1
|
Rashid AB, Hoque ME, Kabir N, Rifat FF, Ishrak H, Alqahtani A, Chowdhury MEH. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers (Basel) 2023; 15:4070. [PMID: 37896314 PMCID: PMC10609962 DOI: 10.3390/polym15204070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal (CNC) is a part of the organic crystallization of macromolecular compounds found in bacteria's capsular polysaccharides and plant fibers. Owing to numerous reactive chemical groups on its surface, physical adsorption, surface grating, and chemical vapor deposition can all be used to increase its performance, which is the key reason for its wide range of applications. Cellulose nanocrystals (CNCs) have much potential as suitable matrices and advanced materials, and they have been utilized so far, both in terms of modifying and inventing uses for them. This work reviews CNC's synthesis, properties and various industrial applications. This review has also discussed the widespread applications of CNC as sensor, acoustic insulator, and fire retardant material.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Nahiyan Kabir
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Fahim Ferdin Rifat
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Hasin Ishrak
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
| | | |
Collapse
|
2
|
Cao M, Chu J, Fan X, Wang F, Wang J, Cheng F, Xu Z, Hu F, Liu H, Gong C. Poly (ionic liquid) filled and cross-linked bacterial cellulose-based organic-inorganic composite anion exchange membrane with significantly improved ionic conductivity and mechanical strength. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Kartika Sari A, Mohamad Yunus R, Majlan EH, Loh KS, Wong WY, Saidin NU, Alva S, Khaerudini DS. Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane. MEMBRANES 2022; 13:43. [PMID: 36676850 PMCID: PMC9865088 DOI: 10.3390/membranes13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
This work aims to encourage the use of natural materials for advanced energy applications, such as proton exchange membranes in fuel cells. Herein, a new conductive membrane produced from cassava liquid waste was used to overcome environmental pollution and the global crisis of energy. The membrane was phosphorylated through a microwave-assisted method with different phosphoric acid, (H3PO4) concentrations (10-60 mmol). Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), dynamic mechanical analysis (DMA), swelling behavior test, and contact angle measurement were carried out on the membrane doped with different H3PO4 levels. The phosphorylated NdC (nata de cassava) membrane doped with 20 mmol (NdC20) H3PO4 was successfully modified and significantly achieved proton conductivity (maximum conductivity up to 7.9 × 10-2 S cm-1 at 80 °C). In addition, the fabricated MEA was assembled using an NdC20 membrane with 60 wt% Pt/C loading of 0.5 mg cm-2 for the anode and cathode. Results revealed that a high power density of 25 mW cm-2 was obtained at 40 °C operating temperature for a single-cell performance test. Thus, this membrane has the potential to be used as a proton exchange membrane because it is environment-friendly and inexpensive for fuel cell applications.
Collapse
Affiliation(s)
- Andarany Kartika Sari
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Engineering Faculty, Universitas Mercu Buana, South Meruya No. 1 Kembangan, West Jakarta 11650, Indonesia
| | - Rozan Mohamad Yunus
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Edy Herianto Majlan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nur Ubaidah Saidin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Sagir Alva
- Engineering Faculty, Universitas Mercu Buana, South Meruya No. 1 Kembangan, West Jakarta 11650, Indonesia
| | - Deni Shidqi Khaerudini
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspitek Serpong, South Tangerang 15314, Indonesia
| |
Collapse
|
4
|
Silva ACQ, Silvestre AJD, Vilela C, Freire CSR. Cellulose and protein nanofibrils: Singular biobased nanostructures for the design of sustainable advanced materials. Front Bioeng Biotechnol 2022; 10:1059097. [PMID: 36582838 PMCID: PMC9793328 DOI: 10.3389/fbioe.2022.1059097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.
Collapse
|
5
|
Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, Mustafa MZ, Hanbazazah AS. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. CHEMOSPHERE 2022; 303:135204. [PMID: 35660058 DOI: 10.1016/j.chemosphere.2022.135204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The world is on the lookout for sustainable and environmentally benign energy generating systems. Fuel cells (FCs) are regarded as environmentally friendly technology since they address a variety of environmental issues, such as hazardous levels of local pollutants, while also delivering economic advantages owing to their high efficiency. A fuel cell is a device that changes chemical energy contained in fuels (such as hydrogen and methanol) into electrical energy. A wide variety of FCs are commercially available; however, proton exchange membranes for hydrogen fuel cells (PEMFCs) have received overwhelming attention owing to their potential to significantly reduce our energy consumption, pollution emissions, and reliance on fossil fuels. The proton exchange membrane (PEM) is a critical element; it is made of semipermeable polymer and serves as a barrier between the cathode and anode during fuel cell construction. Additionally, membranes function as an insulator between the cathode and anode, facilitating proton exchange and inhibiting electron exchange between the electrodes. Due to the excellent features such as durability and proton conductivity, Nafion membranes are commercially viable and have been in use for a long time. However, Nafion membranes are costly, and their proton exchange capacities degrade over time at higher temperatures and low relative humidity. Other types of membranes have been considered in addition to Nafion membranes. This article discusses the problems connected with several types of PEMs, as well as the strategies adopted to improve their characteristics and performance.
Collapse
Affiliation(s)
- Asif Jamil
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan.
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Hafiza Aroosa Aslam Khan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - Haris Mahmood Khan
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Pakistan
| | - Babar Azeem
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - M Z Mustafa
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Selyanchyn O, Bayer T, Klotz D, Selyanchyn R, Sasaki K, Lyth SM. Cellulose Nanocrystals Crosslinked with Sulfosuccinic Acid as Sustainable Proton Exchange Membranes for Electrochemical Energy Applications. MEMBRANES 2022; 12:membranes12070658. [PMID: 35877861 PMCID: PMC9319731 DOI: 10.3390/membranes12070658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Nanocellulose is a sustainable material which holds promise for many energy-related applications. Here, nanocrystalline cellulose is used to prepare proton exchange membranes (PEMs). Normally, this nanomaterial is highly dispersible in water, preventing its use as an ionomer in many electrochemical applications. To solve this, we utilized a sulfonic acid crosslinker to simultaneously improve the mechanical robustness, water-stability, and proton conductivity (by introducing -SO3−H+ functional groups). The optimization of the proportion of crosslinker used and the crosslinking reaction time resulted in enhanced proton conductivity up to 15 mS/cm (in the fully hydrated state, at 120 °C). Considering the many advantages, we believe that nanocellulose can act as a sustainable and low-cost alternative to conventional, ecologically problematic, perfluorosulfonic acid ionomers for applications in, e. fuel cells and electrolyzers.
Collapse
Affiliation(s)
- Olena Selyanchyn
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Thomas Bayer
- Lloyd’s Register Group Limited, Queens Tower A10F. 2-3-1, Minatomirai, Nishi-ku, Yokohama 220-0012, Japan;
| | - Dino Klotz
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.K.); (K.S.)
| | - Roman Selyanchyn
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.K.); (K.S.)
- Kyushu University Platform for Inter/Transdisciplinary Energy Research (Q-PIT), 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative-Emissions Technologies (K-NETs), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (R.S.); (S.M.L.)
| | - Kazunari Sasaki
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.K.); (K.S.)
- Kyushu University Platform for Inter/Transdisciplinary Energy Research (Q-PIT), 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Next-Generation Fuel Cell Research Center (NEXT-FC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Hydrogen Energy (HY30), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Stephen Matthew Lyth
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (D.K.); (K.S.)
- Next-Generation Fuel Cell Research Center (NEXT-FC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Hydrogen Energy (HY30), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S1 3JD, UK
- Correspondence: (R.S.); (S.M.L.)
| |
Collapse
|
7
|
Natural Polymers-Based Materials: A Contribution to a Greener Future. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010094. [PMID: 35011326 PMCID: PMC8747056 DOI: 10.3390/molecules27010094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
Abstract
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO–Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials. In particular, focus will be given to the use of polysaccharides (cellulose, chitosan, pullulan, hyaluronic acid, fucoidan, alginate, and agar) and proteins (lysozyme and gelatin) for the assembly of composites, coatings, films, membranes, patches, nanosystems, and microneedles using environmentally friendly strategies, and to address their main domains of application.
Collapse
|
8
|
Dzyazko Y, Ogenko V. Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Vilela C, Morais JD, Silva ACQ, Muñoz-Gil D, Figueiredo FML, Silvestre AJD, Freire CSR. Flexible Nanocellulose/Lignosulfonates Ion-Conducting Separators for Polymer Electrolyte Fuel Cells. NANOMATERIALS 2020; 10:nano10091713. [PMID: 32872554 PMCID: PMC7557763 DOI: 10.3390/nano10091713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
The utilization of biobased materials for the fabrication of naturally derived ion-exchange membranes is breezing a path to sustainable separators for polymer electrolyte fuel cells (PEFCs). In this investigation, bacterial nanocellulose (BNC, a bacterial polysaccharide) and lignosulfonates (LS, a by-product of the sulfite pulping process), were blended by diffusion of an aqueous solution of the lignin derivative and of the natural-based cross-linker tannic acid into the wet BNC nanofibrous three-dimensional structure, to produce fully biobased ion-exchange membranes. These freestanding separators exhibited good thermal-oxidative stability of up to about 200 °C, in both inert and oxidative atmospheres (N2 and O2, respectively), high mechanical properties with a maximum Young’s modulus of around 8.2 GPa, as well as good moisture-uptake capacity with a maximum value of ca. 78% after 48 h for the membrane with the higher LS content. Moreover, the combination of the conducting LS with the mechanically robust BNC conveyed ionic conductivity to the membranes, namely a maximum of 23 mS cm−1 at 94 °C and 98% relative humidity (RH) (in-plane configuration), that increased with increasing RH. Hence, these robust water-mediated ion conductors represent an environmentally friendly alternative to the conventional ion-exchange membranes for application in PEFCs.
Collapse
Affiliation(s)
- Carla Vilela
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.M.); (A.C.Q.S.); (A.J.D.S.)
- Correspondence: (C.V.); (C.S.R.F.)
| | - João D. Morais
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.M.); (A.C.Q.S.); (A.J.D.S.)
| | - Ana Cristina Q. Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.M.); (A.C.Q.S.); (A.J.D.S.)
| | - Daniel Muñoz-Gil
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.M.-G.); (F.M.L.F.)
| | - Filipe M. L. Figueiredo
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (D.M.-G.); (F.M.L.F.)
| | - Armando J. D. Silvestre
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.M.); (A.C.Q.S.); (A.J.D.S.)
| | - Carmen S. R. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.M.); (A.C.Q.S.); (A.J.D.S.)
- Correspondence: (C.V.); (C.S.R.F.)
| |
Collapse
|
10
|
Vilela C, Silva ACQ, Domingues EM, Gonçalves G, Martins MA, Figueiredo FML, Santos SAO, Freire CSR. Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: The case of bacterial cellulose and fucoidan. Carbohydr Polym 2020; 230:115604. [PMID: 31887959 DOI: 10.1016/j.carbpol.2019.115604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023]
Abstract
Conductive natural-based separators for application in polymer electrolyte fuel cells (PEFCs) were fabricated by combining a bacterial polysaccharide, i.e. bacterial cellulose (BC), and an algae sulphated polysaccharide, i.e. fucoidan (Fuc). The diffusion of fucoidan aqueous solution containing a natural-based cross-linker, viz. tannic acid, into the wet BC nanofibrous three-dimensional network, followed by thermal cross-linking, originated fully bio-based proton exchange membranes (PEMs). The PEMs present thermal-oxidative stability in the range of 180-200 °C and good dynamic mechanical performance (storage modulus ≥ 460 MPa). Additionally, the BC/Fuc membranes exhibit protonic conductivity that increases with increasing relative humidity (RH), which is a typical feature for numerous water-mediated proton conductors. The traditional Arrhenius-type plots demonstrate a linear behaviour with a maximum protonic conductivity of 1.6 mS cm-1 at 94 °C and 98 % RH. The results showed that these fully bio-based conductive membranes have potential as eco-friendly alternatives to other PEMs for application in PEFCs.
Collapse
Affiliation(s)
- Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana C Q Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eddy M Domingues
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Martins
- CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe M L Figueiredo
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia A O Santos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Rayung M, Aung MM, Azhar SC, Abdullah LC, Su’ait MS, Ahmad A, Jamil SNAM. Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E838. [PMID: 32059600 PMCID: PMC7078607 DOI: 10.3390/ma13040838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications. A range of bio-based polymers are presented by focusing on the source, the general method of preparation, and the properties of the polymer electrolyte system, specifically with reference to the ionic conductivity. Some major applications of bio-based polymer electrolytes are discussed. This review examines the past studies and future prospects of these materials in the polymer electrolyte field.
Collapse
Affiliation(s)
- Marwah Rayung
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Min Min Aung
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.C.A.); (S.N.A.M.J.)
| | - Shah Christirani Azhar
- Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.C.A.); (S.N.A.M.J.)
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Sukor Su’ait
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.S.); (A.A.)
| | - Azizan Ahmad
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.S.S.); (A.A.)
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Siti Nurul Ain Md Jamil
- Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.C.A.); (S.N.A.M.J.)
| |
Collapse
|
12
|
Vilela C, Cordeiro DM, Boas JV, Barbosa P, Nolasco M, Vaz PD, Rudić S, Ribeiro-Claro P, Silvestre AJ, Oliveira VB, Pinto AM, Figueiredo FM, Freire CS. Poly(4-styrene sulfonic acid)/bacterial cellulose membranes: Electrochemical performance in a single-chamber microbial fuel cell. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Tominaga M, Kuwahara K, Tsushida M, Shida K. Cellulose nanofiber-based electrode as a component of an enzyme-catalyzed biofuel cell. RSC Adv 2020; 10:22120-22125. [PMID: 35516605 PMCID: PMC9054564 DOI: 10.1039/d0ra03476b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 11/24/2022] Open
Abstract
Many types of flexible, wearable, and disposable electronic devices have been developed as chemical and physical sensors, and many solar cells contain plastics. However, because of environmental pollution caused by microplastics, plastic use is being reduced worldwide. We have developed an enzyme-catalyzed biofuel cell utilizing cellulose nanofiber (CNF) as an electrode component. The electrode was made conductive by mixing multi-walled carbon nanotubes with the CNF. This prepared biofuel cell was wearable, flexible, hygroscopic, biodegradable, eco-friendly, and readily disposable like paper. The CNF-based enzyme-catalyzed biofuel cell contained a flavin adenine dinucleotide-dependent glucose dehydrogenase bioanode and laccase biocathode. The maximum voltage and maximum current density of the biofuel cell were 434 mV and 176 μA cm−2, respectively, at room temperature (15–18 °C). The maximum power output was 27 μW cm−2, which was converted to 483 (±13) μW cm−3. Cellulose nanofiber-based biofuel cell with flexible, biodegradable, eco-friendly.![]()
Collapse
Affiliation(s)
- Masato Tominaga
- Department of Chemistry and Applied Chemistry
- Saga University
- Saga 840-8502
- Japan
| | - Kazufumi Kuwahara
- Department of Chemistry and Applied Chemistry
- Saga University
- Saga 840-8502
- Japan
| | | | - Kenji Shida
- Faculty of Engineering
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
14
|
|
15
|
Tayeb P, H Tayeb A. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydr Polym 2019; 224:115149. [PMID: 31472850 DOI: 10.1016/j.carbpol.2019.115149] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Recent studies advocate the use of cellulose nanomaterials (CNs) as a sustainable carbohydrate polymer in numerous innovative electronics for their quintessential features such as flexibility, low thermal expansion and self-/directed assembly within multiphase matrices. Herein, we review the contemporary advances in CN-built electrochemical systems and highlight the constructive effects of these nanoscopic entities once engineered in conductive composites, proton exchange membranes (PEMs), electrochromics, energy storage devices and piezoelectric sensors. The adopted strategies and designs are discussed in view of CN roles as copolymer, electrolyte reservoir, binder and separator. Finally, physiochemical attributes and durability of resulting architectures are compared to conventional materials and the possible challenges/solutions are delineated to realize the promising capabilities. The volume of the up-to-present literature in the field indeed implies to nanocellulose overriding importance and the presented angles perhaps shed more lights on prospect of the biosphere's most dominant biomaterial in the energy-related arena that deserve attention.
Collapse
Affiliation(s)
- Pegah Tayeb
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| | - Ali H Tayeb
- School of Forest Resources, University of Maine, Orono, ME 04469, USA; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
16
|
Vilela C, Moreirinha C, Domingues EM, Figueiredo FML, Almeida A, Freire CSR. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E980. [PMID: 31284559 PMCID: PMC6669550 DOI: 10.3390/nano9070980] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 01/18/2023]
Abstract
Bacterial nanocellulose (BNC) is becoming an important substrate for engineering multifunctional nanomaterials with singular and tunable properties for application in several domains. Here, antimicrobial conductive nanocomposites composed of poly(sulfobetaine methacrylate) (PSBMA) and BNC were fabricated as freestanding films for application in food packaging. The nanocomposite films were prepared through the one-pot polymerization of sulfobetaine methacrylate (SBMA) inside the BNC nanofibrous network and in the presence of poly(ethylene glycol) diacrylate as cross-linking agent. The ensuing films are macroscopically homogeneous, more transparent than pristine BNC, and present thermal stability up to 265 °C in a nitrogen atmosphere. Furthermore, the films have good mechanical performance (Young's modulus ≥ 3.1 GPa), high water-uptake capacity (450-559%) and UV-blocking properties. The zwitterion film with 62 wt.% cross-linked PSBMA showed bactericidal activity against Staphylococcus aureus (4.3-log CFU mL-1 reduction) and Escherichia coli (1.1-log CFU mL-1 reduction), and proton conductivity ranging between 1.5 × 10-4 mS cm-1 (40 °C, 60% relative humidity (RH)) and 1.5 mS cm-1 (94 °C, 98% RH). Considering the current set of properties, PSBMA/BNC nanocomposites disclose potential as films for active food packaging, due to their UV-barrier properties, moisture scavenging ability, and antimicrobial activity towards pathogenic microorganisms responsible for food spoilage and foodborne illness; and also for intelligent food packaging, due to the proton motion relevant for protonic-conduction humidity sensors that monitor food humidity levels.
Collapse
Affiliation(s)
- Carla Vilela
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Moreirinha
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eddy M Domingues
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe M L Figueiredo
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Theory of generalized Gerischer impedance for quasi-reversible charge transfer at rough and finite fractal electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Poly(bis[2-(methacryloyloxy)ethyl] phosphate)/Bacterial Cellulose Nanocomposites: Preparation, Characterization and Application as Polymer Electrolyte Membranes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071145] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies have demonstrated the potential of bacterial cellulose (BC) as a substrate for the design of bio-based ion exchange membranes with an excellent combination of conductive and mechanical properties for application in devices entailing functional ion conducting elements. In this context, the present study aims at fabricating polyelectrolyte nanocomposite membranes based on poly(bis[2-(methacryloyloxy)ethyl] phosphate) [P(bisMEP)] and BC via the in-situ free radical polymerization of bis[2-(methacryloyloxy)ethyl] phosphate (bisMEP) inside the BC three-dimensional network under eco-friendly reaction conditions. The resulting polyelectrolyte nanocomposites exhibit thermal stability up to 200 °C, good mechanical performance (Young’s modulus > 2 GPa), water-uptake ability (79–155%) and ion exchange capacity ([H+] = 1.1–3.0 mmol g−1). Furthermore, a maximum protonic conductivity of ca. 0.03 S cm−1 was observed for the membrane with P(bisMEP)/BC of 1:1 in weight, at 80 °C and 98% relative humidity. The use of a bifunctional monomer that obviates the need of using a cross-linker to retain the polyelectrolyte inside the BC network is the main contribution of this study, thus opening alternative routes for the development of bio-based polyelectrolyte membranes for application in e.g., fuel cells and other devices based on proton separators.
Collapse
|
19
|
Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane. NANOSCALE RESEARCH LETTERS 2018; 13:82. [PMID: 29536289 PMCID: PMC5849597 DOI: 10.1186/s11671-018-2493-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/02/2018] [Indexed: 06/02/2023]
Abstract
The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.
Collapse
Affiliation(s)
- N. Shaari
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - S. Basri
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - L. K. Shyuan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - M. S. Masdar
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| | - D. Nordin
- Department of Chemical and Process Engineering, Faculty Of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Malaysia
| |
Collapse
|