1
|
Balint R, Boajă IP. Assisted phytoextraction as a nature-based solution for the sustainable remediation of metal(loid)-contaminated soils. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2003-2022. [PMID: 38441364 DOI: 10.1002/ieam.4907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 10/18/2024]
Abstract
Soil contamination is a significant environmental issue that poses a threat to human health and the ecosystems. Conventional remediation techniques, such as excavation and landfilling, are often expensive, disruptive, and unsustainable. As a result, there has been growing interest in developing sustainable remediation strategies that are cost-effective, environmentally friendly, and socially acceptable. One such solution is phytoextraction: a nature-based approach that uses the abilities of hyperaccumulator plants to uptake and accumulate metals and metalloids (potentially toxic elements [PTE]) without signs of toxicity. Once harvested, plant biomass can be treated to reduce its volume and weight by combustion, thus obtaining bioenergy, and the ashes can be used for the recovery of metals or in the construction industry. However, phytoextraction has shown variable effectiveness due to soil conditions and plant species specificity, which has led researchers to develop additional approaches known as assisted phytoextraction to enhance its success. Assisted phytoextraction is a remediation strategy based on modifying certain plant traits or using different materials to increase metal uptake or bioavailability. This review article provides a practical and up-to-date overview of established strategies and the latest scientific advancements in assisted phytoextraction. Our focus is on improving plant performance and optimizing the uptake, tolerance, and accumulation of PTE, as well as the accessibility of these contaminants. While we highlight the advantages of using hyperaccumulator plants for assisted phytoextraction, we also address the challenges and limitations associated with this approach. Factors such as soil pH, nutrient availability, and the presence of other contaminants can affect its efficiency. Furthermore, the real-world challenges of implementing phytoextraction on a large scale are discussed and strategies to modify plant traits for successful phytoremediation are presented. By exploring established strategies and the latest scientific developments in assisted phytoextraction, this review provides valuable guidance for optimizing a sustainable, nature-based technology. Integr Environ Assess Manag 2024;20:2003-2022. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Iustina Popescu Boajă
- Geological Institute of Romania, Bucharest, Romania
- National University of Science and Technlogy Politehnica, Bucharest, Romania
| |
Collapse
|
2
|
Liu X, Cheng C, Min Y, Xie X, Muzahid ANM, Lv H, Tian H, Zhang C, Ye C, Cao S, Chen P, Zhong C, Li D. Increased ascorbic acid synthesis by overexpression of AcGGP3 ameliorates copper toxicity in kiwifruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132393. [PMID: 37660623 DOI: 10.1016/j.jhazmat.2023.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The widespread application of copper (Cu) -based fertilizers and pesticides could increase the accumulation of Cu in kiwifruit. According to a global survey, red- and yellow-fleshed kiwifruit contained more elevated amounts of Cu than green-fleshed kiwifruit due to weaker disease resistance and higher use of Cu pesticides. Intriguingly, our research revealed that external and endogenous ascorbic acid (AsA) reduced the phenotypic and physiological injury of Cu toxicity in kiwifruit. Cu stress assays and transcriptional analysis have shown that Cu treatment for 12 h significantly increased the AsA content in kiwifruit leaves and up-regulated key genes involved in AsA biosynthesis, such as GDP-L-galactose phosphorylase3 (GGP3) and GDP-mannose-3',5'-epimerase (GME). Overexpressing GGP3 in transgenic kiwifruit significantly increased the endogenous AsA content of kiwifruit, which was beneficial in mitigating Cu toxicity by decreasing levels of reactive oxygen species, malondialdehyde, and electrolyte leakage, as well as reducing damage to the chloroplast structure and photosystem II. This study presented a novel strategy to ameliorate plant Cu stress by increasing the endogenous antioxidant (AsA) content through transgenesis.
Collapse
Affiliation(s)
- Xiaoying Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chang Cheng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Min
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Abu Naim Md Muzahid
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haiyan Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hua Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Congxiao Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Can Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Bejing 100871, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Peng Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Dawei Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang Q, Huang S, Jiang R, Zhuang Z, Liu Z, Wang Q, Wan Y, Li H. Phytoremediation strategies for heavy metal-contaminated soil by selecting native plants near mining areas in Inner Mongolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94501-94514. [PMID: 37535284 DOI: 10.1007/s11356-023-29002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
Phytoremediation technology, as an eco-friendly and cost-effective approach, is widely used to restore soil contaminated by heavy metal(loid)s. However, the adaptability and absorption capacity of plants to multiple elements are the crucial factors affecting the application of phytoremediation in mining areas. In this study, dominant native plant species and their paired soils were collected near a lead-zinc mine in Inner Mongolia, to assess the ecological risk of heavy metal(loid)s and phytoremediation potential. The results showed that Cd and As were the dominant soil pollutants, with levels of 90.91% and 100%, respectively, exceeding the risk intervention values for soil contamination of agricultural land. The rates of Pb, Cu, and Zn exceeding the risk screening values were 69.70%, 60.61%, and 96.97%, respectively. Extremely high ecological risk of heavy metal(loid)s was observed in this area. The ability of native plants accumulating heavy metals varied among species. The bioconcentration factor (BCF) varied from 0.14 to 2.59 for Cd, 0.02 to 0.45 for As, 0.06 to 0.76 for Pb, 0.05 to 2.69 for Cr, 0.15 to 1.00 for Cu, and 0.22 to 4.10 for Zn. Chinese Cinquefoil Herb (Potentilla chinensis Ser.) showed the potential to accumulate multiple toxic elements based on the biomass, shoot content, translocation factor (TF), BCF, and metal extraction rate (MER), while, other species showed the potential to accumulate single toxic element: goosefoot (Chenopodium album L.), Lespedeza daurica (Laxm.) Schindl. and peashrubs (Caragana korshinskii Kom.), Herba Artemisiae Scopariae (Artemisia capillaris Thunb.), alfalfa (Medicago sativa L.), and Moldavian Dragonhead (Dracocephalum moldavica L.) for Cd, As, Cr, Cu, and Zn, respectively. Furthermore, wild leek (Allium ramosum L.), cogongrass (Imperata cylindrica (L.) Beauv.), fringed sagebrush (Artemisia frigida Willd.), and field bindweed (Convolvulus arvensis L.) were selected for phytostabilization of specific elements, considering the heavy metal contents in the roots and low TF values. This study provides a reference for selecting appropriate species for the remediation of heavy metal-contaminated soils in certain mining areas.
Collapse
Affiliation(s)
- Qiqi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhong Zhuang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Gao T, Liu Y, Yang D, Liu X, Zuo M, He Y, Wang H, Bao J, Shen Y, Tai X, Xu J, Xu D. Inoculation of Exogenous Complex Bacteria to Enhance Resistance in Alfalfa and Combined Remediation of Heavy Metal-Contaminated Soil. Curr Microbiol 2023; 80:213. [PMID: 37191724 DOI: 10.1007/s00284-023-03299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Heavy metals are considered to be one of the main sources of soil contamination. In this study, three tolerant bacteria were isolated from the heavy metal-contaminated soil in mining area, and immobilized bacteria were constructed using corn straw as the carrier. The combined remediation effect of immobilized bacteria and alfalfa in pot experiments was explored in heavy metal-contaminated soil. Under heavy metal stress, inoculation with immobilized bacteria significantly promoted the growth of alfalfa, in which the dry weights of roots, stems, and leaves increased by 19.8, 6.89, and 14.6%, respectively (P < 0.05). Also, inoculation with immobilized bacteria improved the antioxidant capacity of plants and the activity of soil enzymes and improved soil quality (P < 0.05). Microbial-phytoremediation technology effectively reduced the heavy metal content in the soil, and can restore the soil contaminated by heavy metals. The results will help to further understand the mechanism of microbial inoculation to reduce the toxicity of heavy metals, and provide guidance for the cultivation of forage grasses in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianpeng Gao
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China.
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, 730070, China.
| | - Yuan Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
| | - Deng Yang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaoxiao Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
| | - Mingbo Zuo
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
| | - Yueqing He
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Haoming Wang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jingting Bao
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yuanyuan Shen
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
| | - Xisheng Tai
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, 730070, China
| | - Jing Xu
- School of Biology and Environmental Engineering, Xi'an University, Xi an, 710000, China
| | - Danghui Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Hashem A, Shameem N, Parray JA, Abd‐Allah EF. Mycorrhizal Strategy for the Management of Hazardous Chromium Contaminants. CORE MICROBIOME 2022:298-314. [DOI: 10.1002/9781119830795.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Koçak B. Seasonal variations of some soil nutrients in a natural and an agricultural olive grove in Adana, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:246. [PMID: 35246759 DOI: 10.1007/s10661-022-09903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The bioavailability and cycling of nutrients in soil are two of the most important factors for healthy plant growth and development in natural and agricultural ecosystems. Seasonal variations of some soil macronutrient (phosphorus and potassium) and micronutrient (copper, manganese, and zinc) contents were investigated in a natural olive (Olea europaea L.) grove (NO) and an agricultural olive gene garden (OGG) located in Adana, Turkey. Soils were sampled at 0-10 cm and at 10-20 cm depth in the months of November, February, May, and August between 2013 and 2015. Soil phosphorus, potassium, copper, manganese, and zinc contents were in the range between 0.37 and 8.65 mg kg-1, 181.81 and 1030.67 mg kg-1, 1.41 and 2.74 mg kg-1, 13.88 and 51.06 mg kg-1, and 0.39 and 2.27 mg kg-1, respectively. All soil nutrients significantly decreased as soil depth increased in all sampling times (P < 0.05). In general, significant seasonal effects were observed in all soil nutrients at 0-10 cm depth that was more variable than at 10-20 cm depth. Soil phosphorus negatively and positively correlated with soil potassium in NO and in OGG at 0-10 cm depth, respectively (P < 0.05). Soil zinc was negatively and positively correlated with soil phosphorus in NO and in OGG at 10-20 cm depth, respectively (P < 0.05). In conclusion, soil depth might be a more important factor than seasonality on the vertical distribution of soil nutrients in olive groves. In addition, correlations between soil nutrients in this study should be taken into consideration for the optimum management of agricultural practices in biological olive groves.
Collapse
Affiliation(s)
- Burak Koçak
- Department of Biology, Faculty of Arts and Sciences, Cukurova University, Adana, 01330, Turkey.
| |
Collapse
|
7
|
Emmeline D, Alexandra L, Hervé C, Pierre G, Jean-Yves C, Thierry L. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152113. [PMID: 34875330 DOI: 10.1016/j.scitotenv.2021.152113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation-assisted phytoextraction was used to reduce the Cu load in vineyard soils. While performance is usually the endpoint of such studies, here we identified some mechanisms underlying Cu soil to plant transfer, particularly the role of siderophores in the extraction of Cu from the soil-bearing phases and its phytoavailability. Carbonated vs. non‑carbonated vineyard soils were cultivated with sunflower in rhizoboxes bioaugmented with Pseudomonas putida. gfp-Tagged P. putida was monitored in the soil and pyoverdine (Pvd), Cu, Fe, Mn, and Zn were measured in the soil solution. Trace elements (TE) were analysed in the roots and shoots. Plant growth and nutritional status were also measured. With bioaugmentation, the concentration of total Cu (vs. Cu2+) in the soil solution increased (decreased) by a factor of 1.6 to 2.6 (7 to 13) depending on the soil. The almost 1:1 relationship between the excess of Fe + Cu mobilized from the solid phase and the amount of Pvd in the soil solution in bioaugmented treatments suggests that Pvd mobilized Fe and Cu mainly by ligand-controlled dissolution via a 1:1 metal-Pvd complex. Bioaugmentation increased the Cu concentration by 17% in the shoots and by 93% in the roots, and by 30% to 60% the sunflower shoot biomass leading to an increase in the amount of Cu phytoextracted by up to 87%. The amount of Fe, Mn, Zn, and P also increased in the roots and shoots. Contrary to what was expected, carbonated soil did not increase the mobilization of TE. Our results showed that bioaugmentation increased phytoextraction, and its performance can be further improved by promoting the dissociation of Pvd-Cu complex in the solution at the soil-root interface.
Collapse
Affiliation(s)
- D'Incau Emmeline
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Lépinay Alexandra
- OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Capiaux Hervé
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Gaudin Pierre
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France
| | - Cornu Jean-Yves
- ISPA, Bordeaux Sciences Agro, INRA, 33140 Villenave d'Ornon, France
| | - Lebeau Thierry
- LPG, UMR 6112 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France; OSUNA, UMS 3281 CNRS-Université de Nantes, BP 92208, 44322 Nantes cedex 3, France.
| |
Collapse
|
8
|
Lin Y, Zhang Y, Liang X, Duan R, Yang L, Du Y, Wu L, Huang J, Xiang G, Bai J, Zhen Y. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (
Boehmeria nivea
) and a non‐accumulator (
Artemisia annua
) in an antimony mine. J Appl Microbiol 2022; 132:3432-3443. [DOI: 10.1111/jam.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuxiang Lin
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yaqi Zhang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Xin Liang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Renyan Duan
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Li Yang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yihuan Du
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province Anqing Normal University Anqing Anhui China
| | - Jiacheng Huang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Guohong Xiang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Jing Bai
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yu Zhen
- College of Agriculture and Biotechnology Loudi Hunan China
| |
Collapse
|
9
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
10
|
Xiao C, Guo S, Wang Q, Chi R. Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116572. [PMID: 33529904 DOI: 10.1016/j.envpol.2021.116572] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Due to ecologically unsustainable mining strategies, there remain large areas of phosphate mining wasteland contaminated with accumulated lead (Pb). In this study, a Pb-resistant phosphate-solubilizing strain of Pseudomonas sp., LA, isolated from phosphate mining wasteland, was coupled with two species of native plants, ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.), for use in enhancing the reduction of bioavailable Pb in soil from a phosphate mining wasteland. The effect of PbCO3 solubilization by Pseudomonas sp. strain LA was evaluated in solution culture. It was found that strain LA could attain the best solubilization effect on insoluble Pb when the PbCO3 concentration was 1% (w/v). Pot experiments were carried out to investigate the potential of remediation by ryegrass and sonchus in phosphate mining wastelands with phosphate rock application and phosphate-solubilizing bacteria inoculation. Compared to the control group without strain LA inoculation, the biomass and length of ryegrass and sonchus were markedly increased, available P and Pb in roots increased by 22.2%-325% and 23.3%-368%, respectively, and available P and Pb in above-ground parts increased by 4.44%-388% and 1.67%-303%, respectively, whereas available Pb in soil decreased by 14.1%-27.3%. These results suggest that the combination of strain LA and plants is a bioremediation strategy with considerable potential and could help solve the Pb-contamination problem in phosphate mining wastelands.
Collapse
Affiliation(s)
- Chunqiao Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Shuyu Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Qi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| |
Collapse
|
11
|
Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
12
|
Cui H, Li H, Zhang S, Yi Q, Zhou J, Fang G, Zhou J. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. CHEMOSPHERE 2020; 242:125252. [PMID: 31896206 DOI: 10.1016/j.chemosphere.2019.125252] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Phytostabilization aided by soil amendments has been advocated in areas contaminated by trace metals. In this study, the effects of indigenous weed (Setaria pumila), energy plant (Pennisetum sinese), cadmium (Cd)-hyperaccumulator (Sedum plumbizincicola), and copper (Cu)-tolerant plant (Elsholtzia splendens) on the bioavailability and mobility of Cu and Cd in polluted soil were evaluated after phytostabilization aided by limestone (0.1% wt) over four years. The four plants combined with limestone significantly increased soil pH and decreased Cu and Cd fractions extracted by NH4OAc and diffusive gradients in thin films (DGT) than the untreated soils, respectively. P. sinese treatments decreased DGT-extractable Cu and Cd by 52.1% and 40.5% than S. pumila treatments, respectively. S. plumbizincicola and E. splendens treatments increased acid-soluble fraction of Cu and decreased residual fraction of Cu compared with S. pumila treatments. P. sinese treatments had the lowest phytotoxicity (inhibitoryrates, superoxide dismutase, peroxidase and catalase activities) among all treatments. Moreover, EDTA kinetic extraction showed that S. plumbizincicola and E. splendens treatments increased the mobility of Cu and Cd by increasing labile and less labile fractions of Cu and Cd compared with P. sinese treatments. Present results suggest that P. sinese is recommended as the remediation plant for phytoremediation aided by amendments.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Huiting Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Shiwen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Qitao Yi
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China.
| |
Collapse
|
13
|
Geochemical Characteristics of Soils on Ellis Island, New York-New Jersey, Sixty Years after the Abandonment of the Hospital Complex. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. THE NEW PHYTOLOGIST 2017; 213:537-551. [PMID: 27625303 DOI: 10.1111/nph.14175] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 05/27/2023]
Abstract
This review synthesizes contemporary understanding of copper-cobalt (Cu-Co) tolerance and accumulation in plants. Accumulation of foliar Cu and Co to > 300 μg g-1 is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to comply with the fundamental principle of hyperaccumulation, as foliar Cu-Co accumulation is strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when plants are exposed to high soil Cu with a low root to shoot translocation factor. Most Cu-tolerant plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu Baker. Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value.
Collapse
Affiliation(s)
- Bastien Lange
- Hydrogeochemistry and Soil-Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France
- Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld, 4072, Australia
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine - INRA, Vandoeuvre-les-Nancy, 54518, France
| | - Alan John Martin Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld, 4072, Australia
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine - INRA, Vandoeuvre-les-Nancy, 54518, France
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Guillaume Echevarria
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine - INRA, Vandoeuvre-les-Nancy, 54518, France
| | - Grégory Mahy
- Department of Forest, Nature and Landscape, Biodiversity and Landscape Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - François Malaisse
- Department of Forest, Nature and Landscape, Biodiversity and Landscape Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Pierre Meerts
- Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Olivier Pourret
- Hydrogeochemistry and Soil-Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Michel-Pierre Faucon
- Hydrogeochemistry and Soil-Environment Interactions (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais, Beauvais, 60026, France
| |
Collapse
|
15
|
Brunetto G, Bastos de Melo GW, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. CHEMOSPHERE 2016; 162:293-307. [PMID: 27513550 DOI: 10.1016/j.chemosphere.2016.07.104] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 05/23/2023]
Abstract
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms.
Collapse
Affiliation(s)
- Gustavo Brunetto
- Departament of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - George Wellington Bastos de Melo
- National Research Center of Grape and Wine (Centro Nacional de Pesquisa de Uva e Vinho - CNPUV), Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária - Embrapa), Bento Gonçalves, Rio Grande do Sul, CEP: 95700-000, Brazil
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126, Bari, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), Università della Tuscia, Viterbo, I-01100, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, I-33100, Udine, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
16
|
Exploring the Influence of Environmental Factors on Bacterial Communities within the Rhizosphere of the Cu-tolerant plant, Elsholtzia splendens. Sci Rep 2016; 6:36302. [PMID: 27782202 PMCID: PMC5080579 DOI: 10.1038/srep36302] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
Bacterial communities of rhizospheric soils play an important role in the tolerance and uptake of metal-tolerant/hyperaccumulating plants to metals, e.g. the Cu-tolerant Elsholtzia splendens native to China. In this work, pyrosequencing of the bacterial 16S rRNA gene was firstly applied to investigate the rhizospheric bacterial community of E. splendens grown at Cu contaminated sites. The 47 phyla including 11 dominant phyla (>1%) in E. splendens rhizosphere were presented. The effects of Cu and other environmental factors (total organic carbon, total nitrogen and pH) on the rhizospheric bacterial community were studied comprehensively. The phyla abundances were affected by the environmental factors to different extent, and we found pH, instead of Cu concentration, influenced UniFrac distance significantly and was identified as the most important environmental factor affecting bacterial community. In addition, the influence of environmental factors on gene profiles was explored according to the predicted metagenomes obtained by PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states). Our study illustrates a view about Cu-tolerant E. splendens rhizospheric bacterial communities (composition, diversity and gene profiles) and their influencing factors, giving a hand for the understanding on bacterial community is formed and affected in rhizosphere.
Collapse
|
17
|
Kamran MA, Eqani SAMAS, Bibi S, Xu RK, Monis MFH, Katsoyiannis A, Bokhari H, Chaudhary HJ. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:256-263. [PMID: 26773835 DOI: 10.1016/j.ecoenv.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa.
Collapse
Affiliation(s)
- Muhammad Aqeel Kamran
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | - Sadia Bibi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | | | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research, FRAM - High North Research, Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
18
|
Lange B, Pourret O, Meerts P, Jitaru P, Cancès B, Grison C, Faucon MP. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. CHEMOSPHERE 2016; 146:75-84. [PMID: 26706934 DOI: 10.1016/j.chemosphere.2015.11.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The influence of Fe oxides, Mn oxides and organic matter (OM) on the Cu and Co mobility in soil and accumulation in the metallophyte Anisopappus chinensis (Ac), as compared with Helianthus annuus (Ha), was experimentally investigated. Growth and accumulation response when increasing the exchangeable Cu and Co concentrations in soil were also investigated. Plants were cultivated on soil where concentrations of Cu, Co, Fe oxides, Mn oxides and OM content were varied according to 36 treatments. The OM supply decreased the Cu mobility and increased the Co mobility, resulting in decreasing the foliar Cu of Ac and increasing the foliar Co of Ha. The Fe oxides supply could increase the Cu accumulation for Ac, but was not verified for Ha. Compared with Ha, Ac increasingly accumulated Cu and Co without negative effect on plant growth while increasing Cu and Co mobility to phytotoxic concentrations. The results revealed promising perspectives for the use of Ac in Cu-contaminated environment phytoremediation applications.
Collapse
Affiliation(s)
- Bastien Lange
- Hydrogéochimie et Interactions Sol-Environnement (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France; Laboratoire d'Ecologie végétale et Biogéochimie, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1150 Brussels, Belgium.
| | - Olivier Pourret
- Hydrogéochimie et Interactions Sol-Environnement (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France
| | - Pierre Meerts
- Laboratoire d'Ecologie végétale et Biogéochimie, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1150 Brussels, Belgium
| | - Petru Jitaru
- Hydrogéochimie et Interactions Sol-Environnement (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France
| | - Benjamin Cancès
- Groupe d'Étude sur les Géomatériaux et les Environnements Naturels Anthropiques et Archéologiques (GEGENAA), EA 3795, Université de Reims Champagne-Ardenne, 2 esplanade Rolland Garros, FR-51100 Reims, France
| | - Claude Grison
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 CNRS, 1919 route de Mende, FR-34293 Montpellier, France
| | - Michel-Pierre Faucon
- Hydrogéochimie et Interactions Sol-Environnement (HydrISE), UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France
| |
Collapse
|
19
|
Fang Q, Fan Z, Xie Y, Wang X, Li K, Liu Y. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. FRONTIERS IN PLANT SCIENCE 2016; 7:1487. [PMID: 27746807 PMCID: PMC5043060 DOI: 10.3389/fpls.2016.01487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 05/11/2023]
Abstract
The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings) to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg⋅L-1 Cu as well as 300 mg⋅L-1 Zn, and could simultaneously grow on Dworkin-Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production, and insoluble phosphate solubilization) were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1) promote the growth of rape seedlings (significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%, and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg⋅L-1 Cu and 800 mg⋅L-1 Zn; (3) mobilize the highest concentrations of water-soluble Cu, Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg⋅L-1, respectively); and (4) adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg⋅g-1 dry cell, respectively). Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction. Moreover, the present study provides a comprehensive method for the screening of rhizobacteria for phytoremediation of multi-metal-polluted soils, especially those sewage sludge-amended soils contaminated with Cu/Zn.
Collapse
|
20
|
Sun L, Wang X, Li Y. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:494-501. [PMID: 26587767 DOI: 10.1080/15226514.2015.1115962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.
Collapse
Affiliation(s)
- Leni Sun
- a School of Life Science, Anhui Agricultural University , Hefei , Anhui , People's Republic of China
| | - Xiaohan Wang
- b College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , People's Republic of China
| | - Ya Li
- b College of Life Science, Nanjing Agricultural University , Nanjing , Jiangsu , People's Republic of China
| |
Collapse
|
21
|
Braud AM, Hubert M, Gaudin P, Lebeau T. A quick rhizobacterial selection tests for the remediation of copper contaminated soils. J Appl Microbiol 2015; 119:435-45. [PMID: 26042640 DOI: 10.1111/jam.12865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 12/01/2022]
Abstract
AIMS The main objective of the study is to develop and improve quick bacterial tests to select the best candidates for the bioaugmentation of metal-contaminated soil, coupled with phytoextraction. METHODS AND RESULTS Bacteria isolates (181) were selected from a collection originated from a Cu-contaminated sediment, on the basis of several miniaturized biochemical tests adapted to the copper contamination. Amongst them, we used a growth soil based-medium to select metal-tolerant bacteria, and their ability to grow and mobilize metals by mean of metabolites (siderophores, organic acids) was also assessed. CONCLUSION The result of the bacterial selection tests showed differences in presence or absence of copper, especially for phosphate-solubilizing strains which ability decreased by 53% in the presence of copper hydroxide phosphate as compared to the standard tricalcium phosphate test. A promising Pseudomonas putida was selected from the collection. SIGNIFICANCE AND IMPACT OF THE STUDY The study underlined the importance of choosing significant selection tests regarding the nature of the metal occurring in the soil to be cleaned-up to assess the real potential of each bacterial strain for subsequent soil bioaugmentation purposes.
Collapse
Affiliation(s)
- A M Braud
- IRSTV, LPGN UMR CNRS 6112, Nantes, France
| | - M Hubert
- IRSTV, LPGN UMR CNRS 6112, Nantes, France
| | - P Gaudin
- IRSTV, LPGN UMR CNRS 6112, Nantes, France
| | - T Lebeau
- IRSTV, LPGN UMR CNRS 6112, Nantes, France
| |
Collapse
|
22
|
Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5370-5382. [PMID: 25561255 DOI: 10.1007/s11356-014-4006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.
Collapse
Affiliation(s)
- Aliaksandr Kolbas
- UMR BIOGECO INRA 1202, Ecology of Communities, University of Bordeaux, Bât B2, allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France,
| | | | | | | | | | | |
Collapse
|
23
|
Xu C, Chen X, Duan D, Peng C, Le T, Shi J. Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5070-5081. [PMID: 25510610 DOI: 10.1007/s11356-014-3931-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
A hydroponics trial was employed to study the effects of Pseudomonas putida CZ1 (CZ1), a heavy-metal-resistant bacterial strain isolated from the rhizosphere of Elsholtzia splendens (E. splendens), on the uptake and translocation of copper (Cu) in E. splendens. Significant promotion of plant growth coupled with the obvious plant-growth-promoting (PGP) characters of the bacteria suggested that CZ1 would be a plant-growth-promoting rhizobacterium (PGPR) to E. splendens under Cu stress condition. The results of inductively coupled plasma optical emission spectrometry (ICP-OES) showed that CZ1 increased the concentration of Cu in the shoots (up to 211.6% compared to non-inoculation treatment) and translocation factor (TF) (from 0.56 to 1.83%) of those exposed to Cu. The distribution of Cu in root cross section measured by synchrotron-based X-ray fluorescence microscopy (SRXRF) indicated that CZ1 promoted the transport of Cu from cortex to xylem in roots, which contributed to the accumulation of Cu in shoots. Furthermore, CZ1 improved the uptake of nutrient elements by plants to oppose to the toxicity of Cu. In summary, P. putida CZ1 acted as a PGPR in resistance to Cu and promoted the accumulation and translocation of Cu from root to shoot by element redistribution in plant root; hence, CZ1 is a promising assistance to phytoremediation.
Collapse
Affiliation(s)
- Chen Xu
- Department of Environmental Engineering, Zijingang Campus, Zhejiang University, Nongshenghuan Building B319, Yuhangtang Road No. 388, Hangzhou, Zhejiang, 310058, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
24
|
Huguenot D, Bois P, Cornu JY, Jezequel K, Lollier M, Lebeau T. Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: effect of bioaugmentation and phytoextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:721-732. [PMID: 25106519 DOI: 10.1007/s11356-014-3406-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
The use of plants and microorganisms to mitigate sediment contaminated by copper was studied in microcosms that mimic the functioning of a stormwater basin (SWB) connected to vineyard watershed. The impact of phytoremediation and bioaugmentation with siderophore-producing bacteria on the fate of Cu was studied in two contrasted (batch vs. semi-continuous) hydraulic regimes. The fate of copper was characterised following its discharge at the outlet of the microcosms, its pore water concentration in the sediment, the assessment of its bioaccessible fraction in the rhizosphere and the measurement of its content in plant tissues. Physico-chemical (pH, redox potential) and biological parameters (total heterotrophic bacteria) were also monitored. As expected, the results showed a clear impact of the hydraulic regime on the redox potential and thus on the pore water concentration of Cu. Copper in pore water was also dependent on the frequency of Cu-polluted water discharges. Repeated bioaugmentation increased the total heterotrophic microflora as well as the Cu bioaccessibility in the rhizosphere and increased the amount of Cu extracted by Phragmites australis by a factor of ~2. Sugar beet pulp, used as a filter to avoid copper flushing, retained 20% of outcoming Cu and led to an overall retention of Cu higher than 94% when arranged at the outlet of microcosms. Bioaugmentation clearly improved the phytoextraction rate of Cu in a small-scaled SWB designed to mimic the functioning of a full-size SWB connected to vineyard watershed. Highlights: Cu phytoextraction in constructed wetlands much depends on the hydraulic regime and on the frequency of Cu-polluted water discharges. Cu phytoextraction increases with time and plant density. Cu bioaccessibility can be increased by bioaugmentation with siderophore-producing bacteria.
Collapse
Affiliation(s)
- D Huguenot
- Equipe Dépollution Biologique des Sols, Université de Haute Alsace, EA 3991 LVBE (Laboratoire Vigne Biotechnologies et Environnement), 33 rue de Herrlisheim, BP 50568 68008, Colmar, France,
| | | | | | | | | | | |
Collapse
|
25
|
Arunakumara KKIU, Walpola BC, Song JS, Shin MJ, Lee CJ, Yoon MH. Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium. ACTA ACUST UNITED AC 2014. [DOI: 10.5338/kjea.2014.33.3.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. CHEMOSPHERE 2014; 103:99-104. [PMID: 24314897 DOI: 10.1016/j.chemosphere.2013.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 05/13/2023]
Abstract
Microbe-assisted phytoextraction shows a potential for the remediation of metal-contaminated soils. The aim of this study was to isolate, characterize, and evaluate the potential of endophytic bacteria in improving plant growth and metal uptake by Cd-hyperaccumulators-Amaranthus hypochondriacus and Amaranthus mangostanus. An endophytic bacterial strain JN27 isolated from roots of Zea mays displayed high tolerance and mobilization to Cd, and was identified as Rahnella sp. based on 16S rDNA sequencing. The strain also exhibited multiple plant growth beneficial features including the production of indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic acid deaminase and solubilization of insoluble phosphate. Subsequently, a pot trial was performed to elucidate the effects of inoculation with JN27 on plant growth and Cd uptake by A. hypochondriacus, A. mangostanus, Solanum nigrum and Z. mays grown in soils with different levels of Cd (25, 50, 100 mg Cd kg(-1)). The results revealed that inoculation with JN27 significantly increased the biomasses of all the tested plants and the Cd concentrations of all the tested plants except Z. mays in both above-ground and root tissues. Moreover, strain JN27 could successfully re-colonized in rhizosphere soils of all the tested plants and root interior of A. hypochondriacus and Z. mays. The present results indicated that the symbiont of A. hypochondriacus (or A. mangostanus) and strain JN27 can effectively improve the Cd uptake by plants and would be a new strategy in microbe-assisted phytoextraction for metal-contaminated soils.
Collapse
Affiliation(s)
- Ming Yuan
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Huaidong He
- State Key Laboratory for Bio-control and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Li Xiao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ting Zhong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Hui Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shubin Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Peiyan Deng
- College of Chemistry and Environment, South China Normal University, Guangzhou 510631, PR China
| | - Zhihong Ye
- State Key Laboratory for Bio-control and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuanxiao Jing
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
27
|
Rhizosphere Effect on Nutrient Availability in Soil and Its Uptake by Plants: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40011-013-0297-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:321-33. [PMID: 24912234 DOI: 10.1080/15226514.2013.773283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg(-1)), Pb (200 mg kg(-1)) or Zn (200 mg kg(-1)). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.
Collapse
|
29
|
Wang H, Xu R, You L, Zhong G. Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 94:1-7. [PMID: 23725675 DOI: 10.1016/j.ecoenv.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 06/02/2023]
Abstract
The effects of Cu-tolerant bacteria strain USTB-O on Cu accumulation, plant growth and reduction of Cu toxicity in wheat seedlings Triticum aestivum L. were investigated. The strain was identified as belonging to Bacillus species and showed a specific tolerance to Cu through binding the Cu ions to the cell walls to reduce their entry into the cells. The bacteria not only increased Cu accumulation in wheat seedlings, but also secreted indole-3-acetic acid (IAA) and therefore promoted plant growth. Moreover, the bacteria effectively improved the antioxidant defence system to alleviate the oxidative damage induced by Cu. The bacteria promoted superoxide dismutase (SOD) in both shoots and roots to reduce superoxide radicals. The bacteria stimulated all enzymes activities under Cu exposure conditions, peroxidase (POD) and catalase (CAT) in shoots and ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) in roots were major enzymes to eliminate H2O2 in wheat seedlings.
Collapse
Affiliation(s)
- Haiou Wang
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | |
Collapse
|
30
|
Andreazza R, Okeke BC, Pieniz S, Bento FM, Camargo FAO. Biosorption and bioreduction of copper from different copper compounds in aqueous solution. Biol Trace Elem Res 2013; 152:411-6. [PMID: 23417495 DOI: 10.1007/s12011-013-9625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
High copper concentration is toxic for living organisms including humans. Biosorption is a bioremediation technique that can remove copper and other pollutants from aqueous medium and soils, consequently cleaning the environment. The aim of this study was, therefore, to investigate the influence of different copper compounds (Cu(II) as CuCl2; Cu(II) as CuSO4; and Cu(I) as CuCl) on copper bioreduction and biosorption using four copper-resistant bacteria isolated from the rhizosphere of two plants (Avena sativa and Plantago lanceolata) in aqueous matrix. Copper resistance profile, bioreduction, and biosorption after 48 h of incubation were evaluated. The isolates displayed high copper resistance. However, isolate A1 did not grow very well in the CuCl2 and isolate T5 was less resistant to copper in aqueous solutions amended with CuCl (Cu(I)). The best copper source for copper bioreduction and biosorption was CuSO4 and the isolates removed as much as ten times more copper than in aqueous solutions amended with the other copper compounds. Moreover, Cu(I) did not succumb to biosorption, although the microbes were resistant to aqueous solutions of CuCl. In summary, Cu(II) from CuSO4 was furthermost susceptible to bioreduction and biosorption for all isolates. This is an indication that copper contamination of the environment from the use of CuSO4 as an agrochemical is amenable to bioremediation.
Collapse
Affiliation(s)
- Robson Andreazza
- Center of Engineering, Federal University of Pelotas, 1734 Almirante Barroso, 96010-208, Pelotas, RS, Brazil.
| | | | | | | | | |
Collapse
|
31
|
Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 103:58-64. [PMID: 22459071 DOI: 10.1016/j.jenvman.2012.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Three metal-resistant and plant growth-promoting bacteria (Burkholderia sp. GL12, Bacillus megaterium JL35 and Sphingomonas sp. YM22) were evaluated for their potential to solubilize Cu(2) (OH)(2)CO(3) in solution culture and their plant growth promotion and Cu uptake in maize (Zea mays, an energy crop) grown in a natural highly Cu-contaminated soil. The impacts of the bacteria on the Cu availability and the bacterial community in rhizosphere soils of maize were also investigated. Inductively coupled-plasma optical emission spectrometer analysis showed variable amounts of water-soluble Cu (ranging from 20.5 to 227 mgL(-1)) released by the bacteria from Cu(2) (OH)(2)CO(3) in solution culture. Inoculation with the bacteria was found to significantly increase root (ranging from 48% to 83%) and above-ground tissue (ranging from 33% to 56%) dry weights of maize compared to the uninoculated controls. Increases in Cu contents of roots and above-ground tissues varied from 69% to 107% and from 16% to 86% in the bacterial-inoculated plants compared to the uninoculated controls, respectively. Inoculation with the bacteria was also found to significantly increase the water-extractive Cu concentrations (ranging from 63 to 94%) in the rhizosphere soils of the maize plants compared to the uninoculated controls in pot experiments. Denaturing gradient gel electrophoresis and sequence analyses showed that the bacteria could colonize the rhizosphere soils and significantly change the bacterial community compositions in the rhizosphere soils. These results suggest that the metal-resistant and plant growth-promoting bacteria may be exploited for promoting the maize (energy crop) biomass production and Cu phytoremediation in a natural highly Cu-contaminated soil.
Collapse
Affiliation(s)
- Xiafang Sheng
- Key Laboratory of Agricultural Environment Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
32
|
Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 2012; 30:1562-74. [PMID: 22580219 DOI: 10.1016/j.biotechadv.2012.04.011] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 02/08/2023]
Abstract
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.
Collapse
Affiliation(s)
- M Rajkumar
- National Environmental Engineering Research Institute (NEERI), CSIR Complex, Taramani, Chennai 600113, India.
| | | | | | | |
Collapse
|
33
|
Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs DD, Lambais MR, Camargo FAO. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Biol Trace Elem Res 2011; 143:1729-39. [PMID: 21286847 DOI: 10.1007/s12011-011-8979-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/17/2011] [Indexed: 11/25/2022]
Abstract
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.
Collapse
Affiliation(s)
- Robson Andreazza
- Department of Soil Science, Federal University of Rio Grande do Sul, 7712 Bento Gonçalves Ave., Porto Alegre, RS, 91541-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Turmel MC, Courchesne F, Cloutier-Hurteau B. Microbial activity and water-soluble trace element species in the rhizosphere of spring wheat (Triticum aestivum cv. USU-Perigee). JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2011; 13:1059-1072. [PMID: 21359293 DOI: 10.1039/c0em00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The influence of microbial activity on the concentration and speciation of trace elements (TEs) was assessed in a study on the bioavailability of TEs for edible plants. A growth chamber experiment with spring wheat (Triticum aestivum cv. USU-Perigee) was conducted and the bulk (Bk) and the rhizosphere (Rz) soil components were collected at maturity. A characterization of the microbial activity and population was made by measuring the microbial biomass, enzymes (acid phosphatase, arylsulfatase, dehydrogenase and urease) and 16S rDNA DGGE profiles. In soil water extracts, major solutes (H(+), Ca, Mg, Na, NH(4), K, Cl, NO(3), SO(4), total N, DON and DOC) and trace elements (Al, As, Cd, Ce, Cr, Cu, Fe, Pb, Tl, and Zn) including monomeric Al species, free Cu(2+) and labile Zn were determined. The partition of the variation indicated that 12.1% of the distribution of TEs in the Bk soil was significantly and exclusively explained by chemical properties while this value was less than 0.1% for the Rz soil. To the contrary, microbial properties contributed significantly to 12.3% of the distribution of TEs in the Rz soil whereas it explained less than 0.1% for the Bk soil. Detailed redundancy analyses identified several potential mechanisms (e.g. weathering of primary mineral, solubilisation of sesquioxides, bacterial effect on the redox status) explaining the fate of TEs in the Bk and Rz soils. This study revealed that microbial activity is strongly associated to the speciation of trace elements in the Rz of edible plants and points to some microbial processes influencing TE speciation.
Collapse
Affiliation(s)
- Marie-Claude Turmel
- Département de géographie, Université de Montréal, PO Box 6128, Succ. Centre-Ville, Montréal, QC, Canada.
| | | | | |
Collapse
|
35
|
Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, Zhang R. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:717-24. [PMID: 20956060 DOI: 10.1016/j.jhazmat.2010.09.078] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 05/08/2023]
Abstract
To better understand the characteristics of fungal endophytes in the development of effective phytoremediation of heavy metals, the objectives of this study were to isolate a fungal endophyte tolerant Cd and Pb from rape roots grown in a heavy metal-contaminated soil, to characterize the metal-resistant fungal endophyte, and to assess its potential applications in removal of Cd and Pb from contaminated solutions and experimental soil. The isolate CBRF59 was identified as Mucor sp. based on morphological characteristics and phylogenetic analysis. From a Cd solution of 2.0mM, the maximum biosorption capacity of Cd by dead biomass of Mucor sp. CBRF59 was 108 mg g(-1). Under the same conditions, the bioaccumulation capacity of Cd by active biomass of the strain was 173 mg g(-1). The bioaccumulation capacity of Pb by active biomass of the strain was significantly lower than that by dead biomass in the initial Pb concentrations from 1.0 to 2.0mM. The ratio of Pb to Cd and initial pH values in the mixed Cd+Pb solutions affected the bioaccumulation and biosorption capacities of the metals by CBRF59. The addition of the active mycelia of CBRF59 significantly increased the availability of soil Pb and Cd by 77% and 11.5-fold, respectively. The results showed that the endophytic fungus was potentially applicable for the decontamination of metal-polluted media.
Collapse
Affiliation(s)
- Zujun Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Kumari B, Singh SN. Phytoremediation of metals from fly ash through bacterial augmentation. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:166-176. [PMID: 21080221 DOI: 10.1007/s10646-010-0568-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
Different combinations of four bacterial strains isolated from fly ash were used by us to study their impact on phytoextraction of metals from fly ash by Brassica juncea grown in fly ash amended with farm yard manure (50:50 w/w). Out of 11 bacterial consortia, a combination of two strains i.e. Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C7) inoculated in the rhizosphere was found to enhance Pb accumulation maximally by 278%, Mn by 75%, Zn by 163%, Cr by 226% and Ni by 414% compared to control. It is possible that these bacteria, known for N(2) fixation, solubilization of phosphorus and uptake of micronutrient, could promote the plant growth resulting in higher accumulation of metals. However, a combination of four bacteria, namely Micrococcus roseus NBRFT2 + Bacillus endophyticus NBRFT4 + Paenibacillus macerans NBRFT5 + Bacillus pumilus NBRFT9 (C4) was able to increase Cd uptake maximally by 237%. Further, the translocation of metal was invariably more from root to stem than from stem to leaf which was regulated by plant transport mechanism and metal mobility. Bacteria are known to excrete protons, organic acids, enzymes and siderophores to enhance the mobilization of metals which boosted the phytoextraction of metals from fly ash.
Collapse
Affiliation(s)
- Babita Kumari
- Environmental Science Division, National Botanical Research Institute, Lucknow, 226001, India
| | | |
Collapse
|
37
|
Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, Camargo FADO. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. CHEMOSPHERE 2010; 81:1149-1154. [PMID: 20937516 DOI: 10.1016/j.chemosphere.2010.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg⁻¹ dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg⁻¹ of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg⁻¹ of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha⁻¹ of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas.
Collapse
Affiliation(s)
- Robson Andreazza
- Department of Soil, Federal University of Rio Grande do Sul, Laboratory of Soil Microbiology, Bento Gonçalves 7712, Agronomia, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Rajkumar M, Vara Prasad MN, Freitas H, Ae N. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 2009; 29:120-30. [PMID: 19514893 DOI: 10.1080/07388550902913772] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Serpentine or ultramafic soils are produced by weathering and pedogenesis of ultramafic rocks that are characterized by high levels of Ni, Cr, and sometimes Co, but contain low levels of essential nutrients such as N, P, K, and Ca. A number of plant species endemic to serpentine soils are capable of accumulating exceptionally high concentrations of Ni, Zn, and Co. These plants are known as metal "hyperaccumulators." The function of hyperaccumulation depends not only on the plant, but also on the interaction of the plant roots with rhizosphere microbes and the concentrations of bioavailable metals in the soil. The rhizosphere provides a complex and dynamic microenvironment where microorganisms, in association with roots, form unique communities that have considerable potential for the detoxification of hazardous materials. The rhizosphere bacteria play a significant role on plant growth in serpentine soils by various mechanisms, namely, fixation of atmospheric nitrogen, utilization of 1-aminocyclopropane-1-carboxylic acid (ACC) as the sole N source, production of siderophores, or production of plant growth regulators (hormones). Further, many microorganisms in serpentine soil are able to solubilize "unavailable" forms of heavy metal-bearing minerals by excreting organic acids. In addition, the metal-resistant serpentine isolates increase the efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass of hyperaccumulators. Hence, isolation of the indigenous and stress-adapted beneficial bacteria serve as a potential biotechnological tool for inoculation of plants for the successful restoration of metal-contaminated ecosystems. In this study, we highlight the diversity and beneficial features of serpentine bacteria and discuss their potential in phytoremediation of serpentine and anthropogenically metal-contaminated soils.
Collapse
Affiliation(s)
- Mani Rajkumar
- Centre for Functional Ecology, Department of Botany, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
39
|
He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1343-1348. [PMID: 19368973 DOI: 10.1016/j.ecoenv.2009.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 01/02/2009] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils.
Collapse
Affiliation(s)
- Lin-Yan He
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 2009; 20:248-54. [DOI: 10.1016/j.copbio.2009.02.012] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
|
41
|
Sheng X, He L, Wang Q, Ye H, Jiang C. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. JOURNAL OF HAZARDOUS MATERIALS 2008; 155:17-22. [PMID: 18082946 DOI: 10.1016/j.jhazmat.2007.10.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/27/2007] [Accepted: 10/31/2007] [Indexed: 05/11/2023]
Abstract
A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50mgkg(-1)). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p<0.05). In the Cd-added soil, above-ground biomass and root dry weights of tomatoes were increased by 24 and 59%, respectively, in live bacterial inoculation compared to dead bacterial inoculation control. There were no obvious differences in the above-ground tissue and root dry weight of maize and sudangrass between live bacterial inoculation and dead bacterial inoculation. In the soil treated with 50 mg Cdkg(-1), increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation.
Collapse
Affiliation(s)
- Xiafang Sheng
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | |
Collapse
|
42
|
Lebeau T, Braud A, Jézéquel K. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 153:497-522. [PMID: 17981382 DOI: 10.1016/j.envpol.2007.09.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/17/2007] [Accepted: 09/23/2007] [Indexed: 05/25/2023]
Abstract
Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils.
Collapse
Affiliation(s)
- Thierry Lebeau
- Equipe Dépollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex, France.
| | | | | |
Collapse
|
43
|
Kamaludeen SPB, Ramasamy K. Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 2008; 48:80-8. [PMID: 23100702 PMCID: PMC3450210 DOI: 10.1007/s12088-008-0008-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/25/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022] Open
Abstract
With the increasing successful stories of decontamination, different strategies for metal remediation are gaining importance and popularization in developing countries. Rhizoremediation, is one such promising option that harnesses the impressive capabilities of microorganisms associated with roots to degrade organic pollutants and transform toxic metals. Since it is a plant based in-situ phytorestoration technique it is proven to be economical, efficient and easy to implement under field conditions.Plants grown in metal contaminated sites harbor unique metal tolerant and resistant microbial communities in their rhizosphere. These rhizo-microflora secrete plant growth promoting substances, siderophores, phytochelators to alleviate metal toxicity, enhance the bioavailability of metals (phytoremediation) and complexation of metals (phytostabilisation). Selection of right bacteria/consortia and inoculation to seed/ roots of suitable plant species will widen the perspectives of rhizoremediation.
Collapse
Affiliation(s)
- S. P. B. Kamaludeen
- Trichy (ADAC&RI) Campus, Tamil Nadu Agricultural University, Navalur, Trichy, India
| | - K. Ramasamy
- DEAN, School of Biotechnology, SRM University, Kattankulathur, Kanchipuram, India
| |
Collapse
|
44
|
Xiong J, He Z, Liu D, Mahmood Q, Yang X. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. CHEMOSPHERE 2008; 70:489-94. [PMID: 17662336 DOI: 10.1016/j.chemosphere.2007.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/10/2007] [Accepted: 06/12/2007] [Indexed: 05/16/2023]
Abstract
This study was the first attempt to examine the possible role of the naturally occurring rhizospheric bacteria in heavy metal removal by Sedum alfredii Hance, a terrestrial Zn/Cd hyperaccumuluator, from Zn, Cd, Cu and Pb contaminated water using antibiotic ampicillin. Moreover, the toxicity symptom in plants under heavy metal stress expressed as total chlorophyll, chlorophyll a and b content, growth inhibition, root length, and N, P contents were studied, and the possible relationship among them were also discussed. These results indicate that rhizospheric bacteria may play an important role in the uptake of N and P by S. alfredii, and consequently result in the increase of Chlorophyll content in the leaves and plant biomass due to improved photosynthesis. At the same time, root length significantly decreased under the treatment with ampicillin, which suggested that rhizospheric bacteria appeared to protect the roots against heavy metal toxicity. The Pb, Zn, Cu and Cd concentrations in the roots, stems and leaves of S. alfredii were much higher than those exposed to ampicillin. Accordingly, metal concentrations in the contaminated water without ampicillin treatment were lower than those treated with ampicillin. These results suggest that the rhizospheric bacteria may be useful in plant tolerance to heavy metal toxicity, and also accelerate the metal removal from contaminated water.
Collapse
Affiliation(s)
- Jibing Xiong
- Key Lab of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Huajiachi Campus, Hangzhou 310029, China.
| | | | | | | | | |
Collapse
|
45
|
Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9464-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|