1
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Gomes SIL, Roca CP, Pokhrel S, Mädler L, Scott-Fordsmand JJ, Amorim MJB. TiO 2 nanoparticles' library toxicity (UV and non-UV exposure) - High-throughput in vivo transcriptomics reveals mechanisms. NANOIMPACT 2023; 30:100458. [PMID: 36858316 DOI: 10.1016/j.impact.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/03/2023]
Abstract
The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO2 NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation. Effects were analyzed at organism (phenotypic, survival and reproduction) and gene expression level (transcriptomics, high-throughput 4x44K microarray) to understand the underlying mechanisms. A total of 48 microarrays (20 test conditions) were done plus controls (UV and non-UV). Unique mechanisms induced by TiO2 NPs exposure included the impairment in RNA processing for TiO2_10nm, or deregulated apoptosis for 2%FeTiO2_10nm. Strikingly apparent was the size dependent effects such as induction of reproductive effects via smaller TiO2 NPs (≤12 nm) - embryo interaction, while larger particles (27 nm) caused reproductive effects through different mechanisms. Also, phagocytosis was affected by 12 and 27 nm NPs, but not by ≤11 nm. The organism level study shows the integrated response, i.e. the result after a cascade of events. While uni-cell models offer key mechanistic information, we here deliver a combined biological system level (phenotype and genotype), seldom available, especially for environmental models.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos P Roca
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark
| | - Suman Pokhrel
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Bland GD, Zhang P, Valsami-Jones E, Lowry GV. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15584-15593. [PMID: 36255450 DOI: 10.1021/acs.est.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Finding and quantifying engineered nanomaterials (ENMs) in soil are challenging because of the abundance of natural nanomaterials (NNMs) with the same elemental composition, for example, TiO2. Isotopically enriched ENMs may be distinguished from NNMs with the same elemental composition using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) to measure multiple isotopes simultaneously within each ENM and NNM in soil, but the minimum isotope enrichment needed for detection of ENMs in soil is not known. Here, we determined the isotope enrichment needed for 47Ti-enriched TiO2 ENMs to be detectable in soil and assessed the effects of weathering on those requirements for less soluble TiO2 and more soluble CuO ENMs. The isotope-enriched ENMs were dosed into two different soils and were extracted and measured by spICP-TOF-MS after 1, 7, and 30 days. Isotope-enriched ENMs were recovered and detected for all three time points. The 47Ti-enriched TiO2 ENMs were detectable in Lufa 2.2 soil at a nominal dosed concentration of 10 mg-TiO2 kg-1 which is an environmentally relevant concentration in biosolid-amended soils. For distinguishing an ∼70 nm diameter TiO2 ENM from TiO2 NNMs in Lufa 2.2 soil, an ∼10 wt % 47Ti isotope-enrichment was required, and this enrichment requirement increases as the particle size decreases. This study is the first to evaluate the tracking ability of isotope-enriched ENMs at an individual particle level in soil and provides guidance on the isotope enrichment requirements for quantification of ENMs made from Earth-abundant elements in soils.
Collapse
Affiliation(s)
- Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
4
|
Ritschar S, Schirmer E, Hufnagl B, Löder MGJ, Römpp A, Laforsch C. Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning. Histochem Cell Biol 2022; 157:127-137. [PMID: 34750664 PMCID: PMC8847259 DOI: 10.1007/s00418-021-02037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.
Collapse
Affiliation(s)
- Sven Ritschar
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Elisabeth Schirmer
- Department of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
| | - Benedikt Hufnagl
- Institute of Chemical Technologies and Analytics, Vienna, TU, Austria
- Purency GmbH, Walfischgasse 8/34, T1010, Vienna, Austria
| | - Martin G J Löder
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Andreas Römpp
- Department of Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Christian Laforsch
- Department of Animal Ecology i and BayCEER, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
5
|
Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC, Ehmoser EK, Lynch I, Ming X, Rui Y. A critical review of the environmental impacts of manufactured nano-objects on earthworm species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118041. [PMID: 34523513 DOI: 10.1016/j.envpol.2021.118041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The presence of manufactured nano-objects (MNOs) in various consumer or their (future large-scale) use as nanoagrochemical have increased with the rapid development of nanotechnology and therefore, concerns associated with its possible ecotoxicological effects are also arising. MNOs are releasing along the product life cycle, consequently accumulating in soils and other environmental matrices, and potentially leading to adverse effects on soil biota and their associated processes. Earthworms, of the group of Oligochaetes, are an ecologically significant group of organisms and play an important role in soil remediation, as well as acting as a potential vector for trophic transfer of MNOs through the food chain. This review presents a comprehensive and critical overview of toxic effects of MNOs on earthworms in soil system. We reviewed pathways of MNOs in agriculture soil environment with its expected production, release, and bioaccumulation. Furthermore, we thoroughly examined scientific literature from last ten years and critically evaluated the potential ecotoxicity of 16 different metal oxide or carbon-based MNO types. Various adverse effects on the different earthworm life stages have been reported, including reduction in growth rate, changes in biochemical and molecular markers, reproduction and survival rate. Importantly, this literature review reveals the scarcity of long-term toxicological data needed to actually characterize MNOs risks, as well as an understanding of mechanisms causing toxicity to earthworm species. This review sheds light on this knowledge gap as investigating bio-nano interplay in soil environment improves our major understanding for safer applications of MNOs in the agriculture environment.
Collapse
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shafiq
- University of Guadalajara-University Center for Biological and Agricultural Sciences, Camino Ing. Ramón Padilla Sánchez núm. 2100, La Venta del Astillero, Zapopan, Jalisco, CP. 45110, Mexico
| | - Anna Pavlicek
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Christian Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Eva-Kathrin Ehmoser
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Xu Ming
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
6
|
Koedrith P, Rahman MM, Jang YJ, Shin DY, Seo YR. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. J Cancer Prev 2021; 26:83-97. [PMID: 34258247 PMCID: PMC8249203 DOI: 10.15430/jcp.2021.26.2.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/06/2022] Open
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Md. Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yu Jin Jang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
7
|
Liu Y, Fang K, Zhang X, Liu T, Wang X. Enantioselective toxicity and oxidative stress effects of acetochlor on earthworms (Eisenia fetida) by mediating the signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142630. [PMID: 33069465 DOI: 10.1016/j.scitotenv.2020.142630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Acetochlor (ACT) as a widely used chiral chloroacetamide herbicide is appropriate to evaluate the potential toxicity in soil ecosystems at enantiomeric level. The acute and subchronic toxicities of R-acetochlor (R-ACT) and S-acetochlor (S-ACT) on earthworms (Eisenia fetida) were investigated in the present study. Residual analyses showed that S-ACT degraded faster than R-ACT in artificial soil with half-lives of 16.5 and 21.7 d, respectively. Additionally, significant enantioselective acute toxicity in earthworms from between S-ACT and R-ACT (p < 0.05) was observed, and the acute toxicity of R-ACT were 1.9 and 1.5 times higher than those of S-ACT in the filter paper test and artificial soil test. The hydroxyl radical (OH-) content, superoxide dismutase (SOD) and antioxidant enzyme catalase (CAT) activities, and cytochrome P450 content in earthworms significantly increased under the influence of ACT enantiomers; however, the acetylcholinesterase (AchE) activity was significantly inhibited after exposure to the two enantiomers. Moreover, lipid peroxidation and DNA damage were induced by ACT enantiomers. The results of transcriptome sequencing indicated that R-ACT induced a stronger oxidative stress effect than S-ACT in earthworms by mediating signaling pathways, which may be the primary reason for the enantioselective toxicity between S-ACT and R-ACT. Overall, the results demonstrated that R-ACT has a higher risk than S-ACT in the soil environment, which is important for understanding the enantioselective behavior of chloroacetamide pesticides.
Collapse
Affiliation(s)
- Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
8
|
Hamida RS, Ali MA, Abdelmeguid NE, Al-Zaban MI, Baz L, Bin-Meferij MM. Lichens-A Potential Source for Nanoparticles Fabrication: A Review on Nanoparticles Biosynthesis and Their Prospective Applications. J Fungi (Basel) 2021; 7:291. [PMID: 33921411 PMCID: PMC8069866 DOI: 10.3390/jof7040291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Green synthesis of nanoparticles (NPs) is a safe, eco-friendly, and relatively inexpensive alternative to conventional routes of NPs production. These methods require natural resources such as cyanobacteria, algae, plants, fungi, lichens, and naturally extracted biomolecules such as pigments, vitamins, polysaccharides, proteins, and enzymes to reduce bulk materials (the target metal salts) into a nanoscale product. Synthesis of nanomaterials (NMs) using lichen extracts is a promising eco-friendly, simple, low-cost biological synthesis process. Lichens are groups of organisms including multiple types of fungi and algae that live in symbiosis. Until now, the fabrication of NPs using lichens has remained largely unexplored, although the role of lichens as natural factories for synthesizing NPs has been reported. Lichens have a potential reducible activity to fabricate different types of NMs, including metal and metal oxide NPs and bimetallic alloys and nanocomposites. These NPs exhibit promising catalytic and antidiabetic, antioxidant, and antimicrobial activities. To the best of our knowledge, this review provides, for the first time, an overview of the main published studies concerning the use of lichen for nanofabrication and the applications of these NMs in different sectors. Moreover, the possible mechanisms of biosynthesis are discussed, together with the various optimization factors influencing the biological synthesis and toxicity of NPs.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11543, Saudi Arabia;
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| | - Nabila Elsayed Abdelmeguid
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| |
Collapse
|
9
|
Zheng Y, Nowack B. Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2392-2402. [PMID: 33541069 DOI: 10.1021/acs.est.0c07446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most of the existing exposure models for engineered nanomaterials (ENMs) do not consider particle size, crystalline forms, and coating materials that all may influence the material's fate, transport, and toxicity. Our work aimed to incorporate particle size distributions into a material flow analysis (MFA) to develop a size-specific, dynamic, probabilistic MFA model (ss-DPMFA). Using titanium dioxide (TiO2) as a first case study, we aimed to determine the contribution of conventional TiO2 pigments to the total amount of nanoscale TiO2 released into the environment. Besides providing information on mass flows, the new model used particle size distributions and crystalline forms to describe the stocks and flows of TiO2. The most striking modeling result to emerge was that before TiO2 ENMs came onto the market as such in 2000, 22,400 tons of nanosized (<100 nm) TiO2 particles had already been released into the environment, originating from conventional TiO2 pigments. Even in 2016, 50% of the nanosized TiO2 particles released into wastewater came from the nanosized fraction of TiO2 particles in pigments. Quantitative data on the particle size distribution of TiO2 particles released into the environment can be used as input for environmental fate models. Our new ss-DPMFA model's additional insights about crystalline forms and coatings could pave the way for advanced size- and form-specific hazard and risk assessments for other nanomaterials in ecological systems.
Collapse
Affiliation(s)
- Yuanfang Zheng
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society Lab, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society Lab, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
10
|
Navarro Pacheco NI, Roubalova R, Semerad J, Grasserova A, Benada O, Kofronova O, Cajthaml T, Dvorak J, Bilej M, Prochazkova P. In Vitro Interactions of TiO 2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. NANOMATERIALS 2021; 11:nano11010250. [PMID: 33477826 PMCID: PMC7832855 DOI: 10.3390/nano11010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Natividad Isabel Navarro Pacheco
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague 2, Czech Republic
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Alena Grasserova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Jiri Dvorak
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Correspondence:
| |
Collapse
|
11
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Synergistic growth inhibition effect of TiO 2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111462. [PMID: 33069946 DOI: 10.1016/j.ecoenv.2020.111462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The co-existence of organic pollutants and nanoparticles in the environment may lead to combined biological effects. The joint toxicity of pollutants and nanoparticles has been receiving increasing attention from researchers, but few studies have focused on soil biota due to the complexity of soil matrices. This study investigated the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) at 0, 5, and 25 mg/kg and nanoparticulate TiO2 (nTiO2) at 0, 500, and 2500 mg/kg in a 3 × 3 factorial arrangement of treatments for 28 days (d) on Eisenia fetida (earthworm). Compared with the control group (the 0 mg/kg TDCIPP + 0 mg/kg nTiO2 treatment), all other single (TDCIPP or nTiO2) and binary (TDCIPP + nTiO2) treatments except for the single 500 mg/kg nTiO2 treatment significantly reduced the weight gain rate of E. fetida. The binary treatments had significantly greater such effect than their corresponding single treatments, exhibiting a synergistic toxicity between TDCIPP and nTiO2 on the growth of E. fetida. Since TDCIPP and nTiO2 had no significant effect on their concentrations in the soil or in E. fetida during binary exposure, the synergistic toxicity could be a result of the superimposition of the toxicity pathways of TDCIPP and nTiO2. Transcriptomic analysis of E. fetida intestinal region revealed that exposure to 25 mg/kg TDCIPP or 2500 mg/kg nTiO2 affected nutrient-related or cell apoptosis and DNA damage related genes, respectively; their co-exposure greatly inhibited genes related to nutrient digestion and absorption, while causing abnormal transcription of genes related to the development and maintenance of E. fetida's muscles, leading to synergistic toxicity. These findings provide new insights into the environmental risks of organophosphorus flame retardants, nanoparticles, and their co-exposure.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Recent Developments in the Application of Nanomaterials in Agroecosystems. NANOMATERIALS 2020; 10:nano10122411. [PMID: 33276643 PMCID: PMC7761570 DOI: 10.3390/nano10122411] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology implies the scientific research, development, and manufacture, along with processing, of materials and structures on a nano scale. Presently, the contamination of metalloids and metals in the soil has gained substantial attention. The consolidation of nanomaterials and plants in ecological management has received considerable research attention because certain nanomaterials could enhance plant seed germination and entire plant growth. Conversely, when the nanomaterial concentration is not properly controlled, toxicity will definitely develop. This paper discusses the role of nanomaterials as: (1) nano-pesticides (for improving the plant resistance against the biotic stress); and (2) nano-fertilizers (for promoting the plant growth by providing vital nutrients). This review analyzes the potential usages of nanomaterials in agroecosystem. In addition, the adverse effects of nanomaterials on soil organisms are discussed. We mostly examine the beneficial effects of nanomaterials such as nano-zerovalent iron, iron oxide, titanium dioxide, nano-hydroxyapatite, carbon nanotubes, and silver- and copper-based nanomaterials. Some nanomaterials can affect the growth, survival, and reproduction of soil organisms. A change from testing/using nanomaterials in plants for developing nanomaterials depending on agricultural requirements would be an important phase in the utilization of nanomaterials in sustainable agriculture. Conversely, the transport as well as ecological toxicity of nanomaterials should be seriously examined for guaranteeing its benign usage in agriculture.
Collapse
|
13
|
Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S. Application of Nanotechnology in Wood-Based Products Industry: A Review. NANOSCALE RESEARCH LETTERS 2020; 15:207. [PMID: 33146807 PMCID: PMC7642047 DOI: 10.1186/s11671-020-03438-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
Collapse
Affiliation(s)
- Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafeadah Rusli
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Sharmiza Adnan
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| |
Collapse
|
14
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO 2 nanoparticles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137492. [PMID: 32120103 DOI: 10.1016/j.scitotenv.2020.137492] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Titanium dioxide nanoparticles (nTiO2) are widely used and their environmental occurrence has raised concerns about the potential toxicity to biota. However, few studies have investigated the effect of long-term exposure to nTiO2 on soil invertebrates. This study therefore for the first time investigated the long-term (120 days) effect of nTiO2 (0, 5, 50, and 500 mg/kg) on the phenotypes, transcriptomic, and metabolomic profiles of earthworm (Eisenia fetida) in soil. The results showed that the long-term exposure to nTiO2 did not significantly affect the growth, reproduction, and Ti content of earthworms. However, the antioxidant system and the transcriptomic and metabolomic profiles of earthworms were significantly affected. The superoxide dismutase (SOD) activity and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio significantly decreased under the 500 mg/kg nTiO2 treatment. The metabolomics analysis showed that glycine and pyroglutamic acid contents involved in the GSH metabolism were significantly altered under the 500 mg/kg treatment. Moreover, transcriptomics and metabolomics data revealed that the long-term exposure to nTiO2 affected the synthesis of carbohydrates, proteins, and lipids. However, the transcriptomics results indicated that the genes involved in ribosome biogenesis in eukaryotes pathway and TGF-beta signaling pathway were upregulated, which could explain why the growth and reproduction of earthworms were apparently not affected by the nTiO2 exposure. The combination of transcriptomics and metabolomics reveals the global responses that cannot be observed by conventional toxicity endpoints, facilitating the assessment of long-term ecological effect of engineered nanoparticles in the environment.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Lammel T, Wassmur B, Mackevica A, Chen CEL, Sturve J. Mixture toxicity effects and uptake of titanium dioxide (TiO 2) nanoparticles and 3,3',4,4'-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105195. [PMID: 31203167 DOI: 10.1016/j.aquatox.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) are among the man-made nanomaterials that are predicted to be found at high concentrations in the aquatic environment. There, they likely co-exist with other chemical pollutants. Thus, n-TiO2 and other chemical pollutants can be taken up together or accumulate independently from each other in prey organisms of fish. This can lead to dietary exposure of fish to n-TiO2-chemical pollutant mixtures. In this study, we examine if simultaneous dietary exposure to n-TiO2 and 3,3',4,4'-Tetrachlorobiphenyl (PCB77) -used as a model compound for persistent organic pollutants with dioxin-like properties- can influence the uptake and toxicological response elicited by the respective other substance. Juvenile brown trout (Salmo trutta) were fed custom-made food pellets containing n-TiO2, PCB77 or n-TiO2+PCB77 mixtures for 15 days. Ti and PCB77 concentrations in the liver were measured by ICP-MS and GC-MS, respectively. Besides, n-TiO2 uptake was assessed using TEM. Combination effects on endpoints specific for PCB77 (i.e., cytochrome P450 1A (CYP1A) induction) and endpoints shared by both PCB77 and n-TiO2 (i.e., oxidative stress-related parameters) were measured in intestine and liver using RT-qPCR and enzyme activity assays. The results show that genes encoding for proteins/enzymes essential for tight junction function (zo-1) and ROS elimination (sod-1) were significantly upregulated in the intestine of fish exposed to n-TiO2 and PCB77 mixtures, but not in the single-substance treatments. Besides, n-TiO2 had a potentiating effect on PCB77-induced CYP1A and glutathione reductase (GR) expression/enzyme activity in the liver. This study shows that simultaneous dietary exposure to nanomaterials and traditional environmental pollutants might result in effects that are larger than observed for the substances alone, but that understanding the mechanistic basis of such effects remains challenging.
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden.
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| | - Aiga Mackevica
- TU Environment, Technical University of Denmark, Denmark
| | - Chang-Er L Chen
- Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Sweden; Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| |
Collapse
|
16
|
A review of titanium dioxide and its highlighted application in molecular imprinting technology in environment. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
17
|
Mukherjee K, Acharya K. Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:175-186. [PMID: 29549419 DOI: 10.1007/s00244-018-0519-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Metal oxide nanoparticles (MO-NPs) with multifunctional properties are used extensively in various industries and released into the environment as industrial effluents and waste nano-products. These non-degradable, toxic MO-NPs are accumulating in the environment, debilitating the ecosystem and their biological communities. In this review article, a real-time scenario of MO-NP toxicity towards the soil and aquatic ecosystem and their mode of toxicity have been addressed in detail. The up-to-date information presented here suggests serious consideration of the consequences before random utilization of MO-NPs.
Collapse
Affiliation(s)
- Khushi Mukherjee
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
18
|
Fan W, Lu H, Wang WX. Aging Influences on the Biokinetics of Functional TiO 2 Nanoparticles with Different Surface Chemistries in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7901-7909. [PMID: 29920079 DOI: 10.1021/acs.est.7b04392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles functionalized with various surface capping moieties are now widely used in different fields, thus there is a major need to understand the behavior and fate of these nanoparticles in the environment. The present study investigated the biokinetics of fresh titanium dioxide nanoparticles (TiO2 NPs) or TiO2 NPs aged under artificial sunlight (16 h light: 8 h dark) for 1, 3, and 5 days, respectively. Two commercial functionalized TiO2 NPs (with SiO2 coating or SiO2 and polydimethylsiloxane coating) were employed in this study. Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements demonstrated that the surface properties had changed due to the degradation during aging. The biokinetic parameters including dissolved uptake and depuration rate constant as well as bioconcentration factors were calculated by a biokinetic model. All the biokinetic parameters were significantly dependent on the aging process. Further data analysis showed that the CA of the TiO2 NPs affected the uptake rate constant and the fast compartmental efflux, and both CA and hydrodynamic diameter affected the fast compartmental efflux. These results were due to the changes of corresponding indexes during the aging process. Our work highlighted the necessity of monitoring the physicochemical indexes of functionalized NPs during aging in evaluation of their environmental risks.
Collapse
Affiliation(s)
- Wenhong Fan
- School of Space and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Huiting Lu
- School of Space and Environment , Beihang University , Beijing 100191 , P. R. China
- Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Wen-Xiong Wang
- Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen 518057 , P. R. China
| |
Collapse
|
19
|
Ma T, Zhou W, Chen L, Wu L, Christie P, Zhang H, Luo Y. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS One 2017; 12:e0173957. [PMID: 28319143 PMCID: PMC5358789 DOI: 10.1371/journal.pone.0173957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/01/2017] [Indexed: 01/15/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester (PAE) that has aroused public concern due to its resistance to degradation and its toxicity as an endocrine-disrupting compound. Effects of different concentrations of DEHP on Eisenia fetida in spiked natural soil have been studied in the body of the earthworm by means of soil cultivation tests 7, 14, 21 and 28 days after exposure. The results indicated that, in general, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, metallothionein (MT) content, the expression of heat shock protein 70 (HSP 70) and all the tested geno-toxicity parameters are promoted as time elapses and with increasing concentration of DEHP. However, peroxidase (POD) activity, neutral red retention time (NRRT) and mitochondrial membrane potential difference values were found to decrease even at a low concentration of DEHP of 1 mg kg-1 soil (p<0.05). Clear toxic effects of DEHP on E. fetida have been generally recognized by means of the disturbance of antioxidant enzyme activity/content and critical proteins, cell membrane and organelle disorder and DNA damage estimated by length of tail, tail DNA ratio, and tail moment parameters. A concentration of DEHP of 3 mg kg-1 may be recommended as a precaution against the potential risk of PAEs in soils and for indicating suitable threshold values for other soil animals and soil micro-organisms.
Collapse
Affiliation(s)
- Tingting Ma
- Institute of Hanjiang, Hubei University of Arts and Science, Xiangyang, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei Zhou
- School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang, China
| | - Li’ke Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Shanghai Research Institute of Chemical Industry, Shanghai, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haibo Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- * E-mail:
| |
Collapse
|
20
|
Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1391-409. [DOI: 10.1016/j.msec.2016.08.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
|
21
|
Bouguerra S, Gavina A, Ksibi M, Rasteiro MDG, Rocha-Santos T, Pereira R. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:291-301. [PMID: 27060256 DOI: 10.1016/j.ecoenv.2016.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 05/23/2023]
Abstract
The huge evolution of nanotechnology and the commercialization of nanomaterials (NMs) positively contributed for innovation in several industrial sectors. Facing this rapid development and the emergence of NMs in the market, the release of this nanometric sized materials in the environment and the possible impact on different ecosystem components attracted the attention of researchers in the last few years. In our study we aimed to assess the impact of titanium silicon oxide nanomaterial (nano-TiSiO4) on soil biota to estimate a risk limit for this material. In the present research a battery of standardized ecotoxicological assays aimed at evaluating a wide range of endpoints (avoidance and reproduction of earthworms and collembolans, emergence/growth of four selected terrestrial plants) were carried out, using OECD artificial soil as test substrate spiked with aqueous suspension of different concentrations of nano-TiSiO4. The results showed a maximum avoidance percentage of 40% for earthworms (Esenia andrei) at the highest concentration tested (1000mgkg(-1) soildw of nano-TiSiO4). No significant effect on the reproductive function of both invertebrate species was recorded. Nevertheless, significant phytotoxic data was registered at least for the growth of dicotyledonous plant species (Lactuca sativa and Lycopersicon lycopersicum) with EC20 values ranging between 236 and 414 mg kg(-1) soildw of nano-TiSiO4 for L. sativa dry mass and fresh mass, respectively. Further, the characterization of nano-TiSiO4 in suspensions used to spike the soil, performed by Dynamic Light Scattering, showed the formation of aggregates with important average size diameter, thus demonstrating that the toxic effects observed were likely not size dependent. A deterministic PNEC (predicted no effect concentration) for this NM of 10.02mg kg(-1) soildw of nano-TiSiO4, is suggested, while no more ecotoxicological information exists.
Collapse
Affiliation(s)
- Sirine Bouguerra
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038 Sfax, Tunisia.
| | - Ana Gavina
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Mohamed Ksibi
- Laboratory of Water, Energy and Environment (3E), National School of Engineering of Sfax, University of Sfax, Route de Soukra Km 3.5, PO Box 1173, 3038 Sfax, Tunisia
| | - Maria da Graça Rasteiro
- Department of Chemical Engineering & CIEPQPF & University of Coimbra, 3030-290 Coimbra, Portugal
| | - Teresa Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ruth Pereira
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| |
Collapse
|
22
|
Khalil AM. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:455-461. [PMID: 26398239 DOI: 10.1016/j.ecoenv.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination.
Collapse
Affiliation(s)
- Abdelmonem M Khalil
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
23
|
Qiang L, Pan X, Zhu L, Fang S, Tian S. Effects of nano-TiO2on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: Implications for enhanced risk of perfluorooctanesulfonate. Nanotoxicology 2015; 10:471-9. [DOI: 10.3109/17435390.2015.1084058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Madhumitha G, Elango G, Roopan SM. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 2015; 100:571-81. [DOI: 10.1007/s00253-015-7108-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/06/2022]
|
25
|
Qiang L, Shi X, Pan X, Zhu L, Chen M, Han Y. Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:644-651. [PMID: 26319509 DOI: 10.1016/j.envpol.2015.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Zebrafish were placed in the upper layer of aquariums to investigate the impacts of anatase and rutile nano-TiO2 on perfluorooctanesulfonate (PFOS) bioaccumulation in zebrafish. Both variations of particle hydrodynamic size and concentration in water column suggest that anatase was better dispersed than rutile. PFOS could be significantly adsorbed on nano-TiO2 to form TiO2-PFOS complexes, leading to reduced concentration of PFOS in upper layer. Due to enhanced exposure to PFOS by ingestion and adhesion of TiO2-PFOS complexes, the whole-body PFOS concentration in zebrafish was enhanced by 59.0% (95% CI: 55.9%, 61.9%) and 25.4% (95% CI: 24.8%, 25.6%) in the presence of anatase and rutile nano-TiO2 after equilibrium compared with the control with PFOS alone. The bioaccumulation of PFOS was much more promoted by anatase, which was attributed by greater adsorption capacity of PFOS to anatase, slower migration of their complex in water column, and slower elimination rate of anatase from fish.
Collapse
Affiliation(s)
- Liwen Qiang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Xiaomei Shi
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Xiaoyu Pan
- College of Marine Science of Engineering, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China.
| | - Meng Chen
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Yuwei Han
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
26
|
Gomes SIL, Caputo G, Pinna N, Scott-Fordsmand JJ, Amorim MJB. Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2409-2416. [PMID: 26013659 DOI: 10.1002/etc.3080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Nearly 80% of all the nano-powders produced worldwide are metal oxides, and among these materials titanium dioxide (TiO2 ) is one of the most produced. Titanium dioxide's toxicity is estimated as low to soil organisms, but some studies have shown that TiO2 nanoparticles can cause oxidative stress. Additionally, it is known that TiO2 is activated by ultraviolet (UV) radiation, which can promote photocatalytic generation of reactive oxygen species, which is seldom taken into account in toxicity testing. In the present study, the authors investigated the effects of different TiO2 and zirconium materials on the soil oligochaete Enchytraeus crypticus, using exposure via soil, water, and soil:water extracts, and studied the effects combined with UV radiation. The results showed that zirconium dioxide (bulk and nano) was not toxic, whereas zirconium tetrachloride reduced enchytraeid reproduction in soil (50% effect concentration = 502 mg/kg). The TiO2 materials were also not toxic via soil exposure or under UV radiation. However, pre-exposure to TiO2 and UV radiation via aqueous media caused a lower reproductive output post-exposure in clean soil (20-50% less but only observed at the lowest concentration tested, 1 mg/L); that is, the effect of TiO2 in water was potentiated by the UV radiation and measurable as a decrease in reproduction in soil media.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Gianvito Caputo
- Department of Chemistry & CICECO, University of Aveiro, Aveiro, Portugal
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Pinna
- Department of Chemistry & CICECO, University of Aveiro, Aveiro, Portugal
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
27
|
Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01610] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Deepak Gusain
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| |
Collapse
|
28
|
Abstract
Since several years nanoparticles (NPs) are produced by industries and used in several fields of activities. They are finally found in aquatic and terrestrial environments, where they are ingested by living organisms in which they accumulate, before being eliminated. In organisms, NPs represent foreign elements with their own physicochemical properties due to their small size. So NPs may interfere with the normal physiological mechanisms of the embryos, growing animals, and adults, and it is indispensable to understand their potentially direct or indirect harmful effects on living organisms. It has been already shown that NPs could be toxic to bacteria, algae, invertebrates, and vertebrates. In this review, several examples of recent studies are given. We will examine successively the effects of NPs on terrestrial and semiaquatic and aquatic vertebrate and invertebrate animals.
Collapse
|
29
|
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:70-83. [PMID: 25242526 DOI: 10.1002/etc.2756] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 09/13/2014] [Indexed: 05/20/2023]
Abstract
The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Research Council, Western Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
30
|
Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E. Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:764-777. [PMID: 25464320 DOI: 10.1016/j.jhazmat.2014.10.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 05/28/2023]
Abstract
Despite the increasing production and use of nanoparticles (NPs), there is a lack of knowledge about their environmental fate and ecotoxicity. Studies in environmentally relevant conditions are necessary to better assess these parameters, but such studies are rather rare. The present work represents first time that studies on engineered NPs using environmentally relevant exposure methods have been reviewed. These exposure methods differ from standardized protocols and can be classified into three groups: experimental trophic chains that allow study of the trophic route, multi-species exposures under laboratory conditions that allow for complex but controlled exposure and outdoor exposures that are more similar to environmentally realistic conditions. The majority of studies of micro- or mesocosms have focused on NP partitioning and bioaccumulation. The other major parameter that has been studied is NP ecotoxicity, which has been assessed in single species, in single species via the trophic route, and at the community level. The induction of biochemical defense systems, immunomodulation, effects on growth and reproduction, behavioral alterations and mortality have been used as indicators of major toxicity, depending on the species studied. The major effects of NPs on both microbial and algal communities include modifications of community compositions and diversities, decreased biomass and changes in community activities.
Collapse
Affiliation(s)
- Agathe Bour
- Université de Toulouse; UPS, INP; EcoLab (Laboratoire d'écologie fonctionnelle et environnement); ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Florence Mouchet
- Université de Toulouse; UPS, INP; EcoLab (Laboratoire d'écologie fonctionnelle et environnement); ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Jérôme Silvestre
- Université de Toulouse; UPS, INP; EcoLab (Laboratoire d'écologie fonctionnelle et environnement); ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Laury Gauthier
- Université de Toulouse; UPS, INP; EcoLab (Laboratoire d'écologie fonctionnelle et environnement); ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France
| | - Eric Pinelli
- Université de Toulouse; UPS, INP; EcoLab (Laboratoire d'écologie fonctionnelle et environnement); ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France; CNRS; EcoLab (Laboratoire d'écologie fonctionnelle et environnement), F-31326 Castanet-Tolosan, France.
| |
Collapse
|
31
|
Wu Q, Zhao Y, Li Y, Wang D. Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1263-71. [DOI: 10.1016/j.nano.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/08/2023]
|
32
|
Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. JOURNAL OF HAZARDOUS MATERIALS 2014; 273:17-26. [PMID: 24709478 DOI: 10.1016/j.jhazmat.2014.03.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 05/29/2023]
Abstract
Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations.
Collapse
Affiliation(s)
- Camille Larue
- ISTerre, Université de Grenoble 1, CNRS, 38041 Grenoble, France.
| | | | - Sophie Sobanska
- Laboratoire de Spectrochimie Infra Rouge et Raman, UMR CNRS 8516, Université Lille 1, Bât C5, 59655 Villeneuve d'Ascq Cedex, France.
| | | | - Stéphanie Sorieul
- Université Bordeaux 1, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP120, 33175 Gradignan, France.
| | - Lauric Cécillon
- ISTerre, Université de Grenoble 1, CNRS, 38041 Grenoble, France.
| | - Laurent Ouerdane
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (LCABIE/IPREM-UMR 5254), Université de Pau et des Pays de l'Adour, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9, France.
| | - Samuel Legros
- CEA/LITEN/DTNM/L2T, CEA Grenoble, Av des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Géraldine Sarret
- ISTerre, Université de Grenoble 1, CNRS, 38041 Grenoble, France.
| |
Collapse
|
33
|
|
34
|
Santaella C, Allainmat B, Simonet F, Chanéac C, Labille J, Auffan M, Rose J, Achouak W. Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes Escherichia coli to cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5245-5253. [PMID: 24697310 DOI: 10.1021/es500216t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
TiO2-based nanocomposite (NC) are widely used as invisible UV protectant in cosmetics. These nanomaterials (NMs) end in the environment as altered materials. We have investigated the properties of T-Lite SF, a TiO2-NC used as sunscreen, after weathering in water and under light. We have examined the formation of ROS and their consequences on cell physiology of Escherichia coli. Our results show that aged-T-Lite SF produced singlet oxygen under low intensity long wave UV and formed hydroxyl radicals at high intensity. Despite the production of these ROS, T-Lite SF had neither effect on the viability of E. coli nor on mutant impaired in oxidative stress, did not induce mutagenesis and did not impair the integrity of membrane lipids, thus seemed safe to bacteria. However, when pre-exposed to T-Lite SF under low intensity UV, cells turned out to be more sensitive to cadmium, a priority pollutant widely disseminated in soil and surface waters. This effect was not a Trojan horse: sensitization of cells was dependent on the formation of singlet oxygen. These results provide a basis for caution, especially on NMs that have no straight environmental toxicity. It is crucial to anticipate indirect and combined effects of environmental pollutants and NMs.
Collapse
Affiliation(s)
- Catherine Santaella
- CEA, IBEB , Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kwak JI, Lee WM, Kim SW, An YJ. Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity inEisenia andrei. J Appl Toxicol 2014; 34:1145-54. [DOI: 10.1002/jat.2993] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/06/2022]
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Woo-Mi Lee
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Shin Woong Kim
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| | - Youn-Joo An
- Department of Environmental Health Science; Konkuk University; 1 Hwayang-dong, Gwangjin-gu Seoul 143-701 Korea
| |
Collapse
|
36
|
Leveque T, Capowiez Y, Schreck E, Mazzia C, Auffan M, Foucault Y, Austruy A, Dumat C. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:232-241. [PMID: 23688736 DOI: 10.1016/j.envpol.2013.03.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation.
Collapse
Affiliation(s)
- Thibaut Leveque
- INP-ENSAT, Université de Toulouse, Av. Agrobiopôle, PO Box 107, Auzeville-Tolosane, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
D'Agata A, Fasulo S, Dallas LJ, Fisher AS, Maisano M, Readman JW, Jha AN. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 2013; 8:549-58. [PMID: 23697396 DOI: 10.3109/17435390.2013.807446] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Marine bivalves (Mytilus galloprovincialis) were exposed to titanium dioxide (10 mg L(-1)) either as engineered nanoparticles (nTiO2; fresh, or aged under simulated sunlight for 7 days) or the bulk equivalent. Inductively coupled plasma-optical emission spectrometry analyses of mussel tissues showed higher Ti accumulation (>10-fold) in the digestive gland compared to gills. Nano-sized TiO2 showed greater accumulation than bulk, irrespective of ageing, particularly in digestive gland (>sixfold higher). Despite this, transcriptional expression of metallothionein genes, histology and histochemical analysis suggested that the bulk material was more toxic. Haemocytes showed significantly enhanced DNA damage, determined by the modified comet assay, for all treatments compared to the control, but no significant differences between the treatments. Our integrated study suggests that for this ecologically relevant organism photocatalytic ageing of nTiO2 does not significantly alter toxicity, and that bulk TiO2 may be less ecotoxicologically inert than previously assumed.
Collapse
Affiliation(s)
- Alessia D'Agata
- Department of Biological and Environmental Sciences, University of Messina , Viale F. Stagno d'Alcontres 31, S. Agata - 98166, Messina , Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Minguez L, Brulé N, Sohm B, Devin S, Giambérini L. Involvement of apoptosis in host-parasite interactions in the zebra mussel. PLoS One 2013; 8:e65822. [PMID: 23785455 PMCID: PMC3681881 DOI: 10.1371/journal.pone.0065822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/28/2013] [Indexed: 12/06/2022] Open
Abstract
The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| | - Nelly Brulé
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Simon Devin
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Laure Giambérini
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| |
Collapse
|
39
|
Fouqueray M, Noury P, Dherret L, Chaurand P, Abbaci K, Labille J, Rose J, Garric J. Exposure of juvenile Danio rerio to aged TiO₂ nanomaterial from sunscreen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3340-3350. [PMID: 23097072 DOI: 10.1007/s11356-012-1256-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
The toxicity of dietary exposure to artificially aged TiO₂ nanomaterial (T-Lite) used in sunscreen cream was studied on Danio rerio. Embryolarval assays were conducted to assess the effects of TiO₂ residues of nanomaterial (RNM) on fish early life stages. Juvenile fishes were exposed by the trophic route in two experiments. During the first experiment, juvenile fishes were exposed to TiO₂ RNM for 14 days by adding RNM to commercial fish food. The second one consisted in producing a trophic food chain. Pseudokirchneriella subcapitata algae, previously contaminated with TiO₂ RNM in growth medium, was used to feed Daphnia magna neonates over a 48-h period. Daphnia were used next to feed juvenile fishes for 7 days. Accumulation of Ti, life traits (survival and growth) and biochemical parameters such as energy reserves, digestive (trypsin, esterase, cellulose and amylase) and antioxidant (superoxide dismutase and catalase) enzyme activity were measured at the end of exposures. As expected in the receiving aquatic system, TiO2 RNM at low concentrations caused a low impact on juvenile zebrafish. A slight impact on the early life stage of zebrafish with premature hatching was observed, and this effect appeared mainly indirect, due to possible embryo hypoxia. When juvenile fish are exposed to contaminated food, digestive enzyme activity indicated a negative effect of TiO₂ RNM. Digestive physiology was altered after 14 days of exposure and seemed to be an indirect target of TiO₂ RNM when provided by food.
Collapse
Affiliation(s)
- Manuela Fouqueray
- IRSTEA Lyon, UR MALY, 5 rue de DOUA, 69626, Villeurbanne Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ecotoxicity of nanoparticles. ISRN TOXICOLOGY 2013; 2013:574648. [PMID: 23724300 PMCID: PMC3658394 DOI: 10.1155/2013/574648] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a science of producing and utilizing nanosized particles that are measured in nanometers. The unique size-dependent properties make the nanoparticles superior and indispensable as they show unusual physical, chemical, and properties such as conductivity, heat transfer, melting temperature, optical properties, and magnetization. Taking the advantages of these singular properties in order to develop new products is the main purpose of nanotechnology, and that is why it is regarded as "the next industrial revolution." Although nanotechnology is quite a recent discipline, there have already high number of publications which discuss this topic. However, the safety of nanomaterials is of high priority. Whereas toxicity focuses on human beings and aims at protecting individuals, ecotoxicity looks at various trophic organism levels and intend to protect populations and ecosystems. Ecotoxicity includes natural uptake mechanisms and the influence of environmental factors on bioavailability (and thereby on toxicity). The present paper focuses on the ecotoxic effects and mechanisms of nanomaterials on microorganisms, plants, and other organisms including humans.
Collapse
|
41
|
Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1679-92. [PMID: 22573562 DOI: 10.1002/etc.1880] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/08/2011] [Accepted: 03/19/2012] [Indexed: 05/10/2023]
Abstract
Metal-based nanoparticles (NPs) (e.g., silver, zinc oxide, titanium dioxide, iron oxide) are being widely used in the nanotechnology industry. Because of the release of particles from NP-containing products, it is likely that NPs will enter the soil compartment, especially through land application of sewage sludge derived from wastewater treatment. This review presents an overview of the literature dealing with the fate and effects of metal-based NPs in soil. In the environment, the characteristics of NPs (e.g., size, shape, surface charge) and soil (e.g., pH, ionic strength, organic matter, and clay content) will affect physical and chemical processes, resulting in NP dissolution, agglomeration, and aggregation. The behavior of NPs in soil will control their mobility and their bioavailability to soil organisms. Consequently, exposure characterization in ecotoxicological studies should obtain as much information as possible about dissolution, agglomeration, and aggregation processes. Comparing existing studies is a challenging task, because no standards exist for toxicity tests with NPs. In many cases, the reporting of associated characterization data is sparse, or missing, making it impossible to interpret and explain observed differences in results among studies.
Collapse
Affiliation(s)
- Paula S Tourinho
- Department of Biology and the Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
42
|
Whitfield Åslund ML, McShane H, Simpson MJ, Simpson AJ, Whalen JK, Hendershot WH, Sunahara GI. Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by ¹H NMR metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1111-1118. [PMID: 22148900 DOI: 10.1021/es202327k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
¹H NMR-based metabolomics was used to examine the response of Eisenia fetida earthworms raised from juveniles for 20-23 weeks in soil spiked with either 20 or 200 mg/kg of a commercially available uncoated titanium dioxide (TiO(2)) nanomaterial (nominal diameter of 5 nm). To distinguish responses specific to particle size, soil treatments spiked with a micrometer-sized TiO(2) material (nominal diameter, <45 μm) at the same concentrations (20 and 200 mg/kg) were also included in addition to an unspiked control soil. Multivariate statistical analysis of the (1)H NMR spectra for aqueous extracts of E. fetida tissue suggested that earthworms exhibited significant changes in their metabolic profile following TiO(2) exposure for both particle sizes. The observed earthworm metabolic changes appeared to be consistent with oxidative stress, a proposed mechanism of toxicity for nanosized TiO(2). In contrast, a prior study had observed no impairment of E. fetida survival, reproduction, or growth following exposure to the same TiO(2) spiked soils. This suggests that (1)H NMR-based metabolomics provides a more sensitive measure of earthworm response to TiO(2) materials in soil and that further targeted assays to detect specific cellular or molecular level damage to earthworms caused by chronic exposure to TiO(2) are warranted.
Collapse
Affiliation(s)
- Melissa L Whitfield Åslund
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | | | | | | | | | | | |
Collapse
|
43
|
Hirano T, Tamae K. Earthworms and soil pollutants. SENSORS (BASEL, SWITZERLAND) 2011; 11:11157-67. [PMID: 22247659 PMCID: PMC3251976 DOI: 10.3390/s111211157] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 12/06/2022]
Abstract
Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.
Collapse
Affiliation(s)
- Takeshi Hirano
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Kazuyoshi Tamae
- Division of Teacher Training, Faculty of Education and Culture, University of Miyazaki, Miyazaki, 889-2192, Japan; E-Mail:
| |
Collapse
|
44
|
Kool PL, Ortiz MD, van Gestel CAM. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2713-2719. [PMID: 21724309 DOI: 10.1016/j.envpol.2011.05.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/19/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl(2) were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants K(f) of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl(2) respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl(2), respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.
Collapse
Affiliation(s)
- Pauline L Kool
- Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
45
|
Bigorgne E, Foucaud L, Lapied E, Labille J, Botta C, Sirguey C, Falla J, Rose J, Joner EJ, Rodius F, Nahmani J. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2698-2705. [PMID: 21726923 DOI: 10.1016/j.envpol.2011.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/06/2011] [Accepted: 05/21/2011] [Indexed: 05/31/2023]
Abstract
The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO(2) byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO(2) byproducts showed aggregation of particles up to 700 μm with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO(2) byproducts did not induce cytotoxicity on cœlomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms.
Collapse
Affiliation(s)
- Emilie Bigorgne
- Laboratoire Interactions Ecotoxicité, Biodiversité, Ecosystèmes, Université Paul Verlaine - Metz, CNRS UMR 7146, Rue du Général Delestraint, 57070 Metz, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cañas JE, Qi B, Li S, Maul JD, Cox SB, Das S, Green MJ. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). ACTA ACUST UNITED AC 2011; 13:3351-7. [DOI: 10.1039/c1em10497g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|