1
|
Archer H, González DJX, Walsh J, English P, Reynolds P, Boscardin WJ, Carpenter C, Morello-Frosch R. Upstream Oil and Gas Production and Community COVID-19 Case and Mortality Rates in California, USA. GEOHEALTH 2024; 8:e2024GH001070. [PMID: 39524319 PMCID: PMC11543630 DOI: 10.1029/2024gh001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Higher concentrations of ambient air pollutants, including PM2.5 and NO2, and other pollutants have been found near active oil and gas wells and may be associated with adverse COVID-19 outcomes. We assessed whether residential exposure to nearby oil and gas production was associated with higher rates of the respiratory infection COVID-19 and related mortality using a population-based ecological study in California. Using gridded population estimates, we estimated area-level exposure to annual average oil and gas production volume from active wells within 1 kilometer (km) of populated areas within census block groups from 2018 to 2020. We geocoded confirmed cases and associated deaths to assess block group case and mortality rates from COVID-19 from February 2020 to January 2021. We fit hierarchical Poisson models with individual and area covariates (e.g., age, sex, socioeconomic disadvantage), and included time and other interactions to assess additional variation (e.g., testing, reporting rates). In the first 4 months of the study period (February-May 2020), block groups in the highest tertile of oil and gas production exposure had 34% higher case rates (IRR: 1.34 95% CI: 1.20, 1.49) and 55% higher mortality rates (MRR: 1.52 95%: CI: 1.14, 2.03) than those with no estimated production, after accounting for area-level covariates. Over the entire study period, we observed moderately higher mortality rates in the highest group (MRR: 1.16 95%: CI: 1.01, 1.33) and null associations for case rates.
Collapse
Affiliation(s)
- Helena Archer
- Department of Epidemiology School of Public Health University of California, Berkeley Berkeley CA USA
| | - David J X González
- Department of Environmental Science, Policy, & Management School of Public Health University of California, Berkeley Berkeley CA USA
| | - Julia Walsh
- Department of Maternal and Child Health School of Public Health University of California, Berkeley Berkeley CA USA
| | - Paul English
- Tracking California Public Health Institute Oakland CA USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics University of California, San Francisco San Francisco CA USA
| | - W John Boscardin
- Department of Epidemiology and Biostatistics University of California, San Francisco San Francisco CA USA
- Department of Medicine University of California, San Francisco San Francisco CA USA
| | | | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, & Management School of Public Health University of California, Berkeley Berkeley CA USA
| |
Collapse
|
2
|
Tonne C, Ranzani O, Alari A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte T, Foraster M, Milà C, Nieuwenhuijsen MJ, Olmos S, Rico A, Sunyer J, Valentín A, Vivanco R. Air Pollution in Relation to COVID-19 Morbidity and Mortality: A Large Population-Based Cohort Study in Catalonia, Spain (COVAIR-CAT). Res Rep Health Eff Inst 2024:1-48. [PMID: 39468856 PMCID: PMC11525941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Evidence from epidemiological studies based on individual-level data indicates that air pollution may be associated with coronavirus disease 2019 (COVID-19) severity. We aimed to test whether (1) long-term exposure to air pollution is associated with COVID-19-related hospital admission or mortality in the general population; (2) short-term exposure to air pollution is associated with COVID-19-related hospital admission following COVID-19 diagnosis; (3) there are vulnerable population subgroups; and (4) the influence of long-term air pollution exposure on COVID-19-related hospital admissions differed from that for other respiratory infections. METHODS We constructed a cohort covering nearly the full population of Catalonia through registry linkage, with follow- up from January 1, 2015, to December 31, 2020. Exposures at residential addresses were estimated using newly developed spatiotemporal models of nitrogen dioxide (NO23), particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5), particulate matter ≤10 μm in aerodynamic diameter (PM10), and maximum 8-hr-average ozone (O3) at a spatial resolution of 250 m for the period 2018-2020. RESULTS The general population cohort included 4,660,502 individuals; in 2020 there were 340,608 COVID-19 diagnoses, 47,174 COVID-19-related hospital admissions, and 10,001 COVID-19 deaths. Mean (standard deviation) annual exposures were 26.2 (10.3) μg/m3 for NO2, 13.8 (2.2) μg/m3 for PM2.5, and 91.6 (8.2) μg/m3 for O3. In Aim 1, an increase of 16.1 μg/m3 NO2 was associated with a 25% (95% confidence interval [CI]: 22%-29%) increase in hospitalizations and an 18% (10%-27%) increase in deaths. In Aim 2, cumulative air pollution exposure over the previous 7 days was positively associated with COVID-19-related hospital admission in the second pandemic wave (June 20 to December 31, 2020). Associations of exposure were driven by exposure on the day of the hospital admission (lag0). Associations between short-term exposure to air pollution and COVID-19-related hospital admission were similar in all population subgroups. In Aim 3, individuals with lower individual- and area-level socioeconomic status (SES) were identified as particularly vulnerable to the effects of long-term exposure to NO2 and PM2.5 on COVID-19-related hospital admission. In Aim 4, long-term exposure to air pollution was associated with hospital admission for influenza and pneumonia: (6%; 95% CI: 2-11 per 16.4-μg/m3 NO2 and 5%; 1-8 per 2.6-μg/m3 PM2.5) as well as for all lower respiratory infections (LRIs) (18%; 14-22 per 16.4-μg/m3 NO2 and 14%; 11-17 per 2.6-μg/m3 PM2.5) before the COVID-19 pandemic. Associations for COVID-19-related hospital admission were larger than those for influenza or pneumonia for NO2, PM2.5, and O3 when adjusted for NO2. CONCLUSIONS Linkage across several registries allowed the construction of a large population-based cohort, tracking COVID-19 cases from primary care and testing data to hospital admissions, and death. Long- and short-term exposure to ambient air pollution were positively associated with severe COVID-19 events. The effects of long-term air pollution exposure on COVID-19 severity were greater among those with lower individual- and area-level SES.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C Milà
- ISGlobal, Barcelona, Spain
| | | | | | - A Rico
- ISGlobal, Barcelona, Spain
| | | | | | - R Vivanco
- Agency for Health Quality and Assessment of Catalonia, Barcelona, Spain
| |
Collapse
|
3
|
Zorn J, Simões M, Velders GJM, Gerlofs-Nijland M, Strak M, Jacobs J, Dijkema MBA, Hagenaars TJ, Smit LAM, Vermeulen R, Mughini-Gras L, Hogerwerf L, Klinkenberg D. Effects of long-term exposure to outdoor air pollution on COVID-19 incidence: A population-based cohort study accounting for SARS-CoV-2 exposure levels in the Netherlands. ENVIRONMENTAL RESEARCH 2024; 252:118812. [PMID: 38561121 DOI: 10.1016/j.envres.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Several studies have linked air pollution to COVID-19 morbidity and severity. However, these studies do not account for exposure levels to SARS-CoV-2, nor for different sources of air pollution. We analyzed individual-level data for 8.3 million adults in the Netherlands to assess associations between long-term exposure to ambient air pollution and SARS-CoV-2 infection (i.e., positive test) and COVID-19 hospitalisation risks, accounting for spatiotemporal variation in SARS-CoV-2 exposure levels during the first two major epidemic waves (February 2020-February 2021). We estimated average annual concentrations of PM10, PM2.5 and NO2 at residential addresses, overall and by PM source (road traffic, industry, livestock, other agricultural sources, foreign sources, other Dutch sources), at 1 × 1 km resolution, and weekly SARS-CoV-2 exposure at municipal level. Using generalized additive models, we performed interval-censored survival analyses to assess associations between individuals' average exposure to PM10, PM2.5 and NO2 in the three years before the pandemic (2017-2019) and COVID-19-outcomes, adjusting for SARS-CoV-2 exposure, individual and area-specific confounders. In single-pollutant models, per interquartile (IQR) increase in exposure, PM10 was associated with 7% increased infection risk and 16% increased hospitalisation risk, PM2.5 with 8% increased infection risk and 18% increased hospitalisation risk, and NO2 with 3% increased infection risk and 11% increased hospitalisation risk. Bi-pollutant models suggested that effects were mainly driven by PM. Associations for PM were confirmed when stratifying by urbanization degree, epidemic wave and testing policy. All emission sources of PM, except industry, showed adverse effects on both outcomes. Livestock showed the most detrimental effects per unit exposure, whereas road traffic affected severity (hospitalisation) more than infection risk. This study shows that long-term exposure to air pollution increases both SARS-CoV-2 infection and COVID-19 hospitalisation risks, even after controlling for SARS-CoV-2 exposure levels, and that PM may have differential effects on these COVID-19 outcomes depending on the emission source.
Collapse
Affiliation(s)
- Jelle Zorn
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mariana Simões
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Guus J M Velders
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Utrecht, the Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maciek Strak
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - José Jacobs
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke B A Dijkema
- Environment and Health in Overijssel and Gelderland, Public Health Services Gelderland-Midden, the Netherlands
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Don Klinkenberg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
4
|
Simões M, Zorn J, Hogerwerf L, Velders GJM, Portengen L, Gerlofs-Nijland M, Dijkema M, Strak M, Jacobs J, Wesseling J, de Vries WJ, Mijnen-Visser S, Smit LAM, Vermeulen R, Mughini-Gras L. Outdoor air pollution as a risk factor for testing positive for SARS-CoV-2: A nationwide test-negative case-control study in the Netherlands. Int J Hyg Environ Health 2024; 259:114382. [PMID: 38652943 DOI: 10.1016/j.ijheh.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared to other respiratory diseases remains unclear. We performed a test-negative case-control study among people with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS-CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, we selected individuals who did not change residential address in 2017-2019 (1.7 million tests) and considered the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several confounders, including municipality and testing week to account for spatiotemporal variation in viral circulation, was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricultural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This study reinforces the need to continue to strive for better air quality to support public health.
Collapse
Affiliation(s)
- Mariana Simões
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle Zorn
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands
| | - Guus J M Velders
- Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - Marieke Dijkema
- Municipal Health Services, Provinces of Overijssel and Gelderland, the Netherlands
| | - Maciek Strak
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - José Jacobs
- National Institute for Public Health and the Environment (RIVM), Center for Sustainability, Environment and Health (DMG), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Wilco J de Vries
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Suzanne Mijnen-Visser
- National Institute for Public Health and the Environment (RIVM), Center for Environmental Quality (MIL), Bilthoven, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lapo Mughini-Gras
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, the Netherlands.
| |
Collapse
|
5
|
Oh TK, Kim S, Kim DH, Song IA. Long-Term Particulate Matter Exposure and Mortality in Hospitalized Patients with COVID-19 in South Korea. Ann Am Thorac Soc 2024; 21:759-766. [PMID: 38330170 PMCID: PMC11109913 DOI: 10.1513/annalsats.202307-607oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Rationale: Particulate matter (PM) exposure exacerbates health outcomes by causing lung damage. Objectives: To investigate whether prior exposure to particulate matter ⩽10 μm and ⩽2.5 μm in aerodynamic diameter (PM10 and PM2.5) was associated with clinical outcomes among patients with coronavirus disease (COVID-19). Methods: Data from the nationwide registration database of the National Health Insurance and Korea Disease Control and Prevention Agency in South Korea were used. The study included adult patients who were admitted to monitoring centers or hospitals between October 8, 2020 and December 31, 2021, after COVID-19 confirmation. AirKOREA database, which compiles air pollutant data from 642 stations in 162 cities and counties across South Korea, was used to extract data on PM levels. Average values of monthly exposure to PM10 and PM2.5 from the year previous to hospital admission because of COVID-19 to the date of confirmation of COVID-19 were calculated and used to define PM exposures of patients with COVID-19. Results: In total, 322,289 patients with COVID-19 were included, and 4,633 (1.4%) died during hospitalization. After adjusting for covariates, a 1-μg/m3 increase in PM10 and PM2.5 exposure was associated with 4% (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.03-1.05; P < 0.001) and 6% (OR, 1.06; 95% CI, 1.04-1.07; P < 0.001) increase in the risk of in-hospital mortality, respectively. In addition, a 1-μg/m3 increase in PM10 and PM2.5 was associated with 5% (OR, 1.05; 95% CI, 1.04-1.07; P < 0.001) and 8% (OR, 1.08; 95% CI, 1.06-1.10; P < 0.001) increase in the risks of requiring intensive care unit (ICU) admission and mechanical ventilation, respectively. Conclusions: PM10 and PM2.5 exposure was associated with increased in-hospital mortality and the need for ICU admission and mechanical ventilation among patients with COVID-19 in South Korea.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; and
| | - Saeyeon Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Hyun Kim
- Department of Occupational and Environmental Medicine, Shihwa Medical Center, Siheumg-si, South Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; and
| |
Collapse
|
6
|
Singer M. Is Pollution the Primary Driver of Infectious Syndemics? Pathogens 2024; 13:370. [PMID: 38787222 PMCID: PMC11124193 DOI: 10.3390/pathogens13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Syndemics, the adverse interaction of two or more coterminous diseases or other negative health conditions, have probably existed since human settlement, plant and animal domestication, urbanization, and the growth of social inequality beginning about 10-12,000 years ago. These dramatic changes in human social evolution significantly increased opportunities for the spread of zoonotic infectious diseases in denser human communities with increased sanitation challenges. In light of a growing body of research that indicates that anthropogenic air pollution causes numerous threats to health and is taking a far greater toll on human life and wellbeing than had been reported, this paper proposes the possibility that air pollution is now the primary driver of infectious disease syndemics. In support of this assertion, this paper reviews the growth and health impacts of air pollution, the relationship of air pollution to the development and spread of infectious diseases, and reported cases of air pollution-driven infectious disease syndemics, and presents public health recommendations for leveraging the biosocial insight of syndemic theory in responding to infectious disease.
Collapse
Affiliation(s)
- Merrill Singer
- Anthropology, Storrs Campus, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Yu K, Zhang Q, Wei Y, Chen R, Kan H. Global association between air pollution and COVID-19 mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167542. [PMID: 37797765 DOI: 10.1016/j.scitotenv.2023.167542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic presents unprecedented challenge for global public health systems and exacerbates existing health disparities. Epidemiological evidence suggested a potential linkage between particulate and gaseous pollutants and COVID-19 mortality. We aimed to summarize the overall risk of COVID-19 mortality associated with ambient air pollutants over the short- and long-term. METHODS For the systematic review and meta-analysis, we searched five databases for studies evaluating the risk of COVID-19 mortality from exposure to air pollution. Inclusion of articles was assessed independently on the basis of research topic and availability of effect estimates. The risk estimates (relative risk) for each pollutant were pooled with a random-effect model. Potential heterogeneity was explored by subgroup analysis. Funnel plots and trim-and-fill methods were employed to assess and adjust for publication bias. FINDINGS The systematic review retrieved 2059 records, and finally included 43 original studies. PM2.5 (RR: 1.71, 95 % CI: 1.40-2.08, per 10 μg/m3 increase), NO2 (RR: 1.33, 1.07-1.65, per 10 ppb increase) and O3 (RR: 1.61, 1.00-2.57, per 10 ppb increase) were positively associated with COVID-19 mortality for long-term exposures. Accordingly, a higher risk of COVID-19 mortality was associated with PM2.5 (1.05, 1.02-1.08), PM10 (1.05, 1.01-1.08), and NO2 (1.40, 1.04-1.90) for short-term exposures. There was some heterogeneity across subgroups of income level and geographical areas. CONCLUSION Both long-term and short-term exposures to ambient air pollution may increase the risk of COVID-19 mortality. Future studies utilizing individual-level information on demographics, exposures, outcome ascertainment and confounders are warranted to improve the accuracy of estimates.
Collapse
Affiliation(s)
- Kexin Yu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yuhao Wei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
8
|
Hyman S, Zhang J, Andersen ZJ, Cruickshank S, Møller P, Daras K, Williams R, Topping D, Lim YH. Long-term exposure to air pollution and COVID-19 severity: A cohort study in Greater Manchester, United Kingdom. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121594. [PMID: 37030601 PMCID: PMC10079212 DOI: 10.1016/j.envpol.2023.121594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Exposure to outdoor air pollution may affect incidence and severity of coronavirus disease 2019 (COVID-19). In this retrospective cohort based on patient records from the Greater Manchester Care Records, all first COVID-19 cases diagnosed between March 1, 2020 and May 31, 2022 were followed until COVID-19 related hospitalization or death within 28 days. Long-term exposure was estimated using mean annual concentrations of particulate matter with diameter ≤2.5 μm (PM2.5), ≤10 μm (PM10), nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2) and benzene (C6H6) in 2019 using a validated air pollution model developed by the Department for Environment, Food and Rural Affairs (DEFRA). The association of long-term exposure to air pollution with COVID-19 hospitalization and mortality were estimated using multivariate logistic regression models after adjusting for potential individual, temporal and spatial confounders. Significant positive associations were observed between PM2.5, PM10, NO2, SO2, benzene and COVID-19 hospital admissions with odds ratios (95% Confidence Intervals [CI]) of 1.27 (1.25-1.30), 1.15 (1.13-1.17), 1.12 (1.10-1.14), 1.16 (1.14-1.18), and 1.39 (1.36-1.42), (per interquartile range [IQR]), respectively. Significant positive associations were also observed between PM2.5, PM10, SO2, or benzene and COVID-19 mortality with odds ratios (95% CI) of 1.39 (1.31-1.48), 1.23 (1.17-1.30), 1.18 (1.12-1.24), and 1.62 (1.52-1.72), per IQR, respectively. Individuals who were older, overweight or obese, current smokers, or had underlying comorbidities showed greater associations between all pollutants of interest and hospital admission, compared to the corresponding groups. Long-term exposure to air pollution is associated with developing severe COVID-19 after a positive SARS-CoV-2 infection, resulting in hospitalization or death.
Collapse
Affiliation(s)
- Samuel Hyman
- Department of Earth and Environmental Science, Centre for Atmospheric Science, School of Natural Sciences, The University of Manchester, Manchester, UK; Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
| | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheena Cruickshank
- Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Konstantinos Daras
- Department of Public Health, Policy and Systems, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Richard Williams
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; NIHR Greater Manchester Patient Safety Translational Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; NIHR Applied Research Collaboration Greater Manchester, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Topping
- Department of Earth and Environmental Science, Centre for Atmospheric Science, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ranzani O, Alari A, Olmos S, Milà C, Rico A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte-Salles T, Foraster M, Nieuwenhuijsen M, Sunyer J, Valentín A, Kogevinas M, Lazcano U, Avellaneda-Gómez C, Vivanco R, Tonne C. Long-term exposure to air pollution and severe COVID-19 in Catalonia: a population-based cohort study. Nat Commun 2023; 14:2916. [PMID: 37225741 DOI: 10.1038/s41467-023-38469-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.
Collapse
Affiliation(s)
- Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Chaccour
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universidad de Navarra, Pamplona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Maria Foraster
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antònia Valentín
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Uxue Lazcano
- Instituto Biodonostia, Grupo Atención Primaria, San Sebastian, Spain
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | | | - Rosa Vivanco
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
10
|
Bernhard GH, Madronich S, Lucas RM, Byrne SN, Schikowski T, Neale RE. Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochem Photobiol Sci 2023; 22:991-1009. [PMID: 36995652 PMCID: PMC10062285 DOI: 10.1007/s43630-023-00373-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA.
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S N Byrne
- Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - T Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
11
|
Bernhard GH, Bais AF, Aucamp PJ, Klekociuk AR, Liley JB, McKenzie RL. Stratospheric ozone, UV radiation, and climate interactions. Photochem Photobiol Sci 2023; 22:937-989. [PMID: 37083996 PMCID: PMC10120513 DOI: 10.1007/s43630-023-00371-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/14/2023]
Abstract
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low- and mid-latitudes (0-60°) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50° would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50°, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60°) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are ≤ 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 °C over mid-latitude regions of the continents, and by more than 1.0 °C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA.
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece.
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| |
Collapse
|
12
|
Stafoggia M, Ranzi A, Ancona C, Bauleo L, Bella A, Cattani G, Nobile F, Pezzotti P, Iavarone I. Long-Term Exposure to Ambient Air Pollution and Mortality among Four Million COVID-19 Cases in Italy: The EpiCovAir Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57004. [PMID: 37167483 PMCID: PMC10174641 DOI: 10.1289/ehp11882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND The role of chronic exposure to ambient air pollutants in increasing COVID-19 fatality is still unclear. OBJECTIVES The study aimed to investigate the association between long-term exposure to air pollutants and mortality among 4 million COVID-19 cases in Italy. METHODS We obtained individual records of all COVID-19 cases identified in Italy from February 2020 to June 2021. We assigned 2016-2019 mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10μm (PM10), PM with aerodynamic diameter ≤2.5μm (PM2.5), and nitrogen dioxide (NO2) to each municipality (n=7,800) as estimates of chronic exposures. We applied a principal component analysis (PCA) and a generalized propensity score (GPS) approach to an extensive list of area-level covariates to account for major determinants of the spatial distribution of COVID-19 case-fatality rates. Then, we applied generalized negative binomial models matched on GPS, age, sex, province, and month. As additional analyses, we fit separate models by pandemic periods, age, and sex; we quantified the numbers of COVID-19 deaths attributable to exceedances in annual air pollutant concentrations above predefined thresholds; and we explored associations between air pollution and alternative outcomes of COVID-19 severity, namely hospitalizations or accesses to intensive care units. RESULTS We analyzed 3,995,202 COVID-19 cases, which generated 124,346 deaths. Overall, case-fatality rates increased by 0.7% [95% confidence interval (CI): 0.5%, 0.9%], 0.3% (95% CI: 0.2%, 0.5%), and 0.6% (95% CI: 0.5%, 0.8%) per 1 μg/m3 increment in PM2.5, PM10, and NO2, respectively. Associations were higher among elderly subjects and during the first (February 2020-June 2020) and the third (December 2020-June 2021) pandemic waves. We estimated ∼8% COVID-19 deaths were attributable to pollutant levels above the World Health Organization 2021 air quality guidelines. DISCUSSION We found suggestive evidence of an association between long-term exposure to ambient air pollutants with mortality among 4 million COVID-19 cases in Italy. https://doi.org/10.1289/EHP11882.
Collapse
Affiliation(s)
- Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
| | - Carla Ancona
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Lisa Bauleo
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - Giorgio Cattani
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | | |
Collapse
|
13
|
Kogevinas M, Karachaliou M, Espinosa A, Aguilar R, Castaño-Vinyals G, Garcia-Aymerich J, Carreras A, Cortés B, Pleguezuelos V, Papantoniou K, Rubio R, Jiménez A, Vidal M, Serra P, Parras D, Santamaría P, Izquierdo L, Cirach M, Nieuwenhuijsen M, Dadvand P, Straif K, Moncunill G, de Cid R, Dobaño C, Tonne C. Long-Term Exposure to Air Pollution and COVID-19 Vaccine Antibody Response in a General Population Cohort (COVICAT Study, Catalonia). ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47001. [PMID: 37017430 PMCID: PMC10075082 DOI: 10.1289/ehp11989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Ambient air pollution has been associated with COVID-19 disease severity and antibody response induced by infection. OBJECTIVES We examined the association between long-term exposure to air pollution and vaccine-induced antibody response. METHODS This study was nested in an ongoing population-based cohort, COVICAT, the GCAT-Genomes for Life cohort, in Catalonia, Spain, with multiple follow-ups. We drew blood samples in 2021 from 1,090 participants of 2,404 who provided samples in 2020, and we included 927 participants in this analysis. We measured immunoglobulin M (IgM), IgG, and IgA antibodies against five viral-target antigens, including receptor-binding domain (RBD), spike-protein (S), and segment spike-protein (S2) triggered by vaccines available in Spain. We estimated prepandemic (2018-2019) exposure to fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)], nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) using Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) models. We adjusted estimates for individual- and area-level covariates, time since vaccination, and vaccine doses and type and stratified by infection status. We used generalized additive models to explore the relationship between air pollution and antibodies according to days since vaccination. RESULTS Among vaccinated persons not infected by SARS-CoV-2 (n=632), higher prepandemic air pollution levels were associated with a lower vaccine antibody response for IgM (1 month post vaccination) and IgG. Percentage change in geometric mean IgG levels per interquartile range of PM2.5 (1.7 μg/m3) were -8.1 (95% CI: -15.9, 0.4) for RBD, -9.9 (-16.2, -3.1) for S, and -8.4 (-13.5, -3.0) for S2. We observed a similar pattern for NO2 and BC and an inverse pattern for O3. Differences in IgG levels by air pollution levels persisted with time since vaccination. We did not observe an association of air pollution with vaccine antibody response among participants with prior infection (n=295). DISCUSSION Exposure to air pollution was associated with lower COVID-19 vaccine antibody response. The implications of this association on the risk of breakthrough infections require further investigation. https://doi.org/10.1289/EHP11989.
Collapse
Affiliation(s)
- Manolis Kogevinas
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Ana Espinosa
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ruth Aguilar
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyriaki Papantoniou
- Department of Epidemiology, Center of Public Health, Medical University of Vienna, Vienna, Austria
| | - Rocío Rubio
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Pau Serra
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Parras
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Pere Santamaría
- Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luis Izquierdo
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Marta Cirach
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Gemma Moncunill
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab Group, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Enfermedades Infecciosas, Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Abstract
Certain cells that participate in the immune response are known to become polarized in their production of cytokines. It is postulated that, after initial polarization at the site of antigenic encounter, the different types of cell arriving at this site are induced to conform to the local cytokine field, implying that they share common regulatory circuits. As they migrate, these cells might, in turn, spread the particular cytokine field. Therefore, the field is 'infectious' in nature. Propagation of the cytokine field must be regulated somehow. The invasion of the cytokine field into an organ or the entire body could have major immunological consequences.
Collapse
Affiliation(s)
- P Kourilsky
- Department of Immunology, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | | |
Collapse
|