1
|
Xu H, Xu Z, Wang K, Jin L, Liu Y, Chen J, Li L. Tungsten oxide-based electrocatalysts for energy conversion. Chem Commun (Camb) 2024; 60:13507-13517. [PMID: 39485081 DOI: 10.1039/d4cc04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of cutting-edge energy conversion technologies offers significant potential for addressing environmental challenges, enhancing energy security, improving economic competitiveness, and promoting resource conservation. This progress necessitates the development of advanced electrocatalysts. WOx demonstrates high intrinsic catalytic activity, excellent conductivity, an abundance of active sites, and remarkable stability, positioning it as a promising candidate for electrocatalytic reactions. Recently, there has been swift advancement in the development of WOx-based catalysts for various energy-conversion reactions. This review provides a thorough summary of recent developments in WOx-based catalysts for electrocatalytic reactions, emphasizing their multifunctional roles as active species, electron-transfer carriers, hydrogen spillover carriers, and microenvironment regulators. Moreover, it highlights the applications of WOx-based catalysts across different electrocatalytic reactions, with particular focus on the structure-activity relationship. Finally, the review discusses the challenges and future directions of these technologies, as well as key research areas necessary for achieving large-scale applications.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhili Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
2
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Boukayouht K, Bazzi L, Daouli A, Maurin G, El Hankari S. Ultrarapid and Sustainable Synthesis of Trimetallic-Based MOF (CrNiFe-MOF) from Stainless Steel and Disodium Terephthalate-Derived PET Wastes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2497-2508. [PMID: 38178626 DOI: 10.1021/acsami.3c15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Designing easy and sustainable strategies for the synthesis of metal-organic frameworks (MOFs) from organic and inorganic wastes with the efficient removal of phosphate from water remains a challenge. The majority of the reported works have utilized costly precursors and nonsoluble ligands for the synthesis of MOFs. Herein, we have developed a low-cost, simple, and sustainable alternative approach using the coprecipitation method in water at room temperature for the synthesis of a new adsorbent-based trimetallic MOF. Poly(ethylene terephthalate) and stainless steel wastes were used as sources of water-soluble disodium terephthalate ligand and three metallic species (chromium, nickel, and iron salts) for the fabrication of trimetallic MOF (CrNiFe-MOF), respectively. The newly developed MOF demonstrates a superior space-time yield of 5760 g m-3 day-1, reaching a level allowing the industrialization production of this sustainable MOF. The scanning electron microscopy and adsorption studies revealed that the developed trimetallic MOF consists of aggregated nanoparticles and the presence of defective as well as mesoporous structures. This MOF showed an enhanced adsorption capacity of phosphate from real eutrophic water samples and higher stability in a range of pHs. The density functional theory calculations evidenced that the phosphate ions preferentially adsorb over H2O toward the metal oxo-trimers, with the adsorption energies increasing from H3PO4 to PO43- species in line with an improvement of the adsorption performance of CrNiFe-MOF when the pH increases, i.e., when HPO42- and PO43- become more predominant. These calculations also supported that the incorporation of Cr metal sites in the oxo-trimer is expected to boost the phosphate affinity of the MOF. Finally, our work provides an easy and eco-friendly approach for MOF designing to enhance phosphate removal from water.
Collapse
Affiliation(s)
- Khaireddin Boukayouht
- Chemical and Biochemical Sciences, Green Process Engineering, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Loubna Bazzi
- Chemical and Biochemical Sciences, Green Process Engineering, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Ayoub Daouli
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Samir El Hankari
- Chemical and Biochemical Sciences, Green Process Engineering, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
5
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
6
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Li TM, Hu BQ, Han JH, Lu W, Yu F, Li B. Highly Effective OER Electrocatalysts Generated from a Two-Dimensional Metal-Organic Framework Including a Sulfur-Containing Linker without Doping. Inorg Chem 2022; 61:7051-7059. [PMID: 35482998 DOI: 10.1021/acs.inorgchem.2c00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) with different topologies formed by the self-assembly of sulfur-containing inorganic ligands, cobalt ions, and large ligands can be used to prepare electrocatalysts for water splitting in order to fully explore the advantages of MOFs in terms of structural tailoring and quantitative assembly. It is possible to avoid using an extradoped sulfur source to reduce waste as well as to disperse Co and sulfur elements evenly and controllably throughout the final material to maximize the overall synergistic effect. In this work, different kinds of bimetallic MOF materials containing sulfur can be synthesized very conveniently by using an economical and practical diffusion method. These materials are directly used as OER electrocatalysts, and the bimetallic MOFs have the best electrocatalytic performance when the ratio of Co to Fe is 6:4. The overpotential at a current density of 10 mA cm-2 was 260 mV, with a Tafel slope of 56 mV dec-1 and good stability. It was assembled with 20% commercial Pt/C material into a two-electrode system for all-water decomposition, and the decomposition voltage at 10 mA cm-2 was 1.81 V. From the electronic configuration microscopic point of view, the introduction of iron ions changed the original synergistic effect for Co-S-Co, which more easily led to the formation of high-valence Co3+ and finally produced highly active electrocatalytic sites. From a macroscopic point of view, the material produced in situ during the electrochemical reaction process not only retains the original 2D layered structure but also utilizes bubbles to produce a loose structure with defective sites. These structural features are advantageous because they provide not only an abundance of active sites and permeable channels but also the necessary interfaces and electron-transport channels for the formation of electrostatic charge-separation layers, making it easier to intercalate and delaminate the hydroxide ions. Furthermore, the changed hydroxyl ions and nitrogen and sulfur atoms on the channel surface may operate as interaction sites, increasing the surface characteristics, facilitating electron transfer, and reducing electron-transfer resistance. To summarize, the rational design of sulfur-containing layered MOF materials directly as water-splitting catalysts is a crucial next step in developing cost-effective, environmentally friendly, and low-energy-consumption electrocatalysts based on the findings of this study.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
8
|
Lee YJ, Park SK. Metal-Organic Framework-Derived Hollow CoS x Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200586. [PMID: 35289501 DOI: 10.1002/smll.202200586] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
For effective hydrogen production by water splitting, it is essential to develop earth-abundant, highly efficient, and durable electrocatalysts. Herein, the authors report a bifunctional electrocatalyst composed of hollow CoSx and Ni-Fe based layered double hydroxide (NiFe LDH) nanosheets for efficient overall water splitting (OWS). The optimized heterostructure is obtained by the electrodeposition of NiFe LDH nanosheets on metal-organic framework-derived hollow CoSx nanoarrays, which are supported on nickel foam (H-CoSx @NiFe LDH/NF). The unique structure of the hybrid material not only provides ample active sites, but also facilitates electrolyte penetration and gas release during the reactions. Additionally, the strong coupling and synergy between the hydrogen evolution reaction (HER) active CoSx and the oxygen evolution reaction (OER) active NiFe LDH gives rise to the excellent bifunctional properties. Consequently, H-CoSx @NiFe LDH/NF exhibits remarkable HER and OER activities with overpotentials of 95 and 250 mV, respectively at 10 mA cm-2 in 1.0 M KOH. Even at 1.0 A cm-2 , the electrode requires small overpotentials of 375 mV (for HER) and 418 mV (for OER), respectively. An electrolyzer based on H-CoSx @NiFe LDH/NF demonstrates a low cell voltage of 1.98 V at a current density of 300 mA cm-2 and good durability for 100 h in OWS application.
Collapse
Affiliation(s)
- Yun Jae Lee
- Department of Advanced Materials Engineering, Chung-Ang University, 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Seung-Keun Park
- Department of Advanced Materials Engineering, Chung-Ang University, 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
9
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sun L, Luo Q, Dai Z, Ma F. Material libraries for electrocatalytic overall water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sun X, Zhang X, Li Y, Xu Y, Su H, Che W, He J, Zhang H, Liu M, Zhou W, Cheng W, Liu Q. In Situ Construction of Flexible VNi Redox Centers over Ni-Based MOF Nanosheet Arrays for Electrochemical Water Oxidation. SMALL METHODS 2021; 5:e2100573. [PMID: 34927938 DOI: 10.1002/smtd.202100573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Indexed: 06/14/2023]
Abstract
Atomic-level design and construction of synergistic active centers are central to develop advanced oxygen electrocatalysts toward efficient energy conversion. Herein, an in situ construction strategy to introduce flexible redox sites of VNi centers onto Ni-based metal-organic framework (MOF) nanosheet arrays (NiV-MOF NAs) as a promising oxygen electrocatalyst is developed. The abundant redox VNi centers with flexible metal valence states of V+3/+4/+5 and Ni+3/+2 enable NiV-MOF NAs excellent oxygen evolution reaction (OER) activity and a long-term stability under high current densities, achieving current densities of 10 and 100 mA cm-2 at recorded overpotentials of 189 and 290 mV, respectively, and showing ignorable decay of initial activity at 100 mA cm-2 after 100 h OER operation. Operando synchrotron radiation Fourier transform infrared combined with quasi in situ X-ray absorption fine structure spectroscopies reveal at atomic level that the flexible V sites can continuously accept electrons from adjacent active Ni sites to accelerate OER kinetics for NiV-MOF NAs during the reaction process, accompanied by a self-optimized structural distortion of VO6 octahedron for promoting the electrochemical stability.
Collapse
Affiliation(s)
- Xuan Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yuanli Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wei Che
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Jingfu He
- School of Materials, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Hui Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
12
|
Du X, Ma G, Zhang X. Cobalt and nitrogen co-doped Ni 3S 2 nanoflowers on nickel foam as high-efficiency electrocatalysts for overall water splitting in alkaline media. Dalton Trans 2021; 50:8955-8962. [PMID: 34109953 DOI: 10.1039/d1dt01214b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of high-performance and cost-effective bifunctional water splitting catalysts has enormous significance in the hydrogen production industry from water electrolysis. Herein, an in situ Co and N co-doping method was developed to improve the electrocatalytic performance of Ni3S2 catalysts. The Co-N-Ni3S2/NF is successfully synthesized for the first time by a one-step hydrothermal method, wherein nickel foam, thioacetamide and Co(NO3)2·6H2O are used as the nickel source, sulfur source, nitrogen source and cobalt source. Co-N-Ni3S2/NF exhibits excellent oxygen evolution reaction activity (an overpotential of 285 mV@50 mA cm-2) and hydrogen evolution reaction activity (an overpotential of 215 mV@10 mA cm-2) in 1 M KOH solution. The electrolytic cell displayed a low cell voltage of 1.50 V when the Co-N-Ni3S2/NF material was used as the bifunctional water splitting electrocatalyst, which is one of the best catalysts reported so far. Density functional theory calculations show that Co-N-Ni3S2/NF exhibits stronger water adsorption energy than those of N-Ni3S2/NF, Co-Ni3S2/NF and Ni3S2/NF. It is proved that the doping of Co and N can effectively regulate the electron cloud density of Ni, thus enhancing the electrochemical activity of Co-N-Ni3S2/NF.
Collapse
Affiliation(s)
- Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Guangyu Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
13
|
Lan Y, Luo H, Ma Y, Hua Y, Liao T, Yang J. Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification. NANOSCALE 2021; 13:10108-10115. [PMID: 34060572 DOI: 10.1039/d1nr01489g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing low-cost electrocatalysts for the nitrate reduction reaction (NO3RR) with superior performance is of great significance for wastewater treatment. Herein, we synthesized bimetal Cu/Fe nanoparticles encased in N-doped carbon nanofibers (Cu/Fe@NCNFs) through simple electrospinning followed by a pyrolysis reduction strategy. Metallic copper is beneficial for reducing nitrate to nitrite, and the existence of Fe is conducive to convert nitrate and nitrite into nitrogen. Additionally, the nitrogen-doped carbon nanofibers also facilitate the adsorption of nitrate, and the continuous and complete fiber structure enhances the stability of the catalyst and prevents the corrosion of the active sites. Therefore, the synergetic effect of bimetal Cu/Fe and N-doped carbon fiber plays a key role in promoting the efficiency of nitrate reduction. The obtained Cu/Fe@NCNF catalyst exhibits a satisfactory nitrate conversion efficiency of 76%, removal capacity of 5686 mg N g-1 Cu/Fe and nitrogen selectivity of 94%.
Collapse
Affiliation(s)
- Yue Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Zhou L, Pan D, Guo Z, Li J, Huang S, Song J. Simple Construction of Amorphous Monometallic Cobalt‐Based Selenite Nanoparticles using Ball Milling for Highly Efficient Oxygen Evolution Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling‐Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Dong‐Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Zheng‐Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jin‐Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jun‐Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| |
Collapse
|
15
|
Liu X, Ma Y, Cai Y, Hu S, Chen J, Liu Z, Wang Z. Zeolitic imidazole framework derived N-doped porous carbon/metal cobalt nanoparticles hybrid for oxygen electrocatalysis and rechargeable Zn-air batteries. RSC Adv 2021; 11:15722-15728. [PMID: 35481167 PMCID: PMC9029078 DOI: 10.1039/d1ra01350e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Bifunctional electrocatalysts with high catalytic property for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for high-performance zinc-air batteries (ZnABs). In this study, an efficient bifunctional electrocatalyst with hollow structure (C-N/Co (1/2)) has been successfully prepared through carbonization of ZIF-8@ZIF-67 and evaporation of Zn ions at high temperature. With Co nanoparticles encapsulated by an N-doped porous carbon matrix, the catalyst exhibits excellent stability in aqueous alkaline solution over an extended period and good tolerance to the methanol crossover effect. The integration of an N-doped graphitic carbon outer shell and Co nanoparticles enables high ORR and OER activity, as evidenced by ZnAB using the catalyst C-N/Co (1/2) in an air cathode.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Yuanyuan Ma
- Department of Materials Science and Engineering, National University of Singapore 117574 Singapore
| | - Yongliang Cai
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Song Hu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Jian Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Zhaolin Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Zhijuan Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| |
Collapse
|
16
|
Iron, manganese co-doped Ni3S2 nanoflowers in situ assembled by ultrathin nanosheets as a robust electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2021; 588:248-256. [DOI: 10.1016/j.jcis.2020.12.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
|
17
|
He W, Bai X, Ma J, Wang S, Zhang B, Shao L, Chen H, Li L, Fu Y, Chen J. Fabrication of hierarchically flower-like trimetallic coordination polymers via ion-exchange strategy for efficient electrocatalytic oxygen evolution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Duan JJ, Zhang RL, Feng JJ, Zhang L, Zhang QL, Wang AJ. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 581:774-782. [DOI: 10.1016/j.jcis.2020.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
|
19
|
Liang Q, Chen J, Wang F, Li Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213488] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Liu D, Jiang T, Liu D, Zhang W, Qin H, Yan S, Zou Z. Silicon Photoanode Modified with Work-function-tuned Ni@Fe y Ni 1-y (OH) 2 Core-Shell Particles for Water Oxidation. CHEMSUSCHEM 2020; 13:6037-6044. [PMID: 33022839 DOI: 10.1002/cssc.202002049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The photoelectrochemical (PEC) water splitting determines by the light absorption and charge extraction/injection. Here, we dispersedly modified the core-shell structured Ni@Niy Fe1-y (OH)2 on Si photoanodes and in-situ electrochemically converted it to Ni@Niy Fe1-y OOH to form a Si/SiOx /Ni@Niy Fe1-y OOH assembly, exhibiting the adjustable band bending and catalytic ability in water oxidation depending closely on the composition of Niy Fe1-y OOH. Combining with the island-like dispersed distribution to maximize the light absorption and the Ni@Niy Fe1-y shell as a high work function and a catalytic layer to simultaneously enlarge charge extraction and injection, the Si/SiOx /Ni@Ni0.7 Fe0.3 OOH assembly achieved an onset potential of 1.0 VRHE , a saturated current density of 35.4 mA cm-2 and a more than 50 h stability in an electrolyte with pH 9 under AM1.5G simulated sunlight irradiation. Our findings suggested that regulating the charge energetics at Si-electrolyte interface by discontinuously modifying a composition-adjustable core-shell structure is a potential route to develop highly efficient PEC devices.
Collapse
Affiliation(s)
- Duanduan Liu
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Tong Jiang
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Depei Liu
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Weining Zhang
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Hao Qin
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Shicheng Yan
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Hankou Road, 22, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
21
|
Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63613-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Fe/Ni Bimetallic Organic Framework Deposited on TiO 2 Nanotube Array for Enhancing Higher and Stable Photoelectrochemical Activity of Oxygen Evaluation Reaction. NANOMATERIALS 2020; 10:nano10091688. [PMID: 32867259 PMCID: PMC7559871 DOI: 10.3390/nano10091688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/05/2022]
Abstract
Photoelectrochemical (PEC) water splitting is a promising strategy to improve the efficiency of oxygen evolution reactions (OERs). However, the efficient adsorption of visible light as well as long-term stability of light-harvesting electrocatalysis is the crucial issue in PEC cells. Metal–organic framework (MOF)-derived bimetallic electrocatalysis with its superior performance has wide application prospects in OER and PEC applications. Herein, we have fabricated a nickel and iron bimetallic organic framework (FeNi-MOF) deposited on top of anodized TiO2 nanotube arrays (TNTA) for PEC and OER applications. The FeNi-MOF/TNTA was incorporated through the electrochemical deposition of Ni2+ and Fe3+ onto the surface of TNTA and then connected with organic ligands by the hydrothermal transformation. Therefore, FeNi-MOF/TNTA demonstrates abundant photoelectrocatalytic active sites that can enhance the photocurrent up to 1.91 mA/cm2 under 100 mW/cm2 and a negligible loss in activity after 180 min of photoreaction. The FeNi-MOF-doped photoanode shows predominant photoelectrochemical performance due to the boosted excellent light-harvesting ability, rapid photoresponse, and stimulated interfacial energy of charge separation under the UV-visible light irradiation conditions. The results of this study give deep insight into MOF-derived bimetallic nanomaterial synthesis for photoelectrochemical OER and provide guidance on future electrocatalysis design.
Collapse
|
23
|
Gu M, Wang SC, Chen C, Xiong D, Yi FY. Iron-Based Metal–Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Inorg Chem 2020; 59:6078-6086. [DOI: 10.1021/acs.inorgchem.0c00100] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minli Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shi-Cheng Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|