1
|
Sandoval-Insausti H, Flores-Torres MH, Bjornevik K, Cortese M, Hung AY, Schwarzschild M, Yeh TS, Ascherio A. Flavonoid intake and risk of Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:639-645. [PMID: 38267207 PMCID: PMC11187684 DOI: 10.1136/jnnp-2023-332672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Flavonoids have been proposed to reduce the risk of Parkinson's disease (PD). However, results from epidemiological studies have been inconclusive. OBJECTIVE To prospectively examine the association between the intake of flavonoids and their subclasses and the risk of PD and how pesticides may confound or modify that association. METHODS The study population comprised 80 701 women (1984-2016) and 48 782 men (1986-2016) from two large US cohorts. Flavonoid intake was ascertained at baseline and every 4 years thereafter using a semiquantitative Food Frequency Questionnaire. We conducted multivariable-adjusted Cox regression models to estimate HRs and 95% CIs of PD according to quintiles of baseline and cumulative average intakes of flavonoids and subclasses. We repeated the analyses, adjusting for intakes of high-pesticide-residue fruits and vegetables (FVs) and stratifying by servings/day of high-pesticide-residue FV intake. RESULTS We identified 676 incident PD cases in women and 714 in men after 30-32 years of follow-up. Higher total flavonoid intake at baseline was not associated with a lower PD risk, neither in men (HR comparing highest to lowest quintile: 0.89, 95% CI: 0.69 to 1.14) nor in women (HR comparing highest to lowest quintile: 1.27, 95% CI: 0.98 to 1.64). Similar results were observed for cumulative average intakes and flavonoid subclasses. Results remained similar after adjustment for and stratification by high-pesticide-residue FV and when analyses were restricted to younger PD cases. CONCLUSION These results do not support a protective effect of flavonoid intake on PD risk. Pesticide residues do not confound or modify the association.
Collapse
Affiliation(s)
- Helena Sandoval-Insausti
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Mario H Flores-Torres
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marianna Cortese
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Tian-Shin Yeh
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alberto Ascherio
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Huang Y, Li Z. Assessing pesticides in the atmosphere: A global study on pollution, human health effects, monitoring network and regulatory performance. ENVIRONMENT INTERNATIONAL 2024; 187:108653. [PMID: 38669719 DOI: 10.1016/j.envint.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Pesticides are widely used in agriculture, but their impact on the environment and human health is a major concern. While much attention has been given to their presence in soil, water, and food, there have been few studies on airborne pesticide pollution on a global scale. This study aimed to assess the extent of atmospheric pesticide pollution in countries worldwide and identify regional differences using a scoring approach. In addition to analyzing the health risks associated with pesticide pollution, we also examined agricultural practices and current air quality standards for pesticides in these countries. The pollution scores varied significantly among the countries, particularly in Europe. Asian and Oceanic countries generally had higher scores compared to those in the Americas, suggesting a relatively higher level of air pollution caused by pesticides in these regions. It is worth noting that the current pollution levels, as assessed theoretically, pose minimal health risks to humans. However, studies in the literature have shown that excessive exposure to pesticides present in the atmosphere has been associated with various health problems, such as cancer, neuropsychiatric disorders, and other chronic diseases. Interestingly, European countries had the highest overall pesticide application intensities, but this did not necessarily correspond to higher atmospheric pesticide pollution scores. Only a few countries have established air quality standards specifically for pesticides. Furthermore, pollution scores across states in the USA were investigated and the global sampling sites were mapped. The findings revealed that the scores varied widely in the USA and the current sampling sites were limited or unevenly distributed in some countries, particularly the Nordic countries. These findings can help global relevant environmental agencies to set up comprehensive monitoring networks. Overall, the present research highlights the need to create a pesticide monitoring system and increase efforts to enhance pesticide regulation, ensure consistency in standards, and promote international cooperation.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Starr JM, Valentini E, Parker B, Graham SE, Waldron F. In vitro modeling of the post-ingestion mobilization and bioaccessibility of pesticides sorbed to soil and house dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123295. [PMID: 38184152 DOI: 10.1016/j.envpol.2024.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Soils and dusts can act as sinks for semivolatile lipophilic organic compounds and children ingest relatively large amounts of both soils and dusts. Following intake, sorbed chemicals may desorb (mobilize) and become available for intestinal absorption (bioaccessible). When chemicals are not degraded in the digestive tract, mobilization can approximate bioaccessibility. Alternatively, when gastrointestinal degradation of mobilized chemicals does occur, it can be useful to separate mobilization from bioaccessibility. In this study we used synthetic digestive fluids in a sequential, three-compartment (saliva, gastric, and intestinal) in vitro assay to construct mobilization and bioaccessibility models for 16 pesticides (log Kow 2.5-6.8) sorbed to 32 characterized soils and house dusts. To address the potential loss of mobilized pesticides due to absorption, the assays were repeated using a solid phase sorbent (tenax) added to the digestive fluid immediately after addition of the intestinal fluid components. We found that pesticide mobilization was predicted by pesticide log Kow and the carbon content of the soils and dusts. Pesticide loss measurably reduced the bioaccessibility of most pesticides, and bioaccessibility was largely predicted by log Kow and pesticide loss rate constants. Introduction of the sink increased mobilization by x̄ = 4 ± 6% (soil) and x̄ = 9 ± 7% (dust) while bioaccessibility increases were x̄ = 41 ± 21% (soil) and x̄ = 24 ± 12% (dust). The physicochemical properties of the soils, dusts, and pesticides used in this study successfully predicted the in vitro mobilization and bioaccessibility of the pesticides. This suggests that modeling of pesticide mobilization and bioaccessibility could reduce uncertainty in exposure and risk assessments.
Collapse
Affiliation(s)
- James M Starr
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
| | - Evelyn Valentini
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Bethany Parker
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Stephen E Graham
- United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Research Triangle Park, NC 27711, USA
| | - Faith Waldron
- Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| |
Collapse
|
4
|
Đokić M, Nekić T, Varenina I, Varga I, Solomun Kolanović B, Sedak M, Čalopek B, Kmetič I, Murati T, Vratarić D, Bilandžić N. Distribution of Pesticides and Polychlorinated Biphenyls in Food of Animal Origin in Croatia. Foods 2024; 13:528. [PMID: 38397505 PMCID: PMC10887917 DOI: 10.3390/foods13040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Pesticides and polychlorinated biphenyls (PCBs) are persistent environmental pollutants. When entering the food chain, they can represent a public health problem due to their negative effects on health. In this study, concentrations of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), pyrethroids, carbamates, and PCBs-a total 73 compounds-were determined in a total of 2268 samples of fat tissues (beef, pork, sheep, goat, poultry, game, horse, rabbit) and processed fat, meat, and processed meat products collected in Croatia during an 8-year period. In fatty tissues, 787 results exceeded the limits of quantification (LOQ): 16 OCPs, eight OPPs, six pyrethroids, one carbamate, and seven PCBs. The most positive results in fat samples were found for OCPs, with a frequency of quantification in the range of 57.5-87.5%. Hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (DDE) were quantified in the highest percentages, in the ranges of 5.5-66.7% and 5.4-55.8%. Concentrations above the MRL values were determined for chlorpyrifos in pork fat and for resmethrin in six fat samples and one pâté. In 984 samples of meat and meat products, only 62 results exceeded the LOQ values. The highest frequency of quantification was determined for OCPs (25 samples), of which 40% were DDT isomers (60% DDE). Frequency quantifications of PCBs in fat samples were between 7.23 and 36.7%. An evaluation of the health risk assessment showed that the consumption of fat, meat, and meat products does not pose a threat to consumer health, since all EDI values were well below the respective toxicological reference values.
Collapse
Affiliation(s)
- Maja Đokić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Tamara Nekić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ivana Varenina
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ines Varga
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Božica Solomun Kolanović
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Marija Sedak
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Bruno Čalopek
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| | - Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 8, 10000 Zagreb, Croatia; (I.K.); (T.M.)
| | - Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 8, 10000 Zagreb, Croatia; (I.K.); (T.M.)
| | - Darija Vratarić
- Veterinary and Food Safety Directorate, Ministry of Agriculture of Republic of Croatia, Planinska 2a, 10000 Zagreb, Croatia;
| | - Nina Bilandžić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.Đ.); (T.N.); (I.V.); (I.V.); (B.S.K.); (M.S.); (B.Č.)
| |
Collapse
|
5
|
Lv YZ, Luo XJ, Lu RF, Chen LJ, Zeng YH, Mai BX. Multi-pathway exposure assessment of organophosphate flame retardants in a southern Chinese population: Main route identification with compound-specificity. ENVIRONMENT INTERNATIONAL 2024; 183:108352. [PMID: 38041984 DOI: 10.1016/j.envint.2023.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
In this study, we conducted comprehensive organophosphorus flame retardant (PFR) exposure assessments of both dietary and non-dietary pathways in a rural population in southern China. Skin wipes were collected from 30 volunteers. Indoor and outdoor air (gas and particles), dust in the houses of these volunteers, and foodstuffs consumed by these volunteers were simultaneously collected. The total PFR concentrations in dust, gas, and PM2.5 varied from 53.8 to 5.14 × 105 ng/g, 0.528 to 4.27 ng/m3, and 0.390 to 16.5 ng/m3, respectively. The forehead (median of 1.36 × 103 ng/m2) and hand (median of 920 ng/m2) exhibited relatively high PFR concentrations, followed by the forearm (median of 440 ng/m2) and upper arm (median of 230 ng/m2). The PFR concentrations in the food samples varied from 0.0700 to 10.9 ng/g wet weight in the order of egg > roast duck/goose and vegetable > pork > chicken > fish. Tris(1-chloro-isopropyl) phosphate (TCPP) was the main PFR in the non-diet samples, whereas the profiles of PFR individuals varied by food type. Among the multiple pathways investigated (inhalation, dermal exposure, dust ingestion, and food ingestion), dermal absorption and dust ingestion were the predominant pathways for tris(2-chloroethyl) phosphate (TCEP) and bisphenol A-bis(diphenyl phosphate) (BDP), respectively, whereas dietary exposure was the most important route for other chemicals.
Collapse
Affiliation(s)
- Yin-Zhi Lv
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Rui-Feng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Liu-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| |
Collapse
|
6
|
Lv YZ, Luo XJ, Li QQ, Yang Y, Zeng YH, Mai BX. A new insight into the emission source of DDT in indoor environment from rural area of South China and comprehensive human health exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35189-35199. [PMID: 36527556 DOI: 10.1007/s11356-022-24743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Human exposure to dichlorodiphenyltrichloroethanes (DDTs) and the subsequent risk to human health remain an important concern due to the "new" input of DDTs in the environment, especially since exposure to DDTs in indoor microenvironments is often ignored. In this study, we identified a new source of DDT emission in indoor environments and evaluated the health risk from the exposure to DDTs by investigating DDTs in indoor and outdoor dust, air, and coatings of household items in rural areas of Qingyuan, South China. The concentrations of DDTs in house dust and air were < MQL (method quantification limit)-3450 ng/g (median 42.4 ng/g) and 22.7-965 pg/m3 (median 49.5 pg/m3), respectively, which were significantly higher than the outdoor DDT values. Dichlorodiphenyldichloroethylene (DDE) was the main isomer in air samples, while DDT was the dominant isomer in indoor dust. Significant correlations between different DDT isomers were observed in indoor samples but not in outdoor samples. Furniture coating was identified as a source of DDTs in the indoor dust. The total daily exposure dose of DDTs (1.75 × 10-2 ng/kg bw/day for adults and 1.28 × 10-1 ng/kg bw/day for toddlers) through inhalation, dust ingestion, and dermal contact was found unlikely to pose a health risk. Our findings provide new insights into the emission sources and health risks caused by DDT indoors, highlighting the need to further investigate the toxicity mechanisms of parent DDT compound.
Collapse
Affiliation(s)
- Yin-Zhi Lv
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Qi-Qi Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
7
|
Shah ZU, Parveen S. Distribution and risk assessment of pesticide residues in sediment samples from river Ganga, India. PLoS One 2023; 18:e0279993. [PMID: 36730256 PMCID: PMC9894440 DOI: 10.1371/journal.pone.0279993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Indiscriminate use of pesticides leads to their entry in to the bottom sediments, where they are absorbed in the sediment's particle and thus, may become the consistent source of aquatic pollution. The present work was carried out to evaluate pesticide residues in the sediment samples and associated human health risk of commonly used pesticides along the basin of river Ganga. Total of 16 pesticides were analyzed along three stretches of river Ganga. The concentration of pesticides in the upper stretch ranged from ND to 0.103 μg/kg, in the middle stretch ND to 0.112 μg/kg, and in the lower stretch ND to 0.105 μg/kg. Strong positive correlation was found between total organic carbon and total pesticide residues in sediment samples. Carcinogenic and non-carcinogenic values were estimated below the threshold limit suggesting no associated risk. Risks associated with the inhalation route of exposure were found to be higher than the dermal and ingestion routes. Children were found at higher risk at each site from multiple routes of exposure than adult population groups. Toxic unit values were found to be below the threshold value suggesting no risk associated with exposure of pesticides from sediments. However, long term effects on ecological quality due to consistent pesticide exposure must not be ignored. Therefore, the present study focuses on concrete efforts like lowering the irrational used of pesticides, tapping of agricultural and domestic drains, advice to farmers for appropriate use of pesticide doses, to reduce the threat of pesticide pollution in the river system and possible human health risk.
Collapse
Affiliation(s)
- Zeshan Umar Shah
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
- * E-mail:
| | - Saltanat Parveen
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
8
|
Zhang G, Ma F, Zhang Z, Qi Z, Luo M, Yu Y. Associated long-term effects of decabromodiphenyl ethane on the gut microbial profiles and metabolic homeostasis in Sprague-Dawley rat offspring. ENVIRONMENT INTERNATIONAL 2023; 172:107802. [PMID: 36764182 DOI: 10.1016/j.envint.2023.107802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) as a widely used brominated flame retardant is harmful to human health due to its toxicity, including cardiovascular toxicity, reproductive toxicity, and hepatotoxicity. However, the knowledge of the long-term effects and structural and metabolic function influence on gut microbiota from DBDPE exposure remains limited. This study was mainly aimed at the gut microbiome and fecal metabolome of female rats and their offspring exposed to DBDPE in early life. 16S rRNA gene sequencing demonstrated that maternal DBDPE exposure could increase the α-diversity of gut microbiota in immature offspring while decreasing the abundance of Bifidobacterium, Clostridium, Muribaculum, Escherichia, and Lactobacillus in adult offspring. The nonmetric multidimensional scaling showed a consistency in the alternation of β-diversity between pregnant rats and their adult offspring. Furthermore, the short-chain fatty acids produced by gut microbiota dramatically increased in adult offspring after maternal DBDPE exposure, revealing that DBDPE treatment disrupted the gut microbial compositions and altered the gut community's metabolic functions. Untargeted metabolomics identified 41 differential metabolites and seven metabolic pathways between adult offspring from various groups. Targeted metabolomic showed that maternal high dose DBDPE exposure obviously decreased the level of glutathione, taurine, and l-carnitine in their adult offspring, which verified the correlation between weight loss and amino acid metabolites. An interesting link between some gut bacteria (especially the Firmicutes) and fecal metabolites demonstrated the shifts in gut microbiota may drive the metabolic process of fecal metabolites. The current findings provide new insight into long-term effects on human health.
Collapse
Affiliation(s)
- Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Fengmin Ma
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Yang Y, Luo M, Qi Z, Fan Z, Hashmi MZ, Li G, Yu Y. Temporal trends and health risks of organophosphorus flame retardants in fishes in Taihu Lake from 2013 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120733. [PMID: 36435280 DOI: 10.1016/j.envpol.2022.120733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are synthetic, physical additive flame retardants widely detected in the environment. To investigate the temporal trends of OPFRs in Taihu regions and the associated health risks from fish consumption, 150 fish samples of five species were collected from Taihu Lake in China from 2013 to 2018. Eight OPFRs were measured, having 2-ethylhexyl diphenyl phosphate (90.7%) and tris (1,3-dichloro-2 propyl) phosphate (21.5%) as the most and least frequently detected OPFRs, respectively. Among the eight OPFRs, tris (chloropropyl) phosphate concentration (446 pg/g, wet weight) was higher than others. The maximum cumulative concentration of the OPFRs (∑8OPFRs) was observed in large icefish (1.69 × 103 pg/g), while silver carp (841 pg/g) had the lowest. For the temporal trends, higher levels of ∑8OPFRs (1.91 × 103 pg/g) were detected in 2013 than in other years, although no significant change in the trend occurred over time. The estimated daily intake of OPFRs from large icefish consumption was 1.20 × 103 pg/kg-bw/day, higher than that of other fish species. The Monte Carlo simulations showed that ≤0.3% of adults and children would suffer non-cancer health risks from OPFRs via fish consumption. This study provides the first data on temporal trends of OPFRs in Taihu Lake.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhiyong Fan
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | | | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Yang J, Ching YC, Kadokami K, Ching KY, Xu S, Hu G, Wang J. Distribution and health risks of organic micropollutants from home dusts in Malaysia. CHEMOSPHERE 2022; 309:136600. [PMID: 36170925 DOI: 10.1016/j.chemosphere.2022.136600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Indoor dust is an important medium to evaluate human exposure to emerging organic contaminants. The principal aim of this study was to determine overall status of organic micropollutants (OMPs) of indoor dust in Kuala Lumpur, Malaysia and assess their corresponding health risks. One hundred thirty-three OMPs, ascribed to 13 chemical groups, were screened by Automated Identification and Quantification System with a GC-MS database. The concentrations of OMPs ranged between 460 and 4000 μg/g, with the median concentration of 719 μg/g. The dominant chemical groups were ascribed to n-alkanes (median: 274 μg/g), plasticizers (151 μg/g), sterols (120 μg/g), and pesticides (42.6 μg/g). Cholestrol was the most abundant compound (median: 115 μg/g). Different sources and usage patterns of OMPs in various houses were expected. Toxicity values of OMPs were obtained from existing databases or predicted by quantitative structure-activity relationship models. Cumulative hazard quotients for OMPs through ingestion route were lower than one for all the dust samples, demonstrating that there was no remarkable non-cancer risk. The cancer risks of these OMPs were greater than 10-4, with cholestrol dominating 99.1% of the carcinogenic risks, which suggested that there was a significant cancer risk. This study might offer a benchmark to ensure the safety of chemical usages in future in Malaysia.
Collapse
Affiliation(s)
- Jianlei Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Yern Chee Ching
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, the University of Kitakyushu, 1-1 Hibikino, Wakamatsu Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| |
Collapse
|
11
|
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, Přibylová P, Dalvie MA, Röösli M, Klánová J, Fuhrimann S. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. TOXICS 2022; 10:629. [PMID: 36287909 PMCID: PMC9610731 DOI: 10.3390/toxics10100629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.
Collapse
Affiliation(s)
- Céline Degrendele
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Aix-Marseille University, CNRS, LCE, 13003 Marseille, France
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands
| |
Collapse
|
12
|
Sandoval-Insausti H, Chiu YH, Wang YX, Hart JE, Bhupathiraju SN, Mínguez-Alarcón L, Ding M, Willett WC, Laden F, Chavarro JE. Intake of fruits and vegetables according to pesticide residue status in relation to all-cause and disease-specific mortality: Results from three prospective cohort studies. ENVIRONMENT INTERNATIONAL 2022; 159:107024. [PMID: 34894487 PMCID: PMC8771456 DOI: 10.1016/j.envint.2021.107024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/17/2021] [Accepted: 12/02/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Intake of conventionally grown fruits and vegetables (FVs) is an important route of exposure to pesticide residues in the general population. However, whether health risk stemming from exposure to pesticides through diet could offset benefits of consuming FVs is unclear. OBJECTIVE We assessed the association of FV intake, classified according to their pesticide residue status, with total and cause-specific mortality. METHODS We followed 137,378 women (NHS, 1998-2019, and NHSII, 1999-2019) and 23,502 men (HPFS, 1998-2020) without cardiovascular disease, cancer, or diabetes at baseline. FV intake was assessed using validated food frequency questionnaires and categorized as having high- or low-pesticide-residues using data from the USDA Pesticide Data Program. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CI) for total and cause-specific mortality associated with high- and low-pesticide-residue FV intake. RESULTS A total of 27,026 deaths, including 4,318 from CVD and 6,426 from cancer, were documented during 3,081,360 person-years of follow-up. In multivariable-adjusted analyses, participants who consumed ≥4 servings/day of low-pesticide-residue FVs had 36% (95% CI: 32%-41%) lower mortality risk compared to participants who consumed <1 serving/day. The corresponding estimate for high-pesticide residue FV intake was 0.93 (95% CI: 0.81-1.07). This pattern was similar across the three most frequent causes of death (cardiovascular disease, cancer and respiratory diseases). CONCLUSIONS High-pesticide-residue FV intake was unrelated whereas low-pesticide residue FV intake was inversely related to all-cause mortality, suggesting that exposure to pesticide residues through diet may offset the beneficial effect of FV intake on mortality.
Collapse
Affiliation(s)
| | - Yu-Han Chiu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ming Ding
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Yang Z, Guo C, Li Q, Zhong Y, Ma S, Zhou J, Li X, Huang R, Yu Y. Human health risks estimations from polycyclic aromatic hydrocarbons in serum and their hydroxylated metabolites in paired urine samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117975. [PMID: 34416499 DOI: 10.1016/j.envpol.2021.117975] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are compounds with two or more benzene rings whose hydroxylated metabolites (OH-PAHs) are excreted in urine. Human PAH exposure is therefore commonly estimated based on urinary OH-PAH concentrations. However, no study has compared PAH exposure estimates based on urinary OH-PAHs to measurements of PAH levels in blood samples. Estimates of PAH exposure based solely on urinary OH-PAHs may thus be subject to substantial error. To test this hypothesis, paired measurements of parent PAHs in serum and OH-PAHs in urine samples from 480 participants in Guangzhou, a typical developed city in southern China, were used to investigate differences in the estimates of human PAH exposure obtained by sampling different biological matrices. The median PAH concentration in serum was 4.05 ng mL-1, which was lower than that of OH-PAHs in urine (8.33 ng mL-1). However, serum pyrene levels were significantly higher than urinary levels of its metabolite 1-hydroxypyrene. Concentrations of parent PAHs in serum were not significantly correlated with those of their metabolites in urine with the exception of phenanthrene, which exhibited a significant negative correlation. Over 28% of the participants had carcinogenic risk values above the acceptable cancer risk level of 10-6. Overall, estimated human exposure and health risks based on urinary 1-hydroxypyrene levels were only 13.6% of those based on serum pyrene measurements, indicating that estimates based solely on urine sampling may substantially understate health risks due to PAH exposure.
Collapse
Affiliation(s)
- Ziying Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jinhua Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Xiaotong Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Rende Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Sandoval-Insausti H, Chiu YH, Lee DH, Wang S, Hart JE, Mínguez-Alarcón L, Laden F, Ardisson Korat AV, Birmann B, Heather Eliassen A, Willett WC, Chavarro JE. Intake of fruits and vegetables by pesticide residue status in relation to cancer risk. ENVIRONMENT INTERNATIONAL 2021; 156:106744. [PMID: 34256297 PMCID: PMC8679006 DOI: 10.1016/j.envint.2021.106744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Conventionally grown fruits and vegetables (FVs) are the main source of general population exposure to pesticide residues. OBJECTIVE To evaluate the relation of intake of high- and low-pesticide-residue FVs with cancer risk. METHODS We followed 150,830 women (Nurses' Health Study, 1998-2016, and Nurses' Health Study II, 1999-2017) and 29,486 men (Health Professionals Follow-up Study, 1998-2016) without a history of cancer. We ascertained FV intake via validated food frequency questionnaires and categorized FVs as having high or low pesticide residue levels based on USDA surveillance data. We used Cox proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals (CI) of total and site-specific cancer related to quintiles of high- and low-pesticide-residue FV intake. RESULTS We documented 23,678 incident cancer cases during 2,862,118 person-years of follow-up. In the pooled multivariable analysis, neither high- nor low-pesticide-residue FV intake was associated with cancer. The HRs (95% CI) per 1 serving/day increase in intake were 0.99 (0.97-1.01) for high- and 1.01 (0.99-1.02) for low-pesticide-residue FVs. Additionally, we found no association between high-pesticide-residue FV intake and risk of specific sites, including malignancies previously linked to occupational pesticide exposure ([HR, 95% CI comparing extreme quintiles of intake] lung [1.17 (0.95-1.43)], non-Hodgkin lymphoma [0.89 (0.72-1.09)], prostate [1.31 (0.88-1.93)]) or inversely related to intake of organic foods (breasts [1.03 (0.94-1.31)]). CONCLUSIONS These findings suggest that overall exposure to pesticides through FV intake is not related to cancer risk, although they do not rule out associations with specific chemicals or sub-types of specific cancers.
Collapse
Affiliation(s)
| | - Yu-Han Chiu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong Hoon Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andres V Ardisson Korat
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brenda Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wang X, Gao M, Tan Y, Li Q, Chen J, Lan C, Jiangtulu B, Wang B, Shen G, Yu Y, Li Z. Associations of Dietary Exposure to Organochlorine Pesticides from Plant-Origin Foods with Lipid Metabolism and Inflammation in Women: A Multiple Follow-up Study in North China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:289-295. [PMID: 33866393 DOI: 10.1007/s00128-021-03224-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
This study explored effects of dietary OCP intake from plant-origin foods (cereals, fruits, and vegetables) consumption on lipid metabolism and inflammation of women using a multiple follow-up study. The results showed that dietary intake of p,p'-dichlorodiphenyltrichloroethane (DDT) [β = - 10.11, 95% confidence interval (95%CI): - 17.32, - 2.905] and o,p'-dichlorodiphenyldichloroethylene (DDE) (β = - 6.077, 95%CI: - 9.954, - 2.200) were overall negatively associated with serum high-density lipoprotein cholesterol (HDL), whereas other OCPs were not. Serum interleukin (IL)-8 was positively associated with intake of dieldrin (β = 0.390, 95%CI: 0.105, 0.674), endosulfan-β (β = 0.361, 95%CI: 0.198, 0.523), total endosulfan (β = 0.136, 95%CI: 0.037, 0.234), and total OCPs (β = 0.084, 95%CI: 0.016, 0.153), and negatively correlated with intake of p,p'-DDE (β = - 2.692, 95%CI: - 5.185, - 0.198). We concluded that dietary intake of some individual DDT-, DDE- dieldrin-, and endosulfan-class chemicals from plant-origin foods may interfere with lipid metabolism and inflammation responses.
Collapse
Affiliation(s)
- Xuepeng Wang
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yixi Tan
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Qi Li
- Jiangxi Environmental Engineering Vocational College, Ganzhou, 341002, People's Republic of China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Bahabieke Jiangtulu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
16
|
Wang X, Tan Y, Gao M, Liu W, Yu Y. Bioaccessibility dependence of dietary exposure to dichlorodiphenyltrichloroethane and its metabolites and hexachlorocyclohexane isomers and their induced health risk: A case study in Beijing City, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117065. [PMID: 33872892 DOI: 10.1016/j.envpol.2021.117065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Bioaccessibility is essential for evaluating dietary intake of contaminants. However, there is insufficient information on the dependence of dietary intake and risk assessment of dichlorodiphenyltrichloroethane and its metabolites (DDXs) and hexachlorocyclohexane isomers (HCHs) on bioaccessibility. Here, we investigated the bioaccessibilities of DDXs and HCHs in various foods and their influences on assessing exposure in the residents of Beijing City, China. Forty-three major foods in five types (fruit, vegetables, cereals, aquatic food, and meat) were sampled, and the bioaccessibility of DDXs and HCHs was evaluated using a static in vitro gastrointestinal digestion model. The bioaccessibility of DDXs in different food types ranked in the order of meat > vegetables > fruit > cereals > aquatic food, with mean ± standard deviation values of 62.2 ± 22.1%, 20.5 ± 10.6%, 12.4 ± 3.66%, 11.2 ± 9.69%, and 10.7 ± 4.97%, respectively. The highest average bioaccessibility of HCHs was found in meat (83.4 ± 14.2%), followed by fruit (41.0 ± 12.5%), vegetables (37.6 ± 18.1%), aquatic foods (24.2 ± 9.22%), and cereals (8.73 ± 4.07%). The estimated daily intakes (EDI) of the sum of DDXs and the sum of HCHs based on the bioaccessible concentration were only about 17% and 55% of the total EDI based on the residual concentration, respectively. Meat was found to play a more important role in EDI after bioaccessibility correction. The proportion of the population with potential non-carcinogenic and carcinogenic risks markedly decreased when considering bioaccessibility. It was concluded that bioaccessibility should be integrated into dietary exposure evaluation.
Collapse
Affiliation(s)
- Xuepeng Wang
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yixi Tan
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Liu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
17
|
Li S, Shao W, Wang C, Wang L, Xia R, Yao S, Du M, Ji X, Chu H, Zhang Z, Wang M, Wang SL. Identification of common genetic variants associated with serum concentrations of p, p'-DDE in non-occupational populations in eastern China. ENVIRONMENT INTERNATIONAL 2021; 152:106507. [PMID: 33756427 DOI: 10.1016/j.envint.2021.106507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyldichloroethylene (DDE) is the major and most stable toxic metabolite of dichlorodiphenyltrichloroethane (DDT), a well-known organochlorine pesticide banned worldwide in the 1980s. However, it remains easy to detect in humans, and internal levels vary widely among individuals. In the present study, a genome-wide association study (GWAS) (511 subjects) and two replications (812 and 1030 subjects) were performed in non-occupational populations in eastern China. An estimated dietary intake (EDI) of p, p'-DDT and p, p'-DDE was calculated by a food frequency questionnaire (FFQ) and the determination of 195 food and 85 drinking water samples. In addition, functional verifications of susceptible loci were performed by dual-luciferase reporter, immunoblotting and metabolic activity assays in vitro. p, p'-DDT and p, p'-DDE were measured using gas chromatography-tandem mass spectrometry (GC-MS/MS). A common loci rs3181842 (high linkage equilibrium with rs2279345) in CYP2B6 at 19p13.2 were found to be strongly associated with low serum levels of p, p'-DDE in this population in GWAS and were verified by two replications and combined analysis of 2353 subjects (P = 1.00 × 10-22). In addition, p, p'-DDE levels were significantly lower in subjects with the rs3181842 C allele than in those carrying the normal genotype, even in individuals with similar EDIs of p, p'-DDT. Furthermore, the rs3181842 C allele functionally led to low CYP2B6 expression and activity, resulting in a low metabolic capacity for the formation of p, p'-DDE from p, p'-DDT. The study highlighted that CYP2B6 variants were more relevant than environmental exposure to internal p, p'-DDE exposure, which is important information for DDT risk assessments.
Collapse
Affiliation(s)
- Shushu Li
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, 213022, PR China
| | - Wei Shao
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shen Yao
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Mulong Du
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xiaoming Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Haiyan Chu
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhengdong Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Meilin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
18
|
Hu J, Yang Y, Lv X, Lao Z, Yu L. Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylation-specific modulation of the sex determination pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116828. [PMID: 33765505 DOI: 10.1016/j.envpol.2021.116828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) poses a significant health risk to humans which is associated with genomic DNA hypomethylation. However, the mechanism and biological consequences remain poorly understood. In vitro assays confirmed that the DDT metabolites 2,2-bis(p-chlorophenyl)-acetic acid (DDA) and 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (DDMU), but not other DDT metabolites, significantly inhibited DNA methyltransferase 1 (DNMT1) activity, leading to genomic hypomethylation in cell culture assays. DNMT1 as a target for DNA hypomethylation induced by DDT metabolites was also confirmed using cell cultures in which DNMT1 was silenced or highly expressed. DDA and DDMU can modify methylation markers in the promoter regions of sexual development-related genes, and change the expression of Sox9 and Oct4 in embryonic stem cells. Molecular docking indicated that DDA and DDMU bound to DNMT1 with high binding affinity. Molecular dynamic simulation revealed that DDA and DDMU acted as allosteric modulators that reshaped the conformation of the catalytic domain of DNMT1. These findings provide a new insight into DDT-induced abnormalities in sexual development and demonstrate that selective binding to DNMT1 by DDA and DDMU can interfere with human DNMT1 activity and regulate the expression of the Sox9 and Oct4 genes.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yan Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Zhilang Lao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Lili Yu
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
19
|
Aslam I, Mumtaz M, Qadir A, Jamil N, Baqar M, Mahmood A, Ahmad SR, Zhang G. Organochlorine pesticides (OCPs) in air-conditioner filter dust of indoor urban setting: Implication for health risk in a developing country. INDOOR AIR 2021; 31:807-817. [PMID: 33247439 DOI: 10.1111/ina.12772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
This preliminary investigation highlights the occurrence of organochlorine pesticides (OCPs) in the indoor environment of a megacity, Lahore, Pakistan using the dust ensnared by air-conditioner filters. The Σ16 OCPs concentration ranged from 7.53 to 1272.87 ng/g with the highest percent contribution by ΣDDT (dichlorodiphenyltrichloroethane; 87.21%) and aldrin (6.58%). The spatial variation of OCPs profile revealed relatively higher concentration from homes near to agricultural and abandoned DDT manufacturing sites. Calculated isomer ratios revealed historic sources of hexachlorocyclohexanes (HCHs) and the fresh input of technical DDT and chlordane by the dwellers. The air conditioner dust was helpful to better understand the health risk in the indoor environment. So far a high lifetime cancer risk (10-3 ) was predicted for toddlers via accidental ingestion, inhalation, and dermal exposure. Similarly, the non-carcinogenic risk-based hazard quotient was found to be high for toddlers (6.94) and within the permissible limit (<1) for adults.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Nadia Jamil
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College for Women University, Sialkot, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Lu M, Li G, Yang Y, Yu Y. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142001. [PMID: 32892057 DOI: 10.1016/j.scitotenv.2020.142001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Generally, human oral exposure assessments of contaminants have not considered the absorption factor in the human gastrointestinal tract, thus overestimating human exposure and associated health risk. Currently, more researchers are adding the absorption factor into human exposure assessment, and bioaccessibility measured by in-vitro methods is generally replacing bioavailability for estimation because of the cheap and rapid determination. However, no single unified in-vitro method is used for bioaccessibility measurement of organic pollutants, although several methods have been developed for these pollutants and have shown good in vitro-in vivo correlation between bioaccessibility and bioavailability. The present review has focused on the development of in-vitro methods, validation of these methods through in-vivo assays, determination of factors influencing bioaccessibility, application of bioaccessibility in human exposure assessment, and the challenges faced. Overall, most in-vitro methods were validated using bioavailability, and better in vitro-in vivo correlations were obtained when absorption sinks were added to the digestion solution to mimic dynamic absorption of organic chemicals by small intestine. Incorporating bioaccessibility into the estimation of human exposure by oral ingestion significantly decreases the estimated exposure dose. However, more investigations on bioaccessibility of hydrophobic organic compounds are urgently needed because many challenges for in-vitro methods remain to be overcome.
Collapse
Affiliation(s)
- Meijuan Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Zhang X, Cheng X, Lei B, Zhang G, Bi Y, Yu Y. A review of the transplacental transfer of persistent halogenated organic pollutants: Transfer characteristics, influential factors, and mechanisms. ENVIRONMENT INTERNATIONAL 2021; 146:106224. [PMID: 33137703 DOI: 10.1016/j.envint.2020.106224] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Persistent halogenated organic pollutants (HOPs) are a class of toxic chemicals, which may have adverse effects on fetuses via transplacental transfer from their mothers. Here, we review reported internal exposure levels of various HOPs (organochlorinated pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, short- and medium-chain chlorinated paraffins, and per- and poly-fluoroalkyl substances) in placenta, and both maternal and umbilical cord sera. We also present analyses of the transplacental transfer and placental distribution characteristics of each class of compounds, and discuss effects of several factors on the transfer and accumulation efficiencies of HOPs, as well as the main mechanisms of HOPs' transfer across the placental barrier. Reported compound-specific transplacental transfer efficiencies and distribution efficiencies, expressed as umbilical cord:maternal serum and placental:maternal serum concentration ratios (RCM and RPM, respectively), are summarized. Average published RCM values of the HOPs range from 0.24 to 3.08 (lipid-adjusted) and from 0.04 to 3.1 (based on wet weights), and are highest for perfluoroalkylcarboxylates (PFCAs) and tetrabromobisphenol A. Average published RPM values range from 0.14 to 1.02 (lipid-adjusted) and from 0.30 to 1.4 (based on wet weights). The broad RCM and RPM ranges may reflect effects of various factors, inter alia physicochemical properties of HOPs, metabolic capacities of mothers and fetuses, placental maturity, and differential expression of influx/efflux transporters in the placenta. Generally, HOPs' RCM values decline linearly with molecular size, and are curvilinearly related to solubility. Plasma protein binding affinity and the difference between maternal and fetal metabolic capacities may also affect some HOPs' transfer efficiencies. HOPs' molecular size may be influential. Transplacental transport of HOPs likely occurs mostly through passive diffusion, although influx/efflux transporters expressed on maternal and/or fetal sides of the placenta may also facilitate or hinder their transport. Overall, the review highlights clear gaps in our understanding of mechanisms involved in HOPs' transplacental transport.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaomeng Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yuhao Bi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Ren H, Yu Y, An T. Bioaccessibilities of metal(loid)s and organic contaminants in particulates measured in simulated human lung fluids: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115070. [PMID: 32806460 DOI: 10.1016/j.envpol.2020.115070] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Particle-bound pollutants can pose a health risk to humans. Inhalation exposure evaluated by total contaminant concentrations significantly overestimates the potential risk. To assess the risk more accurately, bioavailability, which is the fraction that enters into the systemic circulation, should be considered. Researchers have replaced bioavailability by bioaccessibility due to the rapid and cost-efficient measurement for the latter, especially for assessment by oral ingestion. However, contaminants in particulates have different behavior when inhaled than when orally ingested. Some of the contaminants are exhaled along with exhalation, and others are deposited in the lung with the particulates. In addition, a fraction of the contaminants is released into the lung fluid and absorbed by the lung, and another fraction enters systemic circulation under the action of cell phagocytosis on particulates. Even if the release fraction, i.e., release bioaccessibility, is considered, the measurement faces many challenges. The present study highlights the factors influencing release bioaccessibility and the incorporation of inhalation bioaccessibility into the risk assessment of inhaled contaminants. Currently, there are three types of extraction techniques for simulated human lung fluids, including simple chemical solutions, sequential extraction techniques, and physiologically based techniques. The last technique generally uses three kinds of solution: Gamble's solution, Hatch's solution, and artificial lysosomal fluid, which are the most widely used physiologically based simulated human lung fluids. External factors such as simulated lung fluid composition, pH, extraction time, and sorption sinks can affect release bioaccessibility, whereas particle size and contaminant properties are important internal factors. Overall, release bioaccessibility is less used than bioaccessibility considering the deposition fraction when assessing the risk of contaminants in inhaled particulates. The release bioaccessibility measurement poses two main challenges: developing a unified, accurate, stable, simple, and systematic biologically based method, and validating the method through in-vivo assays.
Collapse
Affiliation(s)
- Helong Ren
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| |
Collapse
|
23
|
Comparative assessment of the acute toxicity, haematological and genotoxic effects of ten commonly used pesticides on the African Catfish, Clarias gariepinus Burchell 1822. Heliyon 2020; 6:e04768. [PMID: 32904247 PMCID: PMC7452539 DOI: 10.1016/j.heliyon.2020.e04768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 08/19/2020] [Indexed: 01/28/2023] Open
Abstract
Freshwater fishes are faced with increasing threats due to intensification of agriculture. This study evaluated the haematological and genotoxic effects of exposure of the African Catfish, Clarias gariepinus to sublethal concentrations of commonly used pesticides in agricultural settings. The evaluated pesticides were abamectin, carbofuran, chlorpyrifos, cypermethrin, deltamethrin, dichlorvos, dimethoate, fipronil, lambda-cyhalothrin and paraquat. The fishes were initially exposed singly to the pesticides for 96 h periods to determine their LC50, followed by exposure to sublethal concentrations (1/100th 96 h LC50) over a 21 d period. In all cases, a control experiment with catfishes kept in dechlorinated municipal water was monitored simultaneously. The 96 h LC50 values was found to vary widely from 2.043 μgL-1 (Lambda-cyhalothrin) to 10284.288 μgL-1(Paraquat). Significant differences (P < 0.05) were observed between mean haematological parameters-WBC, RBC, HGB, HCT, MCH and MCHC in the exposed and control catfishes. More so, micronucleus and nuclear abnormalities occurred at significantly higher proportions in pesticide exposed catfishes. Holistic cradle to grave approach as well as fate analysis is required to mitigate the potential harmful effects of pesticides to fresh water fishes.
Collapse
|
24
|
Ge X, Ma S, Zhang X, Yang Y, Li G, Yu Y. Halogenated and organophosphorous flame retardants in surface soils from an e-waste dismantling park and its surrounding area: Distributions, sources, and human health risks. ENVIRONMENT INTERNATIONAL 2020; 139:105741. [PMID: 32305741 DOI: 10.1016/j.envint.2020.105741] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 05/17/2023]
Abstract
Electronic waste (e-waste) dismantling is an important source of flame retardant emissions, and may have potentially adverse effects on surrounding area. This study investigated their influence on the surrounding area and the human health risks after an industrial park was built in 2015 and environmentally friendly technologies were introduced at an e-waste dismantling site in South China. The concentrations of flame retardants, including polybrominated diphenyl ethers (PBDEs), polybromobenzenes (PBBzs), Dechlorane plus (DP), and organophosphate esters (OPEs), in the soils were measured. The results showed that soil contamination was greater in the industrial park than in the surrounding area. The PBDE concentrations were the highest with BDE209, a daca-BDE, being the dominant congener, followed by OPEs, where triphenyl phosphate levels were the highest. Furthermore, triphenyl phosphate can be used as an indicator of flame retardant emissions during e-waste dismantling in this region. The fanti value of DP was stable at around 0.75. The principal component analysis showed that direct emission was the major source of pollutants in the industrial park. The direct emission proportion decreased in the surrounding area, but migration and transformation increased. None of the chemicals posed a non-carcinogenic risks to children and adults via oral uptake or dermal contact when the absorption factors of the chemicals were included in the estimation. However, the total hazard quotients for children were close to a unit in the industrial park, of which, the PBDE and OPE proportions accounted for 84.2% and 15.8% of the total, respectively. However, the PBBz and DP percentages were negligible. Therefore, PBDEs and OPEs should be given more attention in the future.
Collapse
Affiliation(s)
- Xiang Ge
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Chandra Yadav I, Devi NL, Li J, Zhang G. Polychlorinated biphenyls and organochlorines pesticides in indoor dust: An exploration of sources and health exposure risk in a rural area (Kopawa) of Nepal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110376. [PMID: 32200152 DOI: 10.1016/j.ecoenv.2020.110376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
While contamination of indoor environment with organochlorine compounds (OCs) is well documented worldwide, only a few studies highlighted the problem of indoor pollution in Indian sub-continent, including Nepal. This study insight the contamination level, distribution pattern, and sources of OCs in indoor dust from a rural area of Nepal. Additionally, daily exposure risk through different intake pathways was estimated in order to mark the potential risk of OCs to local residents. Results indicated the predominance of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in dust. Ʃ26OCPs (median 87 ng/g) in dust was about 7-8 times greater than Ʃ30PCBs (median 10.5 ng/g). DDT was the most abundant chemical among Ʃ26OCPs, followed by HCHs and endosulfan, and accounted for 73%, 7%, and 4% of Ʃ26OCPs, respectively. A relatively high level of ƩDDT than other OCPs suggests the existence of DDT source in the Nepalese environment. Among PCB, tetra-CBs were most prevalent, trailed by penta-CBs, hexa-CBs, and hepta-CBs, and comprised 28%, 21%, 17% and 17% of Ʃ30PCBs, respectively. Dioxin like-PCBs (median 3.48 ng/g) was about two times higher than the total indicator-PCB (median 1.63 ng/g). High p,p-DDT/p,p-DDE ratio (median 2.89) suggested fresh application and minimal degradation of DDT in the local environment of Kopawa. While lower α-/γ-HCH ratio (median 0.75) indicated lindane contamination as the primary sources of HCH. Moreover, the low α-/β-endosulfan ratio (median 0.86) specified the fresh use of commercial endosulfan. Among OCPs, only DDT positively related to total organic carbon (TOC) (Rho = 0.55, p < 0.05) but not black carbon (BC), proposing minimal or zero impact of TOC and BC. For PCBs, PCB-126 was moderately and negatively correlated with TOC (Rho = -0.49, p < 0.05), but not BC. The daily risk exposure (DRE) assessment showed that children are more vulnerable to OCs than the adult. The DRE of OCs in this study were 2-4 order of magnitude lower than their corresponding reference dose (RfD), proposing insignificant risk.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo, 1838509, Japan.
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
26
|
Mamontova EA, Tarasova EN, Mamontov AA, Mamontov AM. Freshwater seal as a source of direct and indirect increased human exposure to persistent organic pollutants in a background area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136922. [PMID: 32041048 DOI: 10.1016/j.scitotenv.2020.136922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The aim of the study is to investigate POP levels in environmental media (air, snow, soil and sediment), certain food items in the Olkhon district (Irkutsk Region, Russia) and Lake Baikal seal (nerpa) fat and meat in order to define the main pathways of elevated human exposure to POPs in the area. POP levels in soil and air samples and in almost all of the food items from the Olkhon district were comparable to levels in background areas of the Lake Baikal region. Only certain chicken eggs, large fish and blubber of nerpa pups exceeded maximum permissible levels of ΣDDTs and ΣHCHs. The combination of elevated levels of POPs in the Baikal nerpa with the use of Baikal nerpa fat (traditional nutritional habits, feed additives, as well as medicine for humans and domestic animals) results in two pathways for POPs to enter the human body: from seals it enters the human body directly, and indirectly from seals to poultry and livestock and then to the human body. Several scenarios of human exposure to POPs including the incidental ingestion of soil, inhalation of air, and ingestion of food were considered. The largest part of POPs enters the human organism through chicken eggs followed by fish and cow's milk in the scenario without the consumption of nerpa meat and blubber. The high consumption rate of fish as well as the consumption of the fat of nerpa pups or melted fat of nerpa increases the daily intake of POPs 1.3-11 times. The indexes of non-cancer risk and total cancer risk were assessed for residents of the Olkhon district and compared with indexes of risk for the average population of Irkutsk Region. Limiting the use of nerpa fat and meat as food and feed supplement reduces the potential human health risk.
Collapse
Affiliation(s)
- Elena A Mamontova
- Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Favorsky str., 1A, P.O. Box 314, Irkutsk, Russia.
| | - Eugenia N Tarasova
- Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Favorsky str., 1A, P.O. Box 314, Irkutsk, Russia.
| | - Alexander A Mamontov
- Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 664033, Favorsky str., 1A, P.O. Box 314, Irkutsk, Russia.
| | - Anatoliy M Mamontov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033, Ulan-Batorskaya str., 3, P.O. Box 278, Irkutsk, Russia.
| |
Collapse
|
27
|
Padula AM, Monk C, Brennan PA, Borders A, Barrett ES, McEvoy C, Foss S, Desai P, Alshawabkeh A, Wurth R, Salafia C, Fichorova R, Varshavsky J, Kress A, Woodruff TJ, Morello-Frosch R. A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors-implications for research on perinatal outcomes in the ECHO program. J Perinatol 2020; 40:10-24. [PMID: 31616048 PMCID: PMC6957228 DOI: 10.1038/s41372-019-0510-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
Exposures to environmental chemicals and psychosocial stressors during pregnancy have been individually associated with adverse perinatal outcomes related to birthweight and gestational age, but are not often considered in combination. We review types of psychosocial stressors and instruments used to assess them and classes of environmental chemical exposures that are known to adversely impact perinatal outcomes, and identify studies relevant studies. We discuss the National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) program that has combined existing longitudinal cohorts that include more than 50,000 children across the U.S. We describe future opportunities for investigators to use this important new resource for addressing relevant and critical research questions to maternal health. Of the 84 cohorts in ECHO, 38 collected data on environmental chemicals and psychosocial stressors and perinatal outcomes. The diverse ECHO pregnancy cohorts provide capacity to compare regions with distinct place-based environmental and social stressors.
Collapse
Affiliation(s)
- Amy M. Padula
- University of California San Francisco, San Francisco, CA
USA
| | | | | | - Ann Borders
- North Shore University Health System, Evanston, IL,
USA
| | | | | | - Sophie Foss
- Columbia University Medical Center, New York, NY, USA
| | - Preeya Desai
- Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Raina Fichorova
- Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA, USA
| | | | - Amii Kress
- Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
28
|
Chandra Yadav I, Devi NL, Li J, Zhang G. Examining the role of total organic carbon and black carbon in the fate of legacy persistent organic pollutants (POPs) in indoor dust from Nepal: Implication on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:225-235. [PMID: 30903878 DOI: 10.1016/j.ecoenv.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Despite the fact that the consumption and import of legacy persistent organic pollutants (POPs) have been stopped in Nepal since 2001, they are still of worry for human prosperity and the environment because of their persistence behavior and constant release from sources that are presently being used. The essential objective of this study was to assess the concentration and spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in residential dust from Nepal keeping in mind the end goal to evaluate the importance of total organic carbon (TOC) and black carbon (BC) in the fate of legacy POPs. Additionally, health risk exposure via dust ingestion and dermal absorption was estimated to evaluate the significance of dust media for human exposure. Results demonstrated that ∑OCPs in dust was 37 times greater than ∑PCBs. DDT was mostly dominated in the dust, and contributed 90% of the ∑OCPs, while hexa-CBs predominated among PCBs and represented 34% of ∑PCBs. Birgunj and Biratnagar had a relatively higher level of ∑OCPs and ∑PCBs than those of Kathmandu and Pokhara. TOC and BC showed a poor connection with OCPs, recommending little or no role. However, PCB in the dust, especially low congeners was strongly linked with TOC but not BC indicating the significant role of TOC. The daily risk exposure estimation indicated dermal absorption through dust as the principal means of OCPs/PCBs intake to both adult and children population. These estimated exposures were 2-4 orders of magnitude inferior to their corresponding reference dose showing insignificant risk.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo, 1838509, Japan.
| | - Ningombam Linthoingambi Devi
- Centre for Environmental Sciences, Central University of South Bihar, SH-7, Gaya-Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
29
|
Bhat ZF, Morton JD, Mason SL, Bekhit AEA, Bhat HF. Technological, Regulatory, and Ethical Aspects ofIn VitroMeat: A Future Slaughter‐Free Harvest. Compr Rev Food Sci Food Saf 2019; 18:1192-1208. [DOI: 10.1111/1541-4337.12473] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zuhaib F. Bhat
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | - James D. Morton
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | - Susan L. Mason
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | | | - Hina F. Bhat
- Div. of BiotechnologySKUAST of Kashmir Srinagar Jammu and Kashmir India
| |
Collapse
|
30
|
Liu J, Liu Y, Zhang A, Liu Y, Zhu Y, Guo M, Zhang R. Spatial distribution, source identification, and potential risk assessment of toxic contaminants in surface waters from Yulin, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:293. [PMID: 31016390 DOI: 10.1007/s10661-019-7441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The Yulin Energy and Chemical Industry Base is widely known for its rich mineral resources and multiple types of fossil-fuel-based chemical industries; nevertheless, information regarding the level of toxic contaminants in the surface waters is lacking in this area. Therefore, this study investigates the distributions, sources, and risks of various toxic contaminants, including heavy metals, organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs), from 35 sampling sites in eight rivers. The ΣHCH concentration ranged from 1.28 to 6.64 ng/L with predominant β-HCH, and the ΣDDT concentration was less than 0.35 ng/L. The OCPs were derived from the recent input of lindane, residual technical-grade HCHs, and DDTs. The soil type can affect the environmental fate of DDT, and p,p'-DDE was widespread in the sandy land and loess areas. p,p'-DDD was rarely detected in the Mu Us Sandy Land area. The calculated ratios of isomers indicated that petroleum was the major source of PAHs. OCP and PAH contamination in the surface waters posed potential risks at several sampling sites. Due to the impacts by industrial emissions, agricultural sources, and vehicular traffic, the distribution of contaminant concentrations in the surface waters exhibited a significant spatial relationship with the land use pattern in the study region according to the results of principal component analysis and cluster analysis.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
- School of Civil Engineering, Yulin University, Yulin, 719000, China
| | - Yongjun Liu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China.
| | - Aining Zhang
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yu Liu
- School of Petroleum and Environment Engineering, Yanan University, Yanan, 716000, China
| | - Ying Zhu
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Ming Guo
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Rui Zhang
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| |
Collapse
|
31
|
Lu S, Wang N, Ma S, Hu X, Kang L, Yu Y. Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:257-263. [PMID: 30557799 DOI: 10.1016/j.envpol.2018.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
This work aimed to determine the concentrations of parabens and triclosan (TCS) in shellfish from coastal waters of Shenzhen, South China. A method of isotope dilution with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine TCS and five paraben analogues, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BeP), in 186 shellfish samples covering eight species. Concentrations of parabens and TCS were 0.13-25.5 ng/g wet weight (ww) and <LOQ-6.51 ng/g ww, respectively, indicating their ubiquitous contamination in Shenzhen coastal waters. MeP was the most predominant paraben, followed by EtP and PrP. These three analogues accounted for more than 95% of the total concentrations of parabens. The "high" estimated daily intakes of parabens and TCS with the 95th percentage concentrations were estimated to be 2.15-26.1 and 0.41-10.3 ng/kg bw/day, respectively, much lower than the acceptable dietary intakes of parabens (1 × 107 ng/kg bw/day) and TCS (200 ng/kg bw/day), indicating no significant human health risks from shellfish consumption in the studied region. To our knowledge, this is the first report on the occurrences of parabens and TCS in shellfish products from Shenzhen coastal waters.
Collapse
Affiliation(s)
- Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Ning Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xing Hu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
32
|
Lu S, Long F, Lu P, Lei B, Jiang Z, Liu G, Zhang J, Ma S, Yu Y. Benzophenone-UV filters in personal care products and urine of schoolchildren from Shenzhen, China: Exposure assessment and possible source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1214-1220. [PMID: 30021286 DOI: 10.1016/j.scitotenv.2018.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
The use of benzophenone (BP)-type UV filters in personal care products (PCPs) has rapidly increased in China over the past decade, leading to growing concerns on the potential adverse effects associated with the usage. Urine analysis is an ideal non-invasive approach for human biomonitoring of xenobiotics that are excreted mainly through urinary system. To investigate human exposure of PCPs to children from South China, we determined BP-type UV filters in a total of 156 commercial PCP goods covering 11 categories, as well as 280 urine samples collected from elementary school students in Shenzhen, China. Five BP analogues (i.e., BP1, BP2, BP3, BP8, and 4HB) were frequently detected in both PCPs and urine, among which BP3 was the dominant analogue, accounting for 96.3% of the total BPs in PCPs and 53.2% in urine, respectively. Sunscreens contained the highest BP concentrations (mean: 2.15 × 104 ng g-1) among all PCP goods. Girls exhibited higher urinary BP concentrations than boys, and body mass index positively influenced BP concentrations. However, no regional difference in urinary BP concentration was observed. The estimated dermal uptake of BPs from PCPs after considering the percutaneous absorption rates was much lower than the estimated dermal intake. The total daily excretion doses estimated from urinary BPs were 74.4 and 47.4 ng·kg-1bw day-1 for girls and boys, respectively. The higher usage of body lotions, hand lotions, and sunscreens by girls than boys (1.49 vs. 1.03 times week-1) might play an important role.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Fei Long
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | - Ping Lu
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zi'an Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
33
|
Yu Y, Jiang Z, Zhao Z, Chong D, Li G, Ma S, Zhang Y, An T. Novel in vitro method for measuring the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons using simulated human lung fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1633-1641. [PMID: 30082153 DOI: 10.1016/j.envpol.2018.07.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The bioaccessibility of organic pollutants is a key factor in human health risk assessments. We developed a novel in vitro method for determining the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons (PAHs) using an air-washing device containing simulated human lung fluid. The experimental parameters were optimized based on the deposition fractions (DFs) of PAHs in human lung fluids. The DFs were measured for PAHs based on the mass of compounds in the mainstream and exhaled cigarette smoke. The mass fractions of bioaccessible PAHs were measured by passing the mainstream cigarette smoke through the air-washing device, and they were calculated via a simple mass balance equation based on the PAHs in the fluid and mainstream cigarette smoke. The DFs of individual PAHs ranged from 20.5% to 78.1%, and the bioaccessible mass fractions varied between 45.5% and 99.8%. The octanol-water partition coefficients (KOW) significantly influenced both the DFs and bioaccessible mass fractions of PAHs, and the optimized in vitro method could be used to estimate the bioavailable atmospheric PAHs. This in vitro method can potentially be used to measure the mass fraction of bioaccessible atmospheric PAHs and to assess the health risk related to human exposure to airborne PAHs.
Collapse
Affiliation(s)
- Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Zi'an Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhishen Zhao
- Teaching Equipment and Laboratory Management Center, Guiyang University, Guiyang, 550005, PR China
| | - Dan Chong
- Institute of Construction and Project Management, School of Management, Shanghai University, Shanghai, 200444, PR China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Yanan Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
34
|
Song S, Ma X, Pan M, Tong L, Tian Q. Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:457. [PMID: 29995278 DOI: 10.1007/s10661-018-6850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Breastfeeding is a specific and important way for women to eliminate harmful substances accumulated in body. Hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), and 2,2-bis(p-chlorophenyl)-1,1-dichloroethene (p,p'-DDE) are dominant organochlorine compounds(OCCs) and persistent organic pollutants (POPs) accumulated in human being. Although a 6-month breastfeeding was suggested by the World Health Organization (WHO), the excretion characteristics of OCCs in human milk during the first 6-month lactation remain controversial. The main purpose of this study was to continuously monitor the three dominant OCC concentrations and reveal their elimination characteristic in human milk within the first 6-month lactation. To do that, with one sample per month, during their first 6-month lactation, human milk samples were continuously collected from 40 mothers after their first birth. The result showed that the concentrations of the three OCCs in human milk during the lactation continuously decreased from 51.7 to 39.9 μg/kg milk lipids for HCB, from 136.5 to 84.8 μg/kg milk lipids for β-HCH, and from 307.3 to 192 μg/kg milk lipids, respectively. The excretion kinetics of each compound in milk lipids fitted zero-order kinetics during the 6-month lactation. The excretion rate of the three OCCs was approximately 3% per month for HCB and 7% per month for the other two compounds during the lactation, with tdec 1/2 of 13 months for HCB, 7.5 months for β-HCH, and 8 months for p,p'-DDE. The excretion rate of the target compounds depended on initial deposited levels, compound properties, and exposure or input source.
Collapse
Affiliation(s)
- Shuling Song
- National Research Center for Geoanalysis (NRCGA), CAGS, Beijing, 100037, China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Meng Pan
- National Research Center for Geoanalysis (NRCGA), CAGS, Beijing, 100037, China
| | - Ling Tong
- National Research Center for Geoanalysis (NRCGA), CAGS, Beijing, 100037, China
| | - Qin Tian
- National Research Center for Geoanalysis (NRCGA), CAGS, Beijing, 100037, China
| |
Collapse
|
35
|
Lu S, Kang L, Liao S, Ma S, Zhou L, Chen D, Yu Y. Phthalates in PM 2.5 from Shenzhen, China and human exposure assessment factored their bioaccessibility in lung. CHEMOSPHERE 2018; 202:726-732. [PMID: 29604559 DOI: 10.1016/j.chemosphere.2018.03.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Temporal variability of phthalates (PAEs) in PM2.5 from Shenzhen during 2015-2016 was measured and the associated human exposure via inhalation was assessed. The PM2.5 concentrations ranged from 30.7 to 115 μg m-3, greater than the air quality guidelines of interim target-3 (10-15 μg m-3) and interim target-2 (15-25 μg m-3) set by World Health Organization. PAEs were detected in 94.7% samples and the 95th percentile concentrations of total PAEs (∑6PAEs) in Longgang and Nanshan districts were 324 and 44.7 ng m-3, respectively. Di-2-ethylhexyl phthalate was the dominant species, accounting for an average of 81.9% of ∑6PAEs. The mean and 95th percentile concentrations of ∑6PAEs in PM2.5 were used to calculate a "typical" and "high" total daily intake and uptake, respectively. The estimated total daily intakes of PAEs varied and depended on body weight in each age group. Infants had the highest "typical" and "high" daily intake of 43.4 and 179 ng kg-body weight (bw) -1 day-1 for boys, and 42.0 and 173 ng kg-bw-1 day-1 for girls, respectively. However, after taking the bioaccessibility of PAEs in PM2.5 into account, the total daily "typical" and "high" uptakes dropped to 27.3 and 113 ng kg-bw-1 day-1 for male infants, and 29.0 and 120 ng kg-bw-1 day-1 for female infants, respectively. Both of the data on the daily "high" intake and uptake were much lower than the tolerable daily intake set by the European Food Safety Agency. It merits attention that infants were subject to greater PAE exposure than adults.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China.
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Shengtao Ma
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Dingyan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Yingxin Yu
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
36
|
Kang S, Wang G, Zhao H, Cai W. Ball Milling-Induced Plate-like Sub-microstructured Iron for Enhancing Degradation of DDT in a Real Soil Environment. ACS OMEGA 2018; 3:6955-6961. [PMID: 31458861 PMCID: PMC6644382 DOI: 10.1021/acsomega.8b00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 06/10/2023]
Abstract
The remediation of soil contaminated by 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) has been a challenge. In this paper, the degradation performances of the ball milling-induced plate-like sub-microstructured zero valent iron (SMZVI) to DDT in a real soil environment is studied. It has been found that such SMZVI exhibits much higher degradation performances to DDT in soil than commercial ZVI powders under acidic conditions. More than 95% DDT could be degraded within 80 min in the 5 ppm DDT-contaminated soil with addition of 50 mg g-1 SMZVI, which is much better than the previously reported results. The time-dependent DDT removal amount can be well described by the pseudo first-order kinetic model. Further experiments have revealed that the ZVI dosages, surfactant's and acidic additions, and the weight ratio of soil-to-water in the slurries are important to DDT degradation, and the degradation products were mainly DDD (a product with less chlorine). An acid-assisted ZVI-induced reductive dechlorination process is proposed, which can well explain the DDT degradation behaviors in soil and the influence from the other factors. This work not only deepens the understanding of DDT degradation in soils based on ZVI but also demonstrates that the SMZVI could be a promising material for DDT degradation in real environments.
Collapse
Affiliation(s)
- Shenghong Kang
- Key
Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Center for Environmental and Energy Nanomaterials,
Institute of Solid State Physics, Chinese
Academy of Sciences, Hefei 230031, P. R. China
- Department
of Materials Science and Engineering, University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Guozhong Wang
- Key
Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Center for Environmental and Energy Nanomaterials,
Institute of Solid State Physics, Chinese
Academy of Sciences, Hefei 230031, P. R. China
| | - Huijun Zhao
- Key
Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Center for Environmental and Energy Nanomaterials,
Institute of Solid State Physics, Chinese
Academy of Sciences, Hefei 230031, P. R. China
| | - Weiping Cai
- Key
Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Center for Environmental and Energy Nanomaterials,
Institute of Solid State Physics, Chinese
Academy of Sciences, Hefei 230031, P. R. China
- Department
of Materials Science and Engineering, University
of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
37
|
Lu S, Yu Y, Ren L, Zhang X, Liu G, Yu Y. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1389-1396. [PMID: 29054660 DOI: 10.1016/j.scitotenv.2017.10.088] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 05/24/2023]
Abstract
Increasing concern has been raised in respect of exposure to bisphenols and triclosan (TCS) due to their widespread use. However, little is known about their occurrence in personal care products (PCPs) or, particularly, their dermal uptake following daily application. It is therefore necessary to evaluate the human health risk of bisphenols and TCS via dermal absorption. In this study, 150 PCPs, covering 11 different categories, were collected in China. The concentrations of seven bisphenol analogues and TCS were measured, and the associated human health risks by dermal contact were estimated. High detection frequencies of TCS (46.7%) and bisphenol AF (38.7%) were found in the PCPs. The highest mean concentration of Σ7BPs (sum concentration of all seven bisphenols) was 77.8ngg-1 found in masks, and the highest mean concentration of TCS was 86.7ngg-1 in hand sanitizers. The bisphenol composition profiles varied among different categories. Bisphenol A and bisphenol F generally showed higher concentrations. Combining the concentrations of the target substances with the daily usage quantities of PCPs and other parameters, the total estimated dermal intakes and uptakes of Σ7BPs and TCS were calculated. The results showed that the former (12.1 and 1.06ng·kg-1bwday-1) were markedly higher than the latter (1.21 and 9.58×10-2ng·kg-1bwday-1), which included dermal absorption rates of the chemicals in the estimation. Although diet is the main source, and oral ingestion is the main route, for human BPA exposure, the results of the estimated dermal uptakes of BPA in the present study combined with those from a European study show that dermal contact is the main route with thermal paper being the main contributor when both unconjugated and conjugated BPA in the human body are considered. The present study also showed that exposure to BPA in PCPs following dermal contact should not be ignored.
Collapse
Affiliation(s)
- Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuling Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lu Ren
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
|
39
|
Zhu S, Niu L, Aamir M, Zhou Y, Xu C, Liu W. Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:264-272. [PMID: 28477483 DOI: 10.1016/j.scitotenv.2017.04.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Large amounts of hexachlorocyclohexanes (HCHs) have been historically applied in the Yangtze River Delta (YRD) region, China. Estimating the air-soil exchange of HCHs after >30years of restricted use is important for understanding their cycling in the environment. In this study, air and soil samples were concurrently collected in two seasons at agricultural and industrial sites from a megacity in the YRD region. The concentrations of HCH isomers and the enantiomeric fractions of chiral α-HCH were determined. The mean concentrations of ∑HCHs in soils from an agricultural area (AA) and an eco-industrial park (EIP) were 1.74ng/g and 0.652ng/g, respectively, in winter, and 0.723ng/g and 0.350ng/g, respectively, in summer. The mean concentrations of ∑HCHs in the air from the AA and the EIP were 31.2pg/m3 and 47.7pg/m3, respectively, in winter, and 45.0pg/m3 and 50.0pg/m3, respectively, in summer. The variations in spatial and seasonal distributions might be related to diverse geographical factors, soil properties and meteorological conditions. Source identification demonstrated that HCHs in most samples were residues from past use, which was further evidenced by the enantiomeric signatures of chiral α-HCH. A preferential degradation of (-)-α-HCH was showed in soils and summer air, while a preferential depletion of (+)-α-HCH was displayed in winter air. The values of the fugacity fraction (ff) of HCHs suggest a net volatilization from soils to air, but long-range transport may also partly contribute to the atmospheric HCHs according to the results from enantiomeric analysis. The human health risk assessments indicated an absence of noncarcinogenic risks and very low carcinogenic risks for HCHs in both soils and air to human health. Results from this study provide valuable data for assessing the fate and health risks of HCHs in the YRD region.
Collapse
Affiliation(s)
- Siyu Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Aamir
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Thompson LA, Ikenaka Y, Yohannes YB, van Vuren JJ, Wepener V, Smit NJ, Darwish WS, Nakayama SMM, Mizukawa H, Ishizuka M. Concentrations and human health risk assessment of DDT and its metabolites in free-range and commercial chicken products from KwaZulu-Natal, South Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1959-1969. [DOI: 10.1080/19440049.2017.1357209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- L. A. Thompson
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Y. Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Y. B. Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - J. J. van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - V. Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - N. J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - W. S. Darwish
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - S. M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - H. Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - M. Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
He CT, Yan X, Wang MH, Zheng XB, Chen KH, Guo MN, Zheng J, Chen SJ. Dichloro-diphenyl-trichloroethanes (DDTs) in human hair and serum in rural and urban areas in South China. ENVIRONMENTAL RESEARCH 2017; 155:279-286. [PMID: 28259092 DOI: 10.1016/j.envres.2017.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Human hair has been employed as a biomarker for exposure to persistent organic pollutants (POPs), but information on the source of dichloro-diphenyl-trichloroethane (DDT) and its metabolites in hair is limited. The present study investigated the contamination of DDTs in human hair from a rural area and an urban area of South China and compared with those in human serum and indoor dust. The concentrations of ∑DDTs ranged from 2.30 to 489ng/g, with a median of 21.8ng/g in human hair. The ∑DDT concentrations (median=40.8ng/g) in female hair were significantly higher than those in male hair (median=20.6ng/g). There were significantly positive correlations between the concentrations of DDTs and ages in both the female and male hair, but the age-dependence for DDTs in serum was less significant. The profile of DDT analogues in female hair, differing from that in the male hair, was more similar to that in the indoor dust, suggesting a more important role of exogenous exposure in female hair. We estimated that exogenous source is responsible for approximately 11% and 20% of the burden of DDTs in the male and female hair, respectively. Adjusted multiple linear regression model showed significantly positive association between the p,p'-DDE concentrations in the paired hair and serum samples, indicating that endogenous origins are the primary sources of DDTs in the hair of the residents in the study areas. Our findings demonstrated that human hair is a reliable biomarker for body burden of DDTs and can be used in epidemiology research and retrospective assessment of DDT exposure.
Collapse
Affiliation(s)
- Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Mei-Huan Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xiao-Bo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke-Hui Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mi-Na Guo
- College of Natural Resources, University of California-Berkeley, Berkeley, CA, USA
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
42
|
Zhang X, Yu Y, Gu Y, Li X, Zhang X, Yu Y. In vitro determination of transdermal permeation of synthetic musks and estimated dermal uptake through usage of personal care products. CHEMOSPHERE 2017; 173:417-424. [PMID: 28129620 DOI: 10.1016/j.chemosphere.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/23/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Synthetic musks, chemical constituents of personal care products, enter the human body through dermal contact. Elucidation of the mechanisms underlying transdermal permeation of synthetic musks should enhance our understanding of their uptake and distribution in human skin and allow accurate evaluation of associated human exposure. Here, the transdermal permeation dynamics and distribution of galaxolide (HHCB) and tonalide (AHTN) were investigated using an in vitro skin diffusion model. The transdermal permeation amounts of HHCB and AHTN increased rapidly during the first 6 h. The applied HHCB and AHTN amounts did not affect percutaneous absorption rates. HHCB and AHTN remained primarily in the stratum corneum, accounting for 70.0% and 70.3% of the totals during the 24-h period, respectively. The percutaneous absorption rate of both chemicals was ∼11%. HHCB, AHTN, musk ketone, musk xylene, and Musk-T were detected in 29 personal care products. The average total concentrations of the musks were 3990, 54.0, 17.7, and 9.8 μg g-1 in perfume, shampoo, lotion, and shower gel, respectively. Among the four product categories, HHCB was dominant (57.4%-99.6%), followed by AHTN. The data clearly indicate that polycyclic and nitro musks are most commonly used in personal care products. The total estimated dermal intake (51.6 μg kg-1bw day-1) was markedly higher than total dermal uptake (5.9 μg kg-1bw day-1) when percutaneous absorption rates of the chemicals were added into the calculation. Uptake of HHCB and AHTN via dermal contact of personal care products was significantly higher than that from dust inhalation calculated according to earlier literature data.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yuling Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yue Gu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaojing Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
43
|
Shen H, Starr J, Han J, Zhang L, Lu D, Guan R, Xu X, Wang X, Li J, Li W, Zhang Y, Wu Y. The bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods. ENVIRONMENT INTERNATIONAL 2016; 94:33-42. [PMID: 27203782 DOI: 10.1016/j.envint.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
In this study, we compared the effect of boiling and frying food preparation methods in determining the bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in rice, cabbage, milk powder, eggs, beef, and fresh water fish. We then used these data to calculate a toxic equivalent (TEQ) for risk assessment and compared it to published values that did not account for bioaccessibility. When the foods were prepared by boiling, the mean bioaccessibility (%) in rice (PCBs: 16.5±1.0, PCDD/Fs: 4.9±0.3) and cabbage (PCBs: 4.2±0.9, PCDD/Fs: 1.9±0.7) were lower than in animal origin foods (beef, PCBs: 49.0±3.3, PCDD/Fs: 7.8±0.9; egg, PCBs: 29.7±3.1, PCDD/Fs: 8.6±1.3; fish, PCBs: 26.9±2.5, PCDD/Fs: 7.9±1.3; milk powder, PCBs: 72.3±1.6, PCDD/Fs: 28.4±1.2). When fried in cooking oil, the bioaccessibilities of all analytes in all foods increased, but the increase in plant based foods (rice, PCBs: 3.4×, PCDD/Fs: 3.6×; cabbage, PCBs: 10.3×, PCDD/Fs: 7.9×) was greater than that of animal origin foods (beef, PCBs: 1.6×, PCDD/Fs: 3.4×; egg, PCBs: 2.1×, PCDD/Fs: 1.8×; fish, PCBs: 2.8, PCDD/Fs: 3.2×). Comparison of PCBs/PCDD/Fs bioaccessibility in rice and cabbage showed that bioaccessibility was greater in the low fat, high carbohydrate/protein content food (rice) than in the low carbohydrate/protein, low fat content food (cabbage), regardless of the method used to prepare the food. Adjusting for bioaccessibility reduced the gross estimated daily intake (EDI) of 112pgWHO-TEQ/day, by 88% and 63% respectively for foods prepared by boiling and frying. Our results indicate that: 1) The method used for cooking is an important determinant of PCBs/PCDD/Fs bioaccessibility, especially for plant origin foods, 2) there might be a joint fat, carbohydrate and protein effect that influences the bioaccessibilities of PCBs/PCDD/Fs in foods, and 3) use of bioaccessibility estimates would reduce the uncertainty in TEQ calculations.
Collapse
Affiliation(s)
- Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China.
| | - James Starr
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Jianlong Han
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, 7 Panjiayuan Nanli Road, 100021 Beijing, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336, China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, 310018 Hangzhou,China
| | - Xiaomin Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, 7 Panjiayuan Nanli Road, 100021 Beijing, China
| | - Weiwei Li
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, 310051 Hangzhou, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, 7 Panjiayuan Nanli Road, 100021 Beijing, China.
| |
Collapse
|
44
|
Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jørgensen N, Levine H, Hauser R, Swan SH, Chavarro JE. Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men. J Nutr 2016; 146:1084-92. [PMID: 27075904 PMCID: PMC4841922 DOI: 10.3945/jn.115.226563] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Numerous studies have shown that occupational or environmental pesticide exposure can affect male fertility. There is less evidence, however, regarding any potentially adverse effects of pesticide residues in foods on markers of male fertility potential. OBJECTIVES We examined the relations between fruit and vegetable intake, considering pesticide residue status, and semen quality and serum concentrations of reproductive hormones in healthy young men. METHODS The Rochester Young Men's Study is a cross-sectional study that recruited men aged 18-22 y (n = 189) in Rochester, New York. Participants completed a questionnaire, provided a semen sample, had a blood sample drawn, and underwent a physical examination at enrollment. Semen samples were analyzed for total sperm count, sperm concentration, morphology, motility, ejaculate volume, total motile count, and total normal count. Dietary intake during the previous year was assessed by a validated food-frequency questionnaire. Fruit and vegetables were categorized as having high [Pesticide Residue Burden Score (PRBS) ≥4] or low-to-moderate (PRBS <4) pesticide residues on the basis of data from the USDA Pesticide Data Program. Linear regression models were used to analyze the associations of fruit and vegetable intake with semen variables and reproductive hormones while adjusting for potential confounding factors. RESULTS The total intake of fruit and vegetables was unrelated to semen quality. However, the intake of fruit and vegetables with low-to-moderate pesticide residues was associated with a higher total sperm count and sperm concentration, whereas the intake of fruit and vegetables with high pesticide residues was unrelated to semen quality. On average, men in the highest quartile of low-to-moderate-pesticide fruit and vegetable intake (≥2.8 servings/d) had a 169% (95% CI: 45%, 400%) higher total sperm count and a 173% (95% CI: 57%, 375%) higher sperm concentration than did men in the lowest quartile (<1.1 servings/d; P-trend = 0.003 and 0.0005, respectively). The intake of fruit and vegetables, regardless of pesticide-residue status, was not associated with reproductive hormone concentrations. CONCLUSIONS The consumption of fruit and vegetables with low-to-moderate pesticide residues was positively related to sperm counts in young men unselected by fertility status. This suggests that pesticide residues may modify the beneficial effects of fruit and vegetable intake on semen quality.
Collapse
Affiliation(s)
| | | | | | - Jaime Mendiola
- Division of Preventive Medicine and Public Health, University of Murcia School of Medicine, IMIB-Arrixaca, Murcia, Spain
| | - Niels Jørgensen
- University Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hebrew University-Hadassah and the Hebrew University Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel;,Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Russ Hauser
- Epidemiology,,Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Shanna H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Jorge E Chavarro
- Departments of Nutrition, Epidemiology, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Meng G, Nie Z, Feng Y, Wu X, Yin Y, Wang Y. Typical halogenated persistent organic pollutants in indoor dust and the associations with childhood asthma in Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:389-398. [PMID: 26798999 DOI: 10.1016/j.envpol.2015.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Halogenated persistent organic pollutants (Hal-POPs) are significant contaminants in the indoor environment that are related to many human diseases. Ingestion of indoor dust is considered the major pathway of Hal-POP exposures, especially for children aged 3-6 years. Alongside a retrospective study on the associations between typical Hal-POP exposure and childhood asthma in Shanghai, indoor dust samples from asthmatic and non-asthmatic children's homes (n = 60, each) were collected. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were measured by GC-MS. BDE-209, PCB-8 and p,p'-DDE were the predominant components in each chemical category. The concentrations of most Hal-POPs were significantly higher in the asthmatic families. The associations between Hal-POP exposure and asthma occurrence were examined by calculating the odds ratios (ORs) using a logistic regression model. A positive association was found between p,p'-DDE in indoor dust and childhood asthma (OR = 1.825, 95%CI: 1.004, 3.317; p = 0.048). The average daily doses of Hal-POP intake were calculated using the method provided by the USEPA. Non-carcinogenic health risks were preliminarily assessed. Our study indicated that exposure to p,p'-DDE via indoor dust may contribute to childhood asthma occurrence. Non-carcinogenic health risks were not found with the intake of Hal-POPs via the ingestion of indoor dust.
Collapse
Affiliation(s)
- Ge Meng
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Zhiqing Nie
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Xiaomeng Wu
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai 200127, PR China.
| | - Yan Wang
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine (or Faculty of Public Health), Shanghai Jiao Tong University School of Medicine, PR China; MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
46
|
Meng G, Feng Y, Nie Z, Wu X, Wei H, Wu S, Yin Y, Wang Y. Internal exposure levels of typical POPs and their associations with childhood asthma in Shanghai, China. ENVIRONMENTAL RESEARCH 2016; 146:125-135. [PMID: 26748225 DOI: 10.1016/j.envres.2015.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are common persistent organic pollutants (POPs) that may be associated with childhood asthma. The concentrations of PBDEs, PCBs and OCPs were analyzed in pooled serum samples from both asthmatic and non-asthmatic children. The differences in the internal exposure levels between the case and control groups were tested (p value <0.0012). The associations between the internal exposure concentrations of the POPs and childhood asthma were estimated based on the odds ratios (ORs) calculated using logistic regression models. There were significant differences in three PBDEs, 26 PCBs and seven OCPs between the two groups, with significantly higher levels in the cases. The multiple logistic regression models demonstrated that the internal exposure concentrations of a number of the POPs (23 PCBs, p,p'-DDE and α-HCH) were positively associated with childhood asthma. Some synergistic effects were observed when the children were co-exposed to the chemicals. BDE-209 was positively associated with asthma aggravation. This study indicates the potential relationships between the internal exposure concentrations of particular POPs and the development of childhood asthma.
Collapse
Affiliation(s)
- Ge Meng
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Zhiqing Nie
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Xiaomeng Wu
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Hongying Wei
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai 200127, PR China.
| | - Yan Wang
- School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine (or Faculty of Public Health), Shanghai Jiao Tong University School of Medicine; MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Geng JJ, Li H, Liu JP, Yang Y, Jin ZL, Zhang YN, Zhang ML, Chen LQ, Du ZY. Nutrients and contaminants in tissues of five fish species obtained from Shanghai markets: Risk-benefit evaluation from human health perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:933-945. [PMID: 26105705 DOI: 10.1016/j.scitotenv.2015.06.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 05/27/2023]
Abstract
Shanghai is a Chinese megacity in the Yangtze River Delta area, one of the most polluted coastal areas in China. The inhabitants of Shanghai have very high aquatic product consumption rates. A risk-benefit assessment of the co-ingestion of fish nutrients and contaminants has not previously been performed for Shanghai residents. Samples of five farmed fish species (marine and freshwater) with different feeding habits were collected from Shanghai markets in winter and summer. Fatty acids, protein, mercury, cadmium, lead, copper, polychlorinated biphenyls, hexachlorocyclohexanes, and dichlorodiphenyltrichloroethanes were measured in liver, abdominal fat, and dorsal, abdominal, and tail muscles from fish. Tolerable daily intakes and benefit-risk quotients were calculated to allow the benefits and risks of co-ingesting n-3 long-chain polyunsaturated fatty acids and contaminants to be assessed according to the cancer slope factors and reference doses of selected pollutants. All of the contaminant concentrations in the muscle tissues were much lower than the national maximum limits, but the livers generally contained high Hg concentrations, exceeding the regulatory limit. The organic pollutant and n-3 long-chain polyunsaturated fatty acid concentrations correlated with the lipid contents of the fish tissues, and were higher in carnivorous marine fish than in omnivorous and herbivorous freshwater fish. The tolerable daily intakes, risk-benefit quotients, and current daily aquatic product intakes for residents of large Chinese cities indicated that the muscle tissues of most of the fish analyzed can be consumed regularly without significant contaminant-related risks to health. However, attention should be paid to the potential risks posed by dichlorodiphenyltrichloroethane in large yellow croaker and Hg in tilapia. Based on the results of this study, we encourage people to consume equal portions of marine and freshwater fish.
Collapse
Affiliation(s)
- Jing-Jing Geng
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Huan Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Jin-Pin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China.
| | - Ze-Lin Jin
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Yun-Ni Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
48
|
Engel E, Ratel J, Bouhlel J, Planche C, Meurillon M. Novel approaches to improving the chemical safety of the meat chain towards toxicants. Meat Sci 2015; 109:75-85. [DOI: 10.1016/j.meatsci.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
|
49
|
Collins CD, Craggs M, Garcia-Alcega S, Kademoglou K, Lowe S. 'Towards a unified approach for the determination of the bioaccessibility of organic pollutants'. ENVIRONMENT INTERNATIONAL 2015; 78:24-31. [PMID: 25728561 DOI: 10.1016/j.envint.2015.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Bioaccessibility studies have been widely used as a research tool to determine the potential human exposure to ingested contaminants. More recently they have been practically applied for soil borne toxic elements. This paper reviews the application of bioaccessibility tests across a range of organic pollutants and contaminated matrices. Important factors are reported to be: the physiological relevance of the test, the components in the gut media, the size fraction chosen for the test and whether it contains a sorptive sink. The bioaccessibility is also a function of the composition of the matrix (e.g. organic carbon content of soils) and the physico-chemical characteristics of the pollutant under test. Despite the widespread use of these tests, there are a large number of formats used and very few validation studies with animal models. We propose a unified format for a bioaccessibility test for organic pollutants. The robustness of this test should first be confirmed through inter laboratory comparison, then tested in-vivo.
Collapse
Affiliation(s)
| | - Mark Craggs
- Soil Research Centre, University of Reading, Reading, UK
| | | | | | - Stephen Lowe
- Soil Research Centre, University of Reading, Reading, UK
| |
Collapse
|
50
|
Lei B, Zhang K, An J, Zhang X, Yu Y. Human health risk assessment of multiple contaminants due to consumption of animal-based foods available in the markets of Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4434-4446. [PMID: 25315930 DOI: 10.1007/s11356-014-3683-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
To assess the health risks due to food consumption, the human daily intake and uptake of organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and toxic trace elements (mercury, chromium, cadmium, lead, and arsenic) were estimated based on the animal-based foods collected from markets in Shanghai, China. The estimated daily intake and uptake considering the contaminant bioaccessibility via single food consumption were 9.4-399 and 4.2-282 ng/kg body weight/day for adults, and 10.8-458 and 4.8-323 ng/kg body weight/day for children, respectively. These values were 0.2-104 and 0.05-58.1, and 0.2-119 and 0.06-66.6 ng/kg body weight/day via multiple food consumption for adults and children, respectively. According to the United States Environmental Protection Agency risk assessment method, the non-cancer and cancer health risks posed by the contaminants were estimated using the hazard quotient and the lifetime cancer risk method, respectively. The results showed that the combined hazard quotient values for multiple contaminants via single or multiple food consumption were below 1, suggesting that the residents in Shanghai would not experience a significant non-cancer health risk. Among the contaminants investigated, the potential non-cancer risk of methylmercury was highest. However, the combined cancer risk posed by multiple contaminants in most foods exceeded the accepted risk level of 10(-6), and inorganic arsenic was the main contributor. The risks caused by polybrominated diphenyl ethers for cancer and non-cancer effects were negligible. The cancer risk of inorganic arsenic is a matter of concern in animal-based foods from Shanghai markets.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd 333, Baoshan District, Shanghai, 200444, People's Republic of China
| | | | | | | | | |
Collapse
|