1
|
Zhang R, Zhang Q, Yang J, Yu S, Yang X, Luo X, He Y. Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO 2@AuAg with MOFs@Au signal carrier. Food Chem 2024; 445:138717. [PMID: 38354642 DOI: 10.1016/j.foodchem.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Chloramphenicol (CAP) residue in food can cause great harm to human health, it is important to develop a rapid and sensitive method to detect CAP. Here, molecularly imprinted polymer (MIP) was combined with metal-organic frameworks@Au (MOFs@Au) collaborative construction surface-enhanced Raman spectroscopy (SERS) based aptasensor for CAP ultrasensitive detection. MOFs@Au first carried the Raman signal molecule toluidine blue (TB) and aptamer to form MOFs@Au@TB@Apt. In addition, rMIP (CAP was removed) was dropped onto the uniform three-dimensional (3D) SERS substrate SiO2@AuAg to form SiO2@AuAg@rMIP. In the presence of target CAP, it could be specifically captured with rMIP by covalent interaction and was recognised by the aptamer. During this time, SiO2@AuAg@rMIP@CAP could selectively connect MOFs@Au@TB@Apt to realise synergistic enhance the Raman signal. Based on this principle, the proposed SERS aptasensor exhibits excellent sensitivity with a detection limit of 7.59×10-13 M for CAP, providing a new strategy for trace detection in food.
Collapse
Affiliation(s)
- Runzi Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Qianyan Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jia Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Shuping Yu
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiao Yang
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Tang K, Chen Y, Zhou Q, Wang X, Wang R, Zhang Z. Portable tri-color ratiometric fluorescence paper sensor for intelligent visual detection of dual-antibiotics and aluminium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124221. [PMID: 38569390 DOI: 10.1016/j.saa.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The toxicological effect between co-existed antibiotics and metal ions was dangerous to the ecological environment and public health. However, the rapid quantification tools with convenience, accuracy and low cost for the detection of multiple targets were still challenging. Herein, a portable tri-color ratiometric fluorescence paper sensor was constructed by coupling of blue carbon dots and fluorescence imprinted polymer for down/up conversion simultaneous detection of tetracycline and sulfamethazine. Interestingly, the cascade detection of aluminum ion was also realized based on the individual detection system of tetracycline without the assistance of complex coupling reagents. The detection limits of smartphone method for the visual detection of tetracycline, sulfamethazine and aluminum ion were calculated as 0.014 μM, 0.004 μM and 0.019 μM, respectively. The portable fluorescence paper sensor was applied for the visual detection of tetracycline, sulfamethazine and aluminum ion in actual samples successfully with satisfactory recoveries. With the advantages of rapidness, low cost, and portability, the developed portable fluorescence paper sensor provided a new strategy for the visual real-time detection of multiple targets.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Qin Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Xiangni Wang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Ruoyan Wang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China; Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China.
| |
Collapse
|
3
|
Zhong Z, Wang C, Zhao F, Zeng B. Combination of core-shell structured NH 2-UiO-66@ZIF-8 loaded Ru (bpy) 3 2+ and molecularly imprinted copolymer for the sensitive ECL detection of tetracycline. Mikrochim Acta 2024; 191:344. [PMID: 38802523 DOI: 10.1007/s00604-024-06432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
A molecularly imprinted electrochemiluminescent sensor is developed for the sensitive detection of tetracycline in environmental and food samples. The sensor uses an ionic liquid (i.e. [APMIM]Br) modified graphene-carbon nanotube composite (GMI) material as substrate, a double-layered core-shell metal-organic framework NH2-UiO-66@ZIF-8 (NUZ) loaded bipyridyl ruthenium (NUZ@Ru) as luminescent material, and a molecularly imprinted copolymer of o-phenylenediamine and hydroquinone as recognition element. The ionic liquid-modified graphene-carbon nanotube composite has a favorable three-dimensional structure, high specific surface area, and good hydrophilicity; the core-shell structured metal-organic framework has high stability and plentiful reaction sites for loading; the molecularly imprinted copolymer film has enhanced stability and recognition effect. Hence, the resulting sensor combines the merits of several materials and presents improved performance. Under the optimum detection conditions, it shows a wide linear range of 0.05 µM - 1 mM, a low detection limit of 20 nM, high selectivity, and excellent stability. It has been successfully applied to the detection of tetracycline in different samples.
Collapse
Affiliation(s)
- Ziying Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
4
|
Drobysh M, Ratautaite V, Brazys E, Ramanaviciene A, Ramanavicius A. Molecularly imprinted composite-based biosensor for the determination of SARS-CoV-2 nucleocapsid protein. Biosens Bioelectron 2024; 251:116043. [PMID: 38368643 DOI: 10.1016/j.bios.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024]
Abstract
This article aims to present a comparative study of three polypyrrole-based molecularly imprinted polymer (MIP) systems for the detection of the recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (rN). The rN is known for its relatively low propensity to mutate compared to other SARS-CoV-2 antigens. The aforementioned systems include screen-printed carbon electrodes (SPCE) modified with gold nanostructures (MIP1), platinum nanostructures (MIP2), and the unmodified SPCE (MIP3), which was used for control. Pulsed amperometric detection (PAD) was employed as the detection technique, offering the advantage of label-free detection without the need for an additional redox probe. Calibration curves were constructed using the obtained data to evaluate the response of each system. Non-imprinted systems were also tested in parallel to evaluate the contribution of non-specific binding and assess the affinity sensor's efficiency. The analysis of calibration curves revealed that the AuNS-based MIP1 system exhibited the lowest contribution of non-specific binding and displayed a better fit with the chosen fitting model compared to the other systems. Further analysis of this system included determining the limit of detection (LOD) (51.2 ± 2.8 pg/mL), the limit of quantification (LOQ) (153.9 ± 8.3 pg/mL), and a specificity test using a recombinant receptor-binding domain of SARS-CoV-2 spike protein as a control. Based on the results, the AuNS-based MIP1 system demonstrated high specificity and sensitivity for the label-free detection of SARS-CoV-2 nucleocapsid protein. The utilization of PAD without the need for additional redox probes makes this sensing system convenient and valuable for rapid and accurate virus detection.
Collapse
Affiliation(s)
- Maryia Drobysh
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania
| | - Ernestas Brazys
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania.
| |
Collapse
|
5
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
6
|
Wang Q, Du H, Tang R, Wang X, Xie L, Liu J, Sun K, Li Z, Deng G. Boron difluoride modified zinc metal-organic framework-based "off-on" fluorescence sensor for tetracycline and Al 3+ detection. Mikrochim Acta 2024; 191:144. [PMID: 38372819 DOI: 10.1007/s00604-024-06211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
A novel fluorescence "off-on" probe was developed using a boron difluoride-modified zinc metal-organic framework (Zn-MOF3) for sensitive determination of tetracycline (TC) and Al3+. The Zn-MOF3 has excellent optical property and good applicability in aqueous phase. The fluorescence recorded at 436 nm was quenched at the excitation wavelength of 336 nm. Signal-off detection of tetracycline via fluorescence quenching of Zn-MOF3 is based on the inner filter effect. Fluorescence on-off-on detection of Al3+ occurs via the specific binding between tetracycline and Al3+. The limits of detection for TC and Al3+ were 28.4 nM and 106.7 nM, respectively. This probe exhibited high selectivity which was used for the determination of TC and Al3+ with satisfied recoveries (89.8 to 105.6% for TC, 90.0 to 110.4% for Al3+) and good precision (< 5%) in milk. The developed sensor represents the first "off-on" system for fluorescence detection of TC and Al3+ based on Zn-MOF3 with a better aspect of the innovation.
Collapse
Affiliation(s)
- Qihui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| | - Haochen Du
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Rui Tang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xiaohui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Lei Xie
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Jun Liu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Kang Sun
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| |
Collapse
|
7
|
He X, Ji W, Xing S, Feng Z, Li H, Lu S, Du K, Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition. Talanta 2024; 268:125283. [PMID: 37857111 DOI: 10.1016/j.talanta.2023.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Molecular imprinting technology (MIT) has become a promising recognition technology in various fields due to its specificity, high efficiency, stability and eco-friendliness in the recognition of target. Molecularly imprinted polymers (MIPs), known as 'artificial receptors', are shown similar properties to natural receptors as a biomimetic material. The selectivity of recognition for targets can be greatly improved when MIPs are introduced into sensors, as known that MIPs, are suitable for the pretreatment and analysis of trace substances in complex matrix samples. At present, various sensors has been developed by the combination with MIPs for detecting and identifying trace compounds, biological macromolecules or other substances, such as optical, electrochemical and piezoelectric sensors. Smart phones, with their built-in sensors and powerful digital imaging capabilities, provide a unique platform for the needs of portability and instant detection. MIP sensors based on smart phones are expected to become a new research direction in the future. This review discusses the latest applications of MIP sensors in the field of detection and recognition in recent years, summarizes the frontier progress of MIP sensor research based on smart phones in the past two years, and points out the challenges, limitations and future development prospects.
Collapse
Affiliation(s)
- Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Sijia Xing
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhixuan Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongyan Li
- Tianjin JOYSTAR Technology Co., Ltd, No.453, Hengshan Road, Modern Industrial Park, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Shanshan Lu
- BaiyangDian Basin Ecological Environment Monitoring Center, Baoding, Hebei, 071000, China
| | - Kunze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
8
|
Deng L, Liu J, Huang H, Deng C, Lu L, Wang L, Wang X. A Molecularly Imprinted Electrochemical Sensor Based on TiO 2@Ti 3C 2T x for Highly Sensitive and Selective Detection of Chlortetracycline. Molecules 2023; 28:7475. [PMID: 38005196 PMCID: PMC10673498 DOI: 10.3390/molecules28227475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In view of the serious side effects of chlortetracycline (CTC) on the human body, it is particularly important to develop rapid, sensitive, and selective technologies for the detection of CTC in food. In this work, a molecularly imprinted electrochemical sensor with [Fe(CN)6]3-/4- as signal probe was proposed for the highly sensitive and selective detection of CTC. For this purpose, TiO2, which acts as an interlayer scaffold, was uniformly grown on the surface of Ti3C2Tx sheets through a simple two-step calcination process using Ti3C2Tx as the precursor to effectively avoid the stacking of Ti3C2Tx layers due to hydrogen bonding and van der Waals forces. This endowed TiO2@Ti3C2Tx with large specific surface, abundant functional sites, and rapid mass transfer. Then, polypyrrole molecularly imprinted polymers (MIPs) with outstanding electrical conductivity were modified on the surface of TiO2@Ti3C2Tx via simple electro-polymerization, where the pyrrole was employed as a polymeric monomer and the CTC provided a source of template molecules. This will not only provide specific recognition sites for CTC, but also facilitate electron transport on the electrode surface. The synergistic effects between TiO2@Ti3C2Tx and polypyrrole MIPs afforded the TiO2@Ti3C2Tx/MIP-based electrochemical sensor excellent detection properties toward CTC, including ultra-low limits of detection (LOD) (0.027 nM), a wide linear range (0.06-1000 nM), and outstanding stability, reproducibility, selectivity, and feasibility in real samples. The results indicate that this strategy is feasible and will broaden the horizon for highly sensitive and selective detection of CTC.
Collapse
Affiliation(s)
| | | | | | | | | | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (J.L.); (H.H.); (C.D.); (L.L.)
| | - Xiaoqiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (L.D.); (J.L.); (H.H.); (C.D.); (L.L.)
| |
Collapse
|
9
|
Manoj D, Rajendran S, Murphy M, Jalil AA, Sonne C. Recent progress and perspectives of metal organic frameworks (MOFs) for the detection of food contaminants. CHEMOSPHERE 2023; 340:139820. [PMID: 37586499 DOI: 10.1016/j.chemosphere.2023.139820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.
Collapse
Affiliation(s)
- Devaraj Manoj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manoharan Murphy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| |
Collapse
|
10
|
Ni X, Tang X, Wang D, Zhang J, Zhao L, Gao J, He H, Dramou P. Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. J Pharm Biomed Anal 2023; 235:115659. [PMID: 37657406 DOI: 10.1016/j.jpba.2023.115659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Molecularly imprinted polymers (MIPs) have had tremendous impact on biomimetic recognition due to their precise specificity and high affinity comparable to that of antibodies, which has shown the great advantages of easy preparation, good stability and low cost. The combination of MIPs with other analytical technologies can not only achieve rapid extraction and sensitive detection of target compounds, improving the level of analysis, but also achieve precise targeted delivery, in-vivo imaging and other applications. Among them, the recognition mechanism plays a vital role in chemical and biological sensing, while the improvement of the recognition element, such as the addition of new nanomaterials, can greatly improve the analytical performance of the sensor, especially in terms of selectivity. Currently, due to the need for rapid diagnosis and improved sensing properties (such as selectivity, stability, and cost-effectiveness), researchers are investigating new recognition elements and their combinations to improve the recognition capabilities of chemical sensing and bio-sensing. Therefore, this review mainly discusses the design strategies of optical sensors, electrochemical sensors and photoelectric sensors with molecular imprinting technology and their applications in environmental systems, food fields, drug detection and biology including bacteria and viruses.
Collapse
Affiliation(s)
- Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjie Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Gao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
12
|
Wu S, Mao J, Zhang Y, Wang S, Huo M, Guo H. Sensitive electrochemical detection of enrofloxacin in eggs based on carboxylated multi-walled carbon nanotubes-reduced graphene oxide nanocomposites: Molecularlyimprintedrecognition versus direct electrocatalytic oxidation. Food Chem 2023; 413:135579. [PMID: 36750005 DOI: 10.1016/j.foodchem.2023.135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A sensitive electrochemical method for detecting enrofloxacin was proposed using carboxylated multi-walled carbon nanotubes-reduced graphene oxide (MWCNT-COOH-RGO) nanocomposites. The MWCNT-COOH-RGO nanocomposites were firstly electrodeposited on a bare electrode, followed by electropolymerization of molecularly imprinted polymers. Enrofloxacin was determined by the mechanisms of direct electrocatalytic oxidation and molecularly imprinted recognition, respectively. Under the optimized conditions, a response range of 5.0×10-7 M to 5.5×10-5 M and limit of detection (LOD) of 2.3×10-7 M were obtained by direct electrocatalytic oxidation of enrofloxacin using chronoamperometry. By contrast, the response range of 1.0×10-10 M to 5.0×10-5 M and LOD of 2.5×10-11 M were achieved by molecularly imprinted recognition of enrofloxacin using square-wave voltammetry. Moreover, the proposed method exhibited good repeatability, stability and selectivity, and could be used for enrofloxacin detection in egg samples with satisfactory results.
Collapse
Affiliation(s)
- Suozhu Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| | - Jie Mao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yiqin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Meijun Huo
- Department of Planning Cooperation, Shanxi Agricultural University, Taigu 030801, China
| | - Hongyuan Guo
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
13
|
Raykova MR, McGuire K, Peveler WJ, Corrigan DK, Henriquez FL, Ward AC. Towards direct detection of tetracycline residues in milk with a gold nanostructured electrode. PLoS One 2023; 18:e0287824. [PMID: 37368910 DOI: 10.1371/journal.pone.0287824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Tetracycline antibiotics are used extensively in veterinary medicine, but the majority of the administrated dose is eliminated unmodified from the animal through various excretion routes including urine, faeces and milk. In dairy animals, limits on residues secreted in milk are strictly controlled by legislation. Tetracyclines (TCs) have metal chelation properties and form strong complexes with iron ions under acidic conditions. In this study, we exploit this property as a strategy for low cost, rapid electrochemical detection of TC residues. TC-Fe(III) complexes in a ratio of 2:1 were created in acidic conditions (pH 2.0) and electrochemically measured on plasma-treated gold electrodes modified with electrodeposited gold nanostructures. DPV measurements showed a reduction peak for the TC-Fe(III) complex that was observed at 50 mV (vs. Ag/AgCl QRE). The limit of detection in buffer media was calculated to be 345 nM and was responsive to increasing TC concentrations up to 2 mM, added to 1 mM FeCl3. Whole milk samples were processed to remove proteins and then spiked with tetracycline and Fe(III) to explore the specificity and sensitivity in a complex matrix with minimal sample preparation, under these conditions the LoD was 931 nM. These results demonstrate a route towards an easy-to-use sensor system for identification of TC in milk samples taking advantage of the metal chelating properties of this antibiotic class.
Collapse
Affiliation(s)
- Magdalena R Raykova
- Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Katie McGuire
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | - Damion K Corrigan
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Andrew C Ward
- Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Lopes CEC, de Faria LV, Araújo DAG, Richter EM, Paixão TRLC, Dantas LMF, Muñoz RAA, da Silva IS. Lab-made 3D-printed electrochemical sensors for tetracycline determination. Talanta 2023; 259:124536. [PMID: 37062090 DOI: 10.1016/j.talanta.2023.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
Antibiotics such as tetracycline (TC) are widely prescribed to treat humans or dairy animals. Therefore, it is important to establish affordable devices in laboratories with minimal infrastructure. 3D printing has proven to be a powerful and cost-effective tool that revolutionizes many applications in electrochemical sensing. In this work, we employ a conductive filament based on graphite (Gr) and polylactic acid (PLA) (40:60; w/w; synthesized in our lab) to manufacture 3D-printed electrodes. This electrode was used "as printed" and coupled to batch injection analysis with amperometric detection (BIA-AD) for TC sensing. Preliminary studies by cyclic voltammetry and differential pulse voltammetry revealed a mass transport governed by adsorption of the species and consequent fouling of the redox products on the 3D printed surface. Thus, a simple strategy (solution stirring and application of successive potentials, +0.95 V followed by +1.2 V) was associated with the BIA-AD system to solve this effect. The proposed electrode showed analytical performance comparable to costly conventional electrodes with linear response ranging from 0.5 to 50 μmol L-1 and a detection limit of 0.19 μmol L-1. Additionally, the developed method was applied to pharmaceutical, tap water, and milk samples, which required minimal sample preparation (simple dilution). Recovery values of 92-117% were obtained for tap water and milk samples, while the content found of TC in the capsule was close to the value reported by the manufacturer. These results indicate the feasibility of the method for routine analysis involving environmental, pharmaceutical, and food samples.
Collapse
Affiliation(s)
- Carlos E C Lopes
- Chemistry Technology Department, Federal University of Maranhão, 65080-805, São Luís, Maranhão, Brazil
| | - Lucas V de Faria
- Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Diele A G Araújo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Luiza M F Dantas
- Chemistry Technology Department, Federal University of Maranhão, 65080-805, São Luís, Maranhão, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| | - Iranaldo S da Silva
- Chemistry Technology Department, Federal University of Maranhão, 65080-805, São Luís, Maranhão, Brazil.
| |
Collapse
|
15
|
Mousavizadegan M, Hosseini M, Sheikholeslami MN, Hamidipanah Y, Reza Ganjali M. Smartphone image analysis-based fluorescence detection of tetracycline using machine learning. Food Chem 2023; 403:134364. [DOI: 10.1016/j.foodchem.2022.134364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
|
16
|
Akgönüllü S, Denizli A. Molecular imprinting-based sensors: Lab-on-chip integration and biomedical applications. J Pharm Biomed Anal 2023; 225:115213. [PMID: 36621283 DOI: 10.1016/j.jpba.2022.115213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The innovative technology of a marketable lab-on-a-chip platform for point-of-care (POC) in vitro detection has recently attracted remarkable attention. The POC tests can significantly enhance the high standard of medicinal care. In the last decade, clinical diagnostic technology has been broadly advanced and successfully performed in several areas. It seems that lab-on-a-chip approaches play a significant role in these technologies. However, high-cost and time-consuming methods are increasing the challenge and the development of a cost-effective, rapid and efficient method for the detection of biomolecules is urgently needed. Recently, polymer-coated sensing platforms have been a promising area that can be employed in medical diagnosis, pharmaceutical bioassays, and environmental monitoring. The designed on-chip sensors are based on molecular imprinting polymers (MIPs) that use label-free detection technology. Molecular imprinting shines out as a potentially promising technique for creating artificial recognition material with molecular recognition sites. MIPs provide unique advantages such as excellent recognition specificity, high selectivity, and good reusability. This review article aims to define several methods using molecular imprinting for biomolecules and their incorporation with several lab-on-chip technologies to describe the most promising methods for the development of sensing systems based on molecularly imprinted polymers. The higher selectivity, more user-friendly operation is believed to provide MIP-based lab-on-a-chip devices with great potential academic and commercial value in on-site clinical diagnostics and other point-of-care assays.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Wu D, Karimi-Maleh H, Liu X, Fu L. Bibliometrics Analysis of Research Progress of Electrochemical Detection of Tetracycline Antibiotics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:6443610. [PMID: 36852208 PMCID: PMC9966827 DOI: 10.1155/2023/6443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/18/2023]
Abstract
Tetracycline is a broad-spectrum class of antibiotics. The use of excessive doses of tetracycline antibiotics can result in their residues in food, posing varying degrees of risk to human health. Therefore, the establishment of a rapid and sensitive field detection method for tetracycline residues is of great practical importance to improve the safety of food-derived animal foods. Electrochemical analysis techniques are widely used in the field of pollutant detection because of the simple detection principle, easy operation of the instrument, and low cost of analysis. In this review, we summarize the electrochemical detection of tetracycline antibiotics by bibliometrics. Unlike the previously published reviews, this article reviews and analyzes the development of this topic. The contributions of different countries and different institutions were analyzed. Keyword analysis was used to explain the development of different research directions. The results of the analysis revealed that developments and innovations in materials science can enhance the performance of electrochemical detection of tetracycline antibiotics. Among them, gold nanoparticles and carbon nanotubes are the most used nanomaterials. Aptamer sensing strategies are the most favored methodologies in electrochemical detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Dihua Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu 610056, China
- Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan 94771-67335, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
18
|
Zhang H, Kang Z, Zhu H, Lin H, Yang DP. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160284. [PMID: 36403831 DOI: 10.1016/j.scitotenv.2022.160284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials-based photoelectrochemical (PEC) detection is becoming a rapidly-developing analytical technique in chemical and biological assays due to its unique advantages of easy miniaturization, high sensitivity, and rapid turnaround time. Herein, a molecularly imprinted polymer-assisted PEC sensor based on ZnO/C nanocomposite was successfully fabricated for the highly sensitive and selective determination of chloramphenicol (CAP). Benefiting from the hydrophilic functional groups (-OH, -COOH) and large surface area of bio-templated ZnO/C nanocomposite, the tight grafting of MIP with excellent recognition ability on substrate is easier and more stable than traditional PEC sensor, thus significantly increasing the performance. Under optimal conditions, the PEC sensor exhibited significant CAP detection performance in the range of 0.01-5000 ng mL-1 with a detection LOD of 5.08 pg mL-1 (S/N = 3) and successfully applied to the detection of CAP in milk sample. Our results show that ZnO/C nanocomposite and MIP can act as an efficient photo-responsible matrix to fabricate PEC sensor, providing important application potentials for pollutants control in food and environment.
Collapse
Affiliation(s)
- Huafang Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Zewen Kang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hu Zhu
- School of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Da-Peng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| |
Collapse
|
19
|
Akgönüllü S, Kılıç S, Esen C, Denizli A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers (Basel) 2023; 15:629. [PMID: 36771930 PMCID: PMC9919373 DOI: 10.3390/polym15030629] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The accurate detection of biological substances such as proteins has always been a hot topic in scientific research. Biomimetic sensors seek to imitate sensitive and selective mechanisms of biological systems and integrate these traits into applicable sensing platforms. Molecular imprinting technology has been extensively practiced in many domains, where it can produce various molecular recognition materials with specific recognition capabilities. Molecularly imprinted polymers (MIPs), dubbed plastic antibodies, are artificial receptors with high-affinity binding sites for a particular molecule or compound. MIPs for protein recognition are expected to have high affinity via numerous interactions between polymer matrices and multiple functional groups of the target protein. This critical review briefly describes recent advances in the synthesis, characterization, and application of MIP-based sensor platforms used to detect proteins.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Seçkin Kılıç
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Cem Esen
- Department of Chemistry, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Linh ND, Huyen NTT, Dang NH, Piro B, Thi Thu V. Electrochemical interface based on polydopamine and gold nanoparticles/reduced graphene oxide for impedimetric detection of lung cancer cells †. RSC Adv 2023; 13:10082-10089. [PMID: 37006357 PMCID: PMC10052696 DOI: 10.1039/d3ra00793f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The use of non-invasive approaches for monitoring therapy processes in cancer patients at late stages is truly needed. In this work, we aim to develop an electrochemical interface based on polydopamine combined with gold nanoparticles and reduced graphene oxide for impedimetric detection of lung cancer cells. Gold nanoparticles (around 75 nm) were dispersed onto reduced graphene oxide material pre-electrodeposited onto disposable fluorine doped tin oxide electrodes. The coordination between gold and carbonaceous material has somehow improved the mechanical stability of this electrochemical interface. Polydopamine was later introduced onto modified electrodes via self-polymerization of dopamine in an alkaline solution. The result has demonstrated the good adhesion and biocompatibility of polydopamine towards A-549 lung cancer cells. The presence of the two conductive materials (gold nanoparticles and reduced graphene oxide) has led to a six-times decrease in charge transfer resistance of polydopamine film. Finally, the as-prepared electrochemical interface was employed for impedimetric detection of A-549 cells. The detection limit was estimated to be only 2 cells per mL. These findings have proved the possibilities to use advanced electrochemical interfaces for point-of-care applications. Non-invasive approaches for monitoring therapy processes in cancer patients at late stages is truly needed.![]()
Collapse
Affiliation(s)
- Nguyen Dieu Linh
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Nguyen Thi Trang Huyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Nguyen Hai Dang
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| | - Benoit Piro
- Université Paris Cité, ITODYS, CNRSUMR 7086, 15 Rue J.-A. de BaïfParisF-75013 France
| | - Vu Thi Thu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)18 Hoang Quoc Viet, Cau GiayHanoiVietnam
| |
Collapse
|
21
|
Wu G, Zhao Y, Li X, Lu X, Qu T. Fluorescent probes based on the core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5034-5040. [PMID: 36468235 DOI: 10.1039/d2ay01363k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH) is a polypeptide with important physiological functions. Real-time and accurate detection of GSH is of great significance for clinical diagnosis, disease treatment and pathogen detection. A fluorescent nanosensor based on composite core-shell nanoparticles for the highly selective detection of GSH is reported. In the cores, the fluorescence of rhodamine b was quenched by using gold nanoparticles (AuNPs), and GSH could competitively combine with AuNPs to cause rhodamine b to fall off, thereby recovering the fluorescence. In the shell part, molecularly imprinted materials using oxidized glutathione (GSSG) as a pseudotemplate provide GSH/GSSG specific pores and improve the specificity and anti-interference ability of the sensor. The GSH sensor has a detection range of 0-100 μM and limit of detection (LOD) of 0.18 μM, and robust sensing performance in fetal bovine serum, indicating its great potential for clinical diagnosis.
Collapse
Affiliation(s)
- Guoli Wu
- Department of Pharmacy, Children's Hospital of Shanxi, Taiyuan 030013, China
| | - Yongdan Zhao
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Xiaofang Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Xiaolin Lu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Tingli Qu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| |
Collapse
|
22
|
Nitrogen-doped carbon quantum dots as a highly selective fluorescent and electrochemical sensor for tetracycline. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Chen Y, Xia Y, Liu Y, Tang Y, Zhao F, Zeng B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens Bioelectron 2022; 216:114650. [DOI: 10.1016/j.bios.2022.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
24
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
25
|
Wang L, Zeng X, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. Field-free electrochemical sensor: A novel inverted Y-type DNA conformation possessing specific self-transform capability for ultrasensitive determination of tetracycline. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Pardeshi S, Dhodapkar R. Advances in fabrication of molecularly imprinted electrochemical sensors for detection of contaminants and toxicants. ENVIRONMENTAL RESEARCH 2022; 212:113359. [PMID: 35525288 DOI: 10.1016/j.envres.2022.113359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Worldwide growing concerns about water contamination and pollution have increased significant interest in trace level sensing of variety of contaminants. Thus, there is demand for fabrication of low cost, miniaturized sensing device for in-situ detection of contaminants from the complex environmental matrices capable of providing selective and sensitive detection. Molecularly imprinted polymers (MIPs) has portrayed a substantial potential for selective recognition of various toxicants from a variety of environmental matrices, thus widely used as artificial recognition element in the electrochemical sensors (ECS) owing to their chemical stability, easy and low cost synthesis. The combination of nanomaterials modifiers with MIPs has endowed MIP-ECS with significantly improved sensing performance in the recent years, as the nanomaterial provide properties such as increased surface area, increased conductivity and electrocatalytic activity with enhanced electron transport phenomena, whereas MIPs provide selective recognition effect. In the present review, we have summarized the advances of MIP-ECS electrochemical sensors reported in last six years (2017-2022) for sensing of variety of contaminates including drugs, metal ions, hormones and emerging contaminates. Scope of computational modelling in design of sensitive and selective MIP-ECS is reviewed. We have focused particularly on the synthetic protocols for MIPs preparation including bulk, precipitation, electropolymerization, sol-gel and magnetic MIPs. Moreover, use of various nanomaterial as modifiers and sensitizers and their effects on the sensing performance of resulting MIP-ECS is described. Finally, the potential challenges and future prospects in the research area of MIP-ECS have been discussed.
Collapse
Affiliation(s)
- Sushma Pardeshi
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Rita Dhodapkar
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| |
Collapse
|
27
|
Wang Q, Wu Y, Bao X, Yang M, Liu J, Sun K, Li Z, Deng G. Novel fluorescence sensor for the selective recognition of tetracycline based on molecularly imprinted polymer-capped N-doped carbon dots. RSC Adv 2022; 12:24778-24785. [PMID: 36128401 PMCID: PMC9429051 DOI: 10.1039/d2ra03923k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with N-doped carbon dots (CDs) was prepared and used for specific recognition and sensitive determination of tetracycline (TC). N-doped CDs were synthesized using citric acid as a carbon source and ethylenediamine as a nitrogen source by a microwave assisted pyrolysis method. The determination conditions such as the solvents, material amount, pH value, and temperature were optimized. The CDs-MIPs have the best quenching on TC in water. The proposed method used for TC determination in milk powder samples had a detection limit of 0.054 μg mL-1 and a wide range of 0.5-30 μg mL-1. Meanwhile, satisfactory recoveries were obtained ranging from 95 to 108%. Oxytetracycline, chlorotetracycline and most of the coexisting substances showed no obvious interference indicating that the CDs-MIP probe exhibited high selectivity due to the presence of imprinted sites. Charge transfer from CDs-MIPs to TC may be through the mechanism of fluorescence quenching. This work gives a feasible strategy for the synthesis of N-doped carbon dot based molecularly imprinted polymers used as a fluorescent sensor in the food analysis field.
Collapse
Affiliation(s)
- Qihui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Yiwen Wu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Xumei Bao
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Min Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Jun Liu
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College Nanchong 637000 China
| | - Kang Sun
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| |
Collapse
|
28
|
Weng X, Huang J, Ye H, Xu H, Cai D, Wang D. A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3000-3010. [PMID: 35916060 DOI: 10.1039/d2ay00702a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, a high-performance electrochemical sensor was constructed based on a metal-organic framework (Zr-UiO-66)/multi-carbon nanotubes/gold nanoparticles (Zr-UiO-66/MWCNTs/AuNPs) composite modified glassy carbon electrode for sensitive determination of tetracycline. The morphology, structure, and performance of Zr-UiO-66/MWCNTs/AuNPs were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and electrochemical techniques. The Zr-UiO-66/MWCNTs/AuNPs nanohybrids exhibited excellent electrocatalytic activity towards the oxidation of tetracycline, mainly because of the synergistic effect of the MOFs, MWCNTs, and gold nanoparticles. The electrochemical kinetics and catalytical mechanism of tetracycline were demonstrated, proving that tetracycline's electrocatalytic oxidation reaction was an absorption-controlled two-step process involving the transfer of two protons and two electrons, respectively. Furthermore, a simple and facile method was used to achieve the regeneration of the absorbed saturated electrode. A low concentration of tetracycline was detected by amperometry with the linear ranges of 5 × 10-7 to 2.25 × 10-4 mol L-1 (R2 = 0.9941), the sensitivity was 45.4 mA L mol-1, and the limit of detection was as low as 1.67 × 10-7 mol L-1 (S/N = 3). In addition, the composite electrode demonstrated high selectivity (interference deviation of ± 5%), satisfactory reproductivity (RSD of 5.31%), and long-term stability (easy regeneration) and was successfully applied in the analysis of tetracycline antibiotics in actual samples. Thus, the proposed electrode provides a promising and prospective MOFs-based sensing platform for the detection of tetracyclines in the environment.
Collapse
Affiliation(s)
- Xueyu Weng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingqi Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huazhu Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
29
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
30
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|
31
|
Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique-A Review. BIOSENSORS 2022; 12:bios12070441. [PMID: 35884244 PMCID: PMC9312920 DOI: 10.3390/bios12070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Antibiotics constitute one of the emerging categories of persistent organic pollutants, characterised by their expansion of resistant pathogens. Antibiotic pollutants create a major public health challenge, with already identifiable detrimental effects on human and animal health. A fundamental aspect of controlling and preventing the spread of pollutants is the continuous screening and monitoring of environmental samples. Molecular imprinting is a state-of-the-art technique for designing robust biomimetic receptors called molecularly imprinted polymers (MIPs), which mimic natural biomolecules in target-selective recognition. When integrated with an appropriate sensor transducer, MIP demonstrates a potential for the needed environmental monitoring, thus justifying the observed rise in interest in this field of research. This review examines scientific interventions within the last decade on the determination of antibiotic water pollutants using MIP receptors interfaced with label-free sensing platforms, with an expanded focus on optical, piezoelectric, and electrochemical systems. Following these, the review evaluates the analytical performance of outstanding MIP-based sensors for environmentally significant antibiotics, while highlighting the importance of computational chemistry in functional monomer selection and the strategies for signal amplification and performance improvement. Lastly, the review points out the future trends in antibiotic MIP research, as it transits from a proof of concept to the much demanded commercially available entity.
Collapse
|
32
|
Víšová I, Houska M, Vaisocherová-Lísalová H. Biorecognition antifouling coatings in complex biological fluids: a review of functionalization aspects. Analyst 2022; 147:2597-2614. [PMID: 35621143 DOI: 10.1039/d2an00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in biointerface research has highlighted the role of antifouling functionalizable coatings in the development of advanced biosensors for point-of-care bioanalytical and biomedical applications dealing with real-world complex samples. The resistance to nonspecific adsorption promotes the biorecognition performance and overall increases the reliability and specificity of the analysis. However, the process of modification with biorecognition elements (so-called functionalization) may influence the resulting antifouling properties. The extent of these effects concerning both functionalization procedures potentially changing the surface architecture and properties, and the physicochemical properties of anchored biorecognition elements, remains unclear and has not been summarized in the literature yet. This critical review summarizes these key functionalization aspects with respect to diverse antifouling architectures showing low or ultra-low fouling quantitative characteristics in complex biological media such as bodily fluids or raw food samples. The subsequent discussion focuses on the impact of functionalization on fouling resistance. Furthermore, this review discusses some of the drawbacks of available surface sensitive characterization methods and highlights the importance of suitable assessment of the resistance to fouling.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| | - Hana Vaisocherová-Lísalová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
33
|
Xu H, Zhang D, Weng X, Wang D, Cai D. Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline. Mikrochim Acta 2022; 189:201. [PMID: 35474041 DOI: 10.1007/s00604-022-05304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
A promising sensing platform was constructed based on an electrochemically reduced graphene oxide (ErGO)/copper metal-organic framework (Cu-MOF)/platinum nanoparticles (ErGO/Cu-MOF/PtNPs) modified glassy carbon electrode for the detection of tetracycline. The ErGO/Cu-MOF/PtNPs composite electrode possessed an excellent electrochemical performance to tetracycline detection mainly due to the synergistic effect of ErGO, Cu-MOF and PtNPs. The electrochemical kinetics and catalytical mechanism of tetracycline were systematically studied, showing that tetracycline's electrocatalytic oxidation reaction was an absorption-controlled two-step process involving two electrons and one proton transfer, respectively. Low concentration of tetracycline was detected by amperometry with the a linear range of 1 ~ 200 μM (R2 = 0.9900) and a detection limit of 0.03 μM (S/R = 3). The proposed sensor was successfully applied to the detection of tetracycline in the real water samples with recoveries of 93.5% ~ 106%, and relative standard deviations (RSD) of 4.65% ~ 5.21% (n = 3). Furthermore, acceptable stability, repeatability and reproducibility were verified for continuous determination of tetracycline under optimized conditions. The ErGO/Cu-MOF/PtNPs composite electrode also demonstrated better anti-interference performance compared to other types of antibiotics than that of similar structural tetracyclines. Therefore, the proposed ErGO/Cu-MOF/PtNPs composites might provide a potential sensing platform for detecting analogous tetracyclines or total tetracyclines in the environment.
Collapse
Affiliation(s)
- He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Duo Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyu Weng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
34
|
Sheikholeslami MN, Hamidipanah Y, Salehnia F, Arshian S, Hosseini M, Ganjali MR. Multiplex Detection of Antibiotic Residues in Milk: Application of MCR-ALS on Excitation-Emission Matrix Fluorescence (EEMF) Data Sets. Anal Chem 2022; 94:6206-6215. [PMID: 35427127 DOI: 10.1021/acs.analchem.1c05592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of antibiotics and their metabolites in milk and dairy products is a serious concern because of their harmful effects on human health. In the current study, a novel synergistic bimetallic nanocluster with gold and silver as an emission fluorescence probe was investigated for the simultaneous determination of tetracycline (TC), ampicillin (AMP), and sulfacetamide (SAC) antibiotics in the milk samples using excitation-emission matrix fluorescence (EEMF) spectroscopy. The multivariate curve resolution-alternating least squares (MCR-ALS) method was implemented to analyze augmented EEMF data sets to quantify the multicomponent systems in the presence of interferences with considerable spectral overlap. A pseudo-univariate calibration curve of the resolved emission spectra intensity against the concentration of the mentioned antibiotics was linear in the range of 5-5000 ng mL-1 for AMP and 50-5000 ng mL-1 for TC and SAC. The calculated values of the limit of detection ranged between 1.4 and 14.6 ng mL-1 with a relative standard deviation (RSD) of less than 4.9%. The obtained results show that the EEMF/MCR-ALS methodology using an emission fluorescence probe is a powerful tool for the simultaneous quantification of TC, AMP, and SAC in complex matrices with highly overlapped spectra.
Collapse
Affiliation(s)
- Mahsa N Sheikholeslami
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Yalda Hamidipanah
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Foad Salehnia
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Shayesteh Arshian
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1439817435, Iran
| |
Collapse
|
35
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
36
|
Electrochemical determination of Pb2+ and Cd2+ with a poly(pyrrole-1-carboxylic acid) modified electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
38
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
39
|
Differential pulse voltammetric sensor for tetracycline using manganese tungstate nanowafers and functionalized carbon nanofiber modified electrode. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Adsorption of 4,4'-diaminodiphenyl ether on molecularly imprinted polymer and its application in an interfacial potentiometry with double poles sensor. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Laser-Induced Graphene Electrodes Modified with a Molecularly Imprinted Polymer for Detection of Tetracycline in Milk and Meat. SENSORS 2021; 22:s22010269. [PMID: 35009811 PMCID: PMC8749683 DOI: 10.3390/s22010269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
Tetracycline (TC) is a widely known antibiotic used worldwide to treat animals. Its residues in animal-origin foods cause adverse health effects to consumers. Low-cost and real-time measuring systems of TC in food samples are, therefore, extremely needed. In this work, a three-electrode sensitive and label-free sensor was developed to detect TC residues from milk and meat extract samples, using CO2 laser-induced graphene (LIG) electrodes modified with gold nanoparticles (AuNPs) and a molecularly imprinted polymer (MIP) used as a synthetic biorecognition element. LIG was patterned on a polyimide (PI) substrate, reaching a minimum sheet resistance (Rsh) of 17.27 ± 1.04 Ω/sq. The o-phenylenediamine (oPD) monomer and TC template were electropolymerized on the surface of the LIG working electrode to form the MIP. Surface morphology and electrochemical techniques were used to characterize the formation of LIG and to confirm each modification step. The sensitivity of the sensor was evaluated by differential pulse voltammetry (DPV), leading to a limit of detection (LOD) of 0.32 nM, 0.85 nM, and 0.80 nM in buffer, milk, and meat extract samples, respectively, with a working range of 5 nM to 500 nM and a linear response range between 10 nM to 300 nM. The sensor showed good LOD (0.32 nM), reproducibility, and stability, and it can be used as an alternative system to detect TC from animal-origin food products.
Collapse
|
42
|
Highly Sensitive Detection of Trace Tetracycline in Water Using a Metal-Organic Framework-Enabled Sensor. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/1462107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the abuse application of antibiotics in the recent decades, a high level of antibiotics has been let out and remains in our environment. Electrochemical sensing is a useful method to sensitively detect antibiotics, and the key factor for a successful electrochemical sensor is the active electrode materials. In this study, a sensitive electrochemical sensing platform based on a metal-organic framework (MOF) of MIL-53 (Fe) was facilely fabricated. It shows highly selective and sensitive detection performance for trace tetracycline. Differential pulse voltammetry (DPV) was applied to analyze the detection of tetracycline. The linear range of tetracycline detection was 0.0643 μmol/L-1.53 μmol/L, and the limit of detection (LOD) is 0.0260 μmol/L. Furthermore, the MOF-enabled sensor can be effectively used in actual water bodies. The results indicate that the electrochemical sensor is a high potential sensing platform for tetracycline.
Collapse
|
43
|
Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Tetracycline Antibiotics: Elucidating the Electrochemical Fingerprint and Oxidation Pathway. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a complete study of the electrochemical behavior of the most commonly used tetracycline antibiotics (TCs) on unmodified carbon screen-printed electrodes (SPEs) is presented. In addition, the oxidation pathway of TCs on SPE is elucidated, for the first time, with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Square wave voltammetry (SWV) was used to study the electrochemical fingerprint (EF) of the antibiotics shaping the different oxidation processes of the TCs in a pH range from 2 to 12. Their characteristic structure and subsequent EF offer the possibility of distinguishing this class of antibiotics from other types. Under the optimized parameters, calibration curves of tetracycline (TET), doxycycline (DOXY), oxytetracycline (OXY), and chlortetracycline (CHL) in a Britton Robinson buffer solution (pH 9) exhibited a linear range between 5 and 100 µM with excellent reproducibilities (RSDTET = 3.01%, RSDDOXY = 3.29%, RSDOXY = 9.78% and RSDCHL = 6.88% at 10 µM, N = 3) and limits of detection (LOD) of LODTET = 4.15 µM, LODDOXY = 2.14 µM, LODOXY = 3.07 µM and LODCHL = 4.15 µM. Furthermore, binary, tertiary, and complex mixtures of all TCs were analyzed with SWV to investigate the corresponding EF. A dual pH screening (pH 4 and pH 9), together with the use of a custom-made Matlab script for data treatment, allowed for the successful confirmation of a single presence of TCs in the unknown samples. Overall, this work presents a straightforward study of the electrochemical behavior of TCs in SPE, allowing for the future on-site identification of residues of tetracycline antibiotics in real samples.
Collapse
|
45
|
Raykova MR, Corrigan DK, Holdsworth M, Henriquez FL, Ward AC. Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. BIOSENSORS 2021; 11:232. [PMID: 34356702 PMCID: PMC8301834 DOI: 10.3390/bios11070232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial drug residues in food are strictly controlled and monitored by national laws in most territories. Tetracyclines are a major broad-spectrum antibiotic class, active against a wide range of Gram-positive and Gram-negative bacteria, and they are the leading choice for the treatment of many conditions in veterinary medicine in recent years. In dairy farms, milk from cows being treated with antibiotic drugs, such as tetracyclines, is considered unfit for human consumption. Contamination of the farm bulk tank with milk containing these residues presents a threat to confidence of supply and results in financial losses to farmers and dairy. Real-time monitoring of milk production for antimicrobial residues could reduce this risk and help to minimise the release of residues into the environment where they can cause reservoirs of antimicrobial resistance. In this article, we review the existing literature for the detection of tetracyclines in cow's milk. Firstly, the complex nature of the milk matrix is described, and the test strategies in commercial use are outlined. Following this, emerging biosensors in the low-cost biosensors field are contrasted against each other, focusing upon electrochemical biosensors. Existing commercial tests that identify antimicrobial residues within milk are largely limited to beta-lactam detection, or non-specific detection of microbial inhibition, with tests specific to tetracycline residues less prevalent. Herein, we review a number of emerging electrochemical biosensor detection strategies for tetracyclines, which have the potential to close this gap and address the industry challenges associated with existing tests.
Collapse
Affiliation(s)
- Magdalena R Raykova
- Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Damion K Corrigan
- Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, UK
| | - Morag Holdsworth
- Graham's Dairy Family, Bridge of Allan, Stirling, Glasgow FK9 4RW, UK
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Andrew C Ward
- Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| |
Collapse
|
46
|
Negrea S, Diaconu LA, Nicorescu V, Motoc (m. Ilies) S, Orha C, Manea F. Graphene Oxide Electroreduced onto Boron-Doped Diamond and Electrodecorated with Silver (Ag/GO/BDD) Electrode for Tetracycline Detection in Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1566. [PMID: 34198696 PMCID: PMC8232175 DOI: 10.3390/nano11061566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
A new electrochemical sensor designed by modifying the commercial boron-doped diamond (BDD) electrode with graphene oxide (GO) reduced electrochemically and further electrodecorated with silver (Ag), named the Ag/GO/BDD electrode, was selected among a series of the BDD, GOelectroreduced onto BDD (GO/BDD) and silver electrodeposited onto BDD (Ag/BDD) electrodes for the detection of tetracycline (TC) in aqueous solution. The best results regarding the sensitivity of 46.6 µA·µM-1·cm-2 and the lowest limit of detection of 5 nM was achieved using square-wave voltammetry (SWV) operated at the step potential of 5 mV, modulation amplitude of 200 mV and the frequency of 10 Hz in alkaline medium. The application of the alkaline supporting electrolyte-based procedure is limited for water monitoring due to the presence of chloride that interferes with TC detection; however, it can be applied for quantitative determination of pharmaceutical formulations. 0.1 M Na2SO4 supporting electrolyte eliminated chloride interference and can be used for the application of Ag/GO/BDD in practical detection of TC in water.
Collapse
Affiliation(s)
- Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), 300431 Timisoara Branch, Romania; (S.N.); (L.A.D.); (V.N.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Lidia Ani Diaconu
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), 300431 Timisoara Branch, Romania; (S.N.); (L.A.D.); (V.N.)
| | - Valeria Nicorescu
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), 300431 Timisoara Branch, Romania; (S.N.); (L.A.D.); (V.N.)
| | - Sorina Motoc (m. Ilies)
- “Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul 24, 300223 Timisoara, Romania;
| | - Corina Orha
- National Condensed Matter Department, Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 P. Andronescu Street, 300254 Timisoara, Romania;
| | - Florica Manea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, P-ta Victoriei No. 2, 300006 Timisoara, Romania
| |
Collapse
|
47
|
Development of an Electrochemical Sensor Based on Nanocomposite of Fe3O4@SiO2 and Multiwalled Carbon Nanotubes for Determination of Tetracycline in Real Samples. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, an electrochemical sensor (GCE/MWCNT/Fe3O4@SiO2) based on a composite of multiwalled carbon nanotubes (MWCNT) and an Fe3O4@SiO2 (MMN) nanocomposite on a glassy carbon electrode (GCE) was developed for the detection of tetracycline (TC). The composite formed promoted an increased electrochemical signal and the stability of the sensor, combining its individual characteristics such as high electrical conductivity and large surface area. The composite material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy, and scanning electron microscope (SEM). The adsorptive stripping differential pulse voltammetry (AdSDPV) promoted better performance for the electrochemical sensor and greater sensitivity for TC detection. Under optimized conditions, the currents increased linearly with TC concentrations from 4.0 to 36 µmol L−1 (0.997) and from 40 to 64 µmol L−1 (0.994) with detection and quantification limits of 1.67 µmol L−1 and 4.0 µmol L−1, respectively. The sensor was applied in the analysis of milk and river water samples, obtaining recovery values ranging from 91–117%.
Collapse
|
48
|
Avelino KYPS, Oliveira LS, Lucena-Silva N, Andrade CAS, Oliveira MDL. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta 2021; 226:122118. [PMID: 33676673 DOI: 10.1016/j.talanta.2021.122118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Considering the low sensitivity of cytological exams and high costs of the molecular methods, the development of diagnostic tests for effective diagnosis of HPV infections is a priority. In this work, biosensor composed of polypyrrole (PPy) films and gold nanoparticles (AuNPs) was obtained for specific detection of HPV genotypes. The biosensor was developed by using flexible electrodes based on polyethylene terephthalate (PET) strips coated with indium tin oxide (ITO). Polymeric films and AuNPs were obtained by electrosynthesis. Oligonucleotides sequences modified with functional amino groups were designed to recognize HPV gene families strictly. The modified oligonucleotides were chemically immobilized on the nanostructured platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the analysis of the electrode modification and monitoring of molecular hybridization. Electrochemical changes were observed after exposure of the biosensors to plasmid samples and cervical specimens. The biosensor based on the BSH16 probe showed a linear concentration range for target HPV16 gene detection of 100 pg μL-1 to 1 fg μL-1. A limit of detection (LOD) of 0.89 pg μL-1 and limit of quantification (LOQ) of 2.70 pg μL-1 were obtained, with a regression coefficient of 0.98. Screening tests on cervical specimens were performed to evaluate the sensibility and specificity for HPV and its viral family. The expression of a biomarker for tumorigenesis (p53 gene) was also monitored. In this work, a flexible system has been successfully developed for label-free detection of HPV families and p53 gene monitoring with high specificity, selectivity, and sensitivity.
Collapse
Affiliation(s)
- Karen Y P S Avelino
- Programa de Pós-Graduação Em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Léony S Oliveira
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Norma Lucena-Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), 50670-420, Recife, PE, Brazil; Laboratório de Biologia Molecular, Departamento de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), 50070-550, Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação Em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação Em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
49
|
Fabrication of electro-active nano-trans surfaces to design label free electrochemical aptasensor for ochratoxin A detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Epitope-imprinted polydopamine electrochemical sensor for ovalbumin detection. Bioelectrochemistry 2021; 140:107805. [PMID: 33838516 DOI: 10.1016/j.bioelechem.2021.107805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023]
Abstract
A novel, sensitive and selective electrochemical sensor based on epitope-imprinted polydopamine (PDA) was developed for ovalbumin (OVA) detection. Molecularly imprinted polydopamine was synthesized on an AuNP-coated screen-printed carbon electrode (SPCE) via electropolymerization in the presence of OVA IgE-binding epitope as the template. Key process parameters including template concentration, electropolymerization cycle, pH, time required for template removal and rebinding were optimized. Electrochemical detection of OVA was performed by differential pulse voltammetry (DPV) in 5 mM K3Fe(CN)6 and 0.1 M KCl as the supporting electrolyte. Under optimized conditions, the sensor demonstrated excellent sensitivity toward OVA with linear range from 23.25 to 232.50 nM (1 to 10 ppm), limit of detection (LOD) of 10.76 nM (0.46 ppm), and limit of quantification (LOQ) of 35.87 nM (1.54 ppm). The sensor also exhibited good selectivity against other proteins such as human serum albumin (HSA), bovine serum albumin (BSA), and lysozyme (LYZ). OVA in wine samples was detected with RSD of 5.63-10.82%, and recovery percentage of 104.74-105.96%. The developed method can be easily adapted to detect other allergic proteins in the food supply chain.
Collapse
|