1
|
Meena J, Kumaraguru N, Sami Veerappa N, Shin PK, Tatsugi J, Kumar AS, Santhakumar K. Copper oxide nanoparticles fabricated by green chemistry using Tribulus terrestris seed natural extract-photocatalyst and green electrodes for energy storage device. Sci Rep 2023; 13:22499. [PMID: 38110542 PMCID: PMC10728140 DOI: 10.1038/s41598-023-49706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Nanobiotechnology is a unique class of multiphase and recently become a branch of contemporary science and a paradigm shift in material research. One of the two main problems facing the field of nanomaterial synthesis is the discovery of new natural resources for the biological production of metal nanoparticles and the absence of knowledge about the chemical composition of bio-source required for synthesis and the chemical process or mechanism behind the production of metal nanoparticles presents the second difficulty. We reported template-free green synthesized copper oxide nanoparticles using Tribulus terrestris seed natural extract without any isolation process. XRD, TEM, SEM, UV-Vis, DLS, zeta potential, and BET evaluated the synthesized metal nanoparticle. The TEM analysis confirmed that the CuO NPs are well dispersed and almost round in shape with an average size of 58 nm. EDAX confirms that copper is the prominent metal present in the nanomaterial. The greener fabricated copper oxide nanoparticle was employed to degrade methyl orange dye, almost 84% of methyl orange was degraded within 120 min. The outcomes demonstrated the nanomaterial's effective breakdown of contaminants, highlighting their potential for environmental rehabilitation. The electrochemical investigation of the CuO NPs was utilized for supercapacitor application. An appreciable value of specific capacitance is 369 F/g specific capacitances with 96.4% capacitance retention after 6000 cycles. Overall, the results of the current study show that the biologically produced copper oxide nanoparticles have intriguing uses as photocatalysts for treating water contaminants and are suitable for energy storage devices.
Collapse
Affiliation(s)
- Jayaprakash Meena
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - N Kumaraguru
- Department of Chemistry, Thanthai Periyar Government Arts and Science College, Tiruchirappalli, 620 023, India
| | - N Sami Veerappa
- Department of Education, Government College of Education for Women, Coimbatore, 641 001, India
| | - Paik-Kyun Shin
- School of Electrical Engineering, Inha University, Incheon, South Korea
| | - Jiro Tatsugi
- Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Kannappan Santhakumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
2
|
Atri A, Echabaane M, Bouzidi A, Harabi I, Soucase BM, Ben Chaâbane R. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon 2023; 9:e13484. [PMID: 36816263 PMCID: PMC9929317 DOI: 10.1016/j.heliyon.2023.e13484] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
In the present work, copper oxide (CuO NPs) was synthesized by an eco-friendly, simple, low-cost, and economical synthesis method using Ephedra Alata aqueous plant extract as a reducing and capping agent. The biosynthesized CuO-NPs were compared with chemically obtained CuO-NPs to investigate the effect of the preparation method on the structural, optical, morphological, antibacterial, antifungal, and photocatalytic properties under solar irradiation. The CuO NPs were characterized using X-ray diffraction (XRD), UV-VIS spectroscopy, Fourier transform infrared spectrometer (FTIR) analysis, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The photocatalytic activities of biosynthetic CuO-NPs and chemically prepared CuO-NPs were studied using methylene blue upon exposure to solar irradiation. The results showed that the biosynthesized CuO photocatalyst was more efficient than the chemically synthesized CuO-NPs for Methylene Blue (MB) degradation under solar irradiation, with MB degradation rates of 93.4% and 80.2%, respectively. In addition, antibacterial and antifungal activities were evaluated. The disk diffusion technique was used to test the biosynthesized CuO-NPs against gram-negative bacteria, Staphylococcus aureus and Bacillus subtilis, as well as C. Albicans and S. cerevisiae. The biosynthesized CuO-NPs showed efficient antibacterial and antifungal activity. The obtained results revealed that the biosynthesized CuO-NPs can play a vital role in the destruction of pathogenic bacteria, the degradation of dyes, and the activity of antifungal agents in the bioremediation of industrial and domestic waste.
Collapse
Affiliation(s)
- Afrah Atri
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| | - Mosaab Echabaane
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Technopark of Sousse, B.P. 334, Sahloul, 4034 Sousse, Tunisia
| | - Amel Bouzidi
- University Yahia Fares of Medea Urban Pole, Laboratory of Biomaterials and Transport Phenomena (LBMPT), (26000), Medea, Algeria
| | - Imen Harabi
- School of Design Engineering, Universitat Politecnica de Valencia, Cami de Vera, Spain
| | - Bernabe Mari Soucase
- School of Design Engineering, Universitat Politecnica de Valencia, Cami de Vera, Spain
| | - Rafik Ben Chaâbane
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia
| |
Collapse
|
3
|
Chand Mali S, Dhaka A, Sharma S, Trivedi R. Review on biogenic synthesis of copper nanoparticles and its potential applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Ecofriendly Green Synthesis of Copper (II) Oxide Nanoparticles Using Corchorus olitorus Leaves (Molokhaia) Extract and Their Application for the Environmental Remediation of Direct Violet Dye via Advanced Oxidation Process. Molecules 2022; 28:molecules28010016. [PMID: 36615210 PMCID: PMC9822215 DOI: 10.3390/molecules28010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this research, copper (II) oxide nanoparticles were prepared by an ecofriendly green method using the extract of corchorus olitorus leaves (Molokhaia) as a surfactant, capping and anti-agglomeration agent. The ecofriendly green CuO NPs were characterized using different chemical and physical techniques and the results confirmed the formation of monoclinic tenorite CuO nanoparticles with an average particle size of 12 nm and BET surface area of 11.1 m2/g. The eco-friendly green CuO NPs were used in environmental remediation for the efficient catalytic degradation of direct violet dye via advanced oxidation process (AOP) in presence of H2O2. The impact of AOP environmental parameters affecting the degradation process was investigated. Moreover, the catalytic degradation of the direct violet dye using the ecofriendly green CuO NPs was studied kinetically and thermodynamically and the results showed that the catalytic degradation process agreed well with the pseudo-second-order kinetic model and the process was spontaneous and endothermic in nature. Finally, high catalytic degradation of the direct violet dye was observed when the eco-friendly prepared green CuO NPs were placed in real water samples.
Collapse
|
5
|
Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes (Basel) 2022. [DOI: 10.3390/pr10040729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Egg white-induced auto combustion has been used to synthesize undoped and Fe-doped CuO/Cu2O/Cu4O3 nanocomposites in a soft, secure, and one-pot procedure. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) investigations have been used to identify functional groups and the structural properties of crystalline phases present in the as-synthesized composites. Scanning Electron Microscopy/Energy Dispersive Spectrometry (SEM/EDS) elemental mapping analyses and Transmission Electron Microscopy (TEM) techniques were used to explore the morphological and compositional properties of these composites. N2- adsorption/desorption isotherm models have been used to examine the surface variables of the as-prepared systems. Based on the Vibrating Sample Magnetometer (VSM) technique, the magnetic properties of various copper-based nanocomposites were detected due to being Fe-doped. XRD results showed that the undoped system was composed of CuO as a major phase with Cu2O and Cu4O3 as second phases that gradually disappeared by increasing the dopant content. The crystalline phase’s crystallographic properties were determined. The average particle size was reduced when the synthesized systems were doped with Fe. The construction of porous and polycrystalline nanocomposites involving Cu, Fe, O, and C components was confirmed by SEM/EDS and TEM measurements. In terms of the increase in magnetization of the as-manufactured nanocomposites due to Fe-doping, oxygen vacancies at the surface/or interfacial of nanoparticles, while also domain wall pinning mechanisms, were investigated. Finally, employing the investigated production process, Fe doping of CuO/Cu2O/Cu4O3 nanocomposite resulted in the development of a single phase (CuO) exhibiting “pinned” type magnetization. This is the first publication to show that CuO/Cu2O/Cu4O3.
Collapse
|
6
|
A Facile Synthesis of PbS-G QDs Nanocomposite as Electrode Material with Enhanced Energy Density for High Performance Supercapattery Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. ENVIRONMENTAL RESEARCH 2022; 203:111858. [PMID: 34389352 DOI: 10.1016/j.envres.2021.111858] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 05/22/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Collapse
Affiliation(s)
- Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Shreyas Pansambal
- Department of Chemistry, Shri Saibaba College Shirdi, 423 109, Savitribai Phule Pune University, Maharashtra, India.
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India; Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India
| | - Nguyen Thi Thanh Hai
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| |
Collapse
|
8
|
Mannarmannan M, Biswas K. Phytochemical‐Assisted Synthesis of Cuprous Oxide Nanoparticles and Their Antimicrobial Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Krishnendu Biswas
- Chemistry Division School of Advanced Sciences, VIT- Chennai 600 127 Tamilnadu India
| |
Collapse
|
9
|
Pavithra S, Priya A, Jayachandran M, Vijayakumar T, Maiyalagan T, Jayachitra J, Sivakumar N. Influence of aloe-vera gel mediated CuO coated LiNiPO4 cathode material in rechargeable battery applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Talha Khalil A, Hameed S, Afridi S, Mohamed H, Shinwari ZK. Sageretia thea mediated biosynthesis of metal oxide nanoparticles for catalytic degradation of crystal violet dye. MATERIALS TODAY: PROCEEDINGS 2021; 36:397-400. [DOI: 10.1016/j.matpr.2020.04.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Nwanya AC, Ndipingwi MM, Ezema FI, Iwuoha EI, Maaza M. Bio-synthesized P2-Na0.57CoO2 nanoparticles as cathode for aqueous sodium ion battery. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Nanda B, Mishra BB, Nayak R, Devi N. Hydrometallurgical recovery of α-Fe 2O 3 from red mud and photo-Fenton degradation of organic dye using CuO promoted α-Fe 2O 3. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1821793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Binita Nanda
- Department of Chemistry, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| | - Bibhuti Bhusan Mishra
- Department of Chemistry, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| | - Rasmita Nayak
- Department of Chemistry, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| | - Niharbala Devi
- Department of Chemistry, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| |
Collapse
|
13
|
Parsimehr H, Ehsani A. Corn‐based Electrochemical Energy Storage Devices. CHEM REC 2020; 20:1163-1180. [DOI: 10.1002/tcr.202000058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry Faculty of Science University of Qom Qom Iran
- Color and Surface Coatings Group Polymer Processing Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Ali Ehsani
- Department of Chemistry Faculty of Science University of Qom Qom Iran
| |
Collapse
|
14
|
Qasem M, El Kurdi R, Patra D. Green Synthesis of Curcumin Conjugated CuO Nanoparticles for Catalytic Reduction of Methylene Blue. ChemistrySelect 2020. [DOI: 10.1002/slct.201904135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mayada Qasem
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| | - Riham El Kurdi
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| | - Digambara Patra
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| |
Collapse
|
15
|
Biomass mediated multi layered NaNixCo1−xO2 (x = 0.4) and α-Fe2O3 nanoparticles for aqueous sodium ion battery. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Nwanya AC, Razanamahandry LC, Bashir AKH, Ikpo CO, Nwanya SC, Botha S, Ntwampe SKO, Ezema FI, Iwuoha EI, Maaza M. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:281-289. [PMID: 31078988 DOI: 10.1016/j.jhazmat.2019.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 05/02/2023]
Abstract
Zea mays L. dry husk extract was used to bio synthesize copper oxide nanoparticles. Red coloured cubic Cu2O nanoparticles were obtained for the first time via this simple, eco- friendly, green synthesis route. The Cu2O nanoparticles were thermally oxidized to pure monoclinic CuO nanoparticles at 600 °C. The phases of the copper oxides were confirmed from the x-ray diffraction (XRD) studies. The nanoparticle sizes as obtained from high resolution transmission electron microscope (HRTEM) analysis range from 10 to 26 nm, 36-73 nm and 30-90 nm for the unannealed Cu2O, 300 °C and 600 °C annealed CuO respectively. The values of the bandgap energies obtained from diffuse reflectance of the nanoparticles are 2.0, 1.30 and 1.42 eV respectively for the unannealed, 300 °C, and 600 °C annealed copper oxide nanoparticles. The 600 °C annealed copper oxide nanoparticles showed 91% and 90% degradation ability for methylene blue dye (BM) and textile effluent (TE) respectively under visible light irradiation. While CuO_300 is more effective to inhibit the growth of Escherichia coli 518,133 and Staphylococcus aureus 9144, Cu2O is better for Pseudomonas aeruginosa and Bacillus licheniformis. The results confirm the photo-catalytic and anti-microbial effectiveness of the copper oxide nanoparticles.
Collapse
Affiliation(s)
- Assumpta Chinwe Nwanya
- Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria; UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, PO Box 722, 7129, Somerset West, South Africa.
| | - Lovasoa Christine Razanamahandry
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, PO Box 722, 7129, Somerset West, South Africa
| | - A K H Bashir
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, PO Box 722, 7129, Somerset West, South Africa
| | - Chinwe O Ikpo
- Sensor Lab, Department of Chemistry, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Stephen C Nwanya
- Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria
| | - Subelia Botha
- Electron Microscope Unit, University of the Western Cape, South Africa
| | - S K O Ntwampe
- Bioresource Engineering Research Group (BioERG), Faculty of Applied Science Department of Biotechnology Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa
| | - Fabian I Ezema
- Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria; UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, PO Box 722, 7129, Somerset West, South Africa
| | - Emmanuel I Iwuoha
- Sensor Lab, Department of Chemistry, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, PO Box 722, 7129, Somerset West, South Africa
| |
Collapse
|