetting behavior. The good interface between the Ni nanoparticles and the graphene guarantees efficient charge transfer during electrochemical detection. The fabricated electrodes exhibit good glucose sensing performance with a low detection limit of 2 μM and a linear detection range between 2 μM–1 mM. In addition, this sensor shows great selectivity, suggesting potential applications for sensitive and accurate monitoring of glucose in human blood.
Collapse
Affiliation(s)
- Naiyuan Cui
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Pei Guo
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Department of Physics, Liaoning University, Shenyang 110000, China
| | - Qilong Yuan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingyang Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kuan W A Chee
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
- Laser Research Institute, Shandong Academy of Sciences, Qingdao 226100, China
| | - Fei Wang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Jingyao Gao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| |
Collapse
|
44
|
Sun F, Wang S, Wang Y, Zhang J, Yu X, Zhou Y, Zhang J. Synthesis of Ni-Co Hydroxide Nanosheets Constructed Hollow Cubes for Electrochemical Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2938. [PMID: 31277330 PMCID: PMC6651393 DOI: 10.3390/s19132938] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
Hierarchical Ni-Co double transition metal hydroxide nanosheets have been explored as an effective strategy for the design of nonenzymatic glucose sensors. Ni-Co hydroxide nanosheets constructed hollow cubes were successfully synthesized by using Cu2O cubes as templates and subsequently etched by Na2S2O3 to achieve a hollow cubic structure. The molar ratio between Ni and Co was tuned by varying the precursor ratio of NiCl2 and CoCl2. It was observed by transmission electron microscopy (TEM) that the increasing Ni precursor resulted in particle morphology, and the increasing ratio of the Co precursor resulted in more lamellar morphology. The sample with the composition of Ni0.7Co0.3(OH)2 displayed the best performance for glucose sensing with high selectivity (1541 μA mM-1 cm-2), low detection limit (3.42 µM with S/N = 3), and reasonable selectivity. Similar strategies could be applied for the design of other electrode materials with high efficiency for nonenzymatic glucose determination.
Collapse
Affiliation(s)
- Fengchao Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shutao Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuqi Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingtong Zhang
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinping Yu
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- College of Science, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
45
|
Golrokh Amin B, De Silva U, Masud J, Nath M. Ultrasensitive and Highly Selective Ni 3Te 2 as a Nonenzymatic Glucose Sensor at Extremely Low Working Potential. ACS OMEGA 2019; 4:11152-11162. [PMID: 31460215 PMCID: PMC6649054 DOI: 10.1021/acsomega.9b01063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Developing Nonenzymatic glucose biosensors has recently been at the center of attention owing to their potential application in implantable and continuous glucose monitoring systems. In this article, nickel telluride nanostructure with the generic formula of Ni3Te2 has been reported as a highly efficient electrocatalyst for glucose oxidation, functional at a low operating potential. Ni3Te2 nanostructures were prepared by two synthesis methods, direct electrodeposition on the electrode and hydrothermal method. The electrodeposited Ni3Te2 exhibited a wide linear range of response corresponding to glucose oxidation exhibiting a high sensitivity of 41.615 mA cm-2 mM-1 and a low limit of detection (LOD) of 0.43 μM. The hydrothermally synthesized Ni3Te2, on the other hand, also exhibits an ultrahigh sensitivity of 35.213 mA cm-2 mM-1 and an LOD of 0.38 μM. The observation of high efficiency for glucose oxidation for both Ni3Te2 electrodes irrespective of the synthesis method further confirms the enhanced intrinsic property of the material toward glucose oxidation. In addition to high sensitivity and low LOD, Ni3Te2 electrocatalyst also has good selectivity and long-term stability in a 0.1 M KOH solution. Since it is operative at a low applied potential of 0.35 V vs Ag|AgCl, interference from other electrochemically active species is reduced, thus increasing the accuracy of this sensor.
Collapse
Affiliation(s)
- Bahareh Golrokh Amin
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Umanga De Silva
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Jahangir Masud
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Manashi Nath
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
46
|
Diouf A, Bouchikhi B, El Bari N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1196-1209. [DOI: 10.1016/j.msec.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 11/30/2022]
|
47
|
Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1611-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Yuan X, Yin C, Zhang Y, Chen Z, Xu Y, Wang J. Synthesis of C@Ni-Al LDH HSS for efficient U-entrapment from seawater. Sci Rep 2019; 9:5807. [PMID: 30967584 PMCID: PMC6456493 DOI: 10.1038/s41598-019-42252-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/18/2019] [Indexed: 11/09/2022] Open
Abstract
In this paper, a double hollow spherical shell composite modified with layered double hydroxide (C@Ni-Al LDH HSS) was fabricated for uranium(VI) (U(VI)) adsorption. Various batch experiments were carried out to investigate the influence of pH, concentration, time and coexistence ion on extraction. The results showed that the adsorption processes of U(VI) onto C@Ni-Al LDH HSS were spontaneous and endothermic and closely followed pseudo-second-order and Langmuir isotherm models. The equilibrium time and maximum adsorption capacity of C@Ni-Al LDH HSS was 360 min and 545.9 mg g-1. FT-IR and XPS analyses proved that the adsorption behavior was primarily attributed to the strong interaction between oxygen-containing functional groups and U(VI). Moreover, the extraction of trace U(VI) (μg L-1) in artificial and natural seawater was also studied. The results showed that C@Ni-Al LDH HSS provided a promising application for the efficient extraction of U(VI) from seawater.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China. .,College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, China. .,College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Chunyue Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China.,College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yuanyuan Zhang
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, China
| | - Zengyue Chen
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, China
| | - Yifan Xu
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, China.,College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.,Harbin Engineering University Capital Management Co. Ltd, Harbin, 150001, China.,Institute of Advanced Marine Materials, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
49
|
Batool R, Akhtar MA, Hayat A, Han D, Niu L, Ahmad MA, Nawaz MH. A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Mikrochim Acta 2019; 186:267. [PMID: 30937549 DOI: 10.1007/s00604-019-3364-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
The authors report on the synthesis of carboxy functionalized graphene oxide (fGO) decorated with magnetite (Fe3O4) nanoparticles. The resulting nanomaterial was used to prepare a composite with polyaniline (PANI) which was characterized by UV-vis, Fourier transform-infrared and Raman spectroscopies. Its surface morphologies were characterized by atomic force and scanning electron microscopies. A screen-printed carbon electrode was then modified with the nanocomposite to obtain an enzyme-free glucose sensor. The large surface of fGO and Fe3O4 along with the enhanced charge transfer capability of PANI warrant a pronounced electrochemical response (typically measured at 0.18 V versus Ag/AgCl) which is suppressed in the presence of glucose. This reduction of current by glucose was used to design a sensitive method for quantification of glucose. The response of the modified SPCE is linear in the 0.05 μM - 5 mM glucose concentration range, and the lower detection limit is 0.01 μM. Graphical abstract Schematic illustration of in-situ anchoring of Iron oxide on functionalized graphene oxide and synthesis of its polymeric nanocomposite for non-enzymatic detection of Glucose. The nanocomposite modified screen printed interface enabled monitoring of glucose at lower potential with higher precision. GO (graphene oxide), fGO (functionalized graphene oxide), PANI (polyaniline).
Collapse
Affiliation(s)
- Razia Batool
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, 55150, Pakistan
| | - Muhammad Asim Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, 55150, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, 55150, Pakistan.
| | - Dongxue Han
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Muhammad Ashfaq Ahmad
- Department of Physics, COMSATS University Islamabad Lahore Campus, Lahore, 55150, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, 55150, Pakistan.
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
50
|
Non-enzymatic glucose sensor of high sensitivity fabricated with direct deposition of Au particles on polyvinylferrocene film modified Pt electrode. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|