1
|
Iribarne-Durán LM, Castillero-Rosales I, Peinado FM, Artacho-Cordón F, Molina-Molina JM, Medianero E, Nicolás-Delgado SI, Sánchez-Pinzón L, Núñez-Samudio V, Vela-Soria F, Olea N, Alvarado-González NE. Placental concentrations of xenoestrogenic organochlorine pesticides and polychlorinated biphenyls and assessment of their xenoestrogenicity in the PA-MAMI mother-child cohort. ENVIRONMENTAL RESEARCH 2024; 241:117622. [PMID: 37977273 DOI: 10.1016/j.envres.2023.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCB), they have contributed to the exposure of women to persistent organic pollutants (POPs). These compounds can cross the placental barrier and interfere with the hormonal system of newborns. AIM To determine concentrations of OCPs and PCBs and their xenoestrogenic activity in placentas of women from the PA-MAMI cohort of Panama. METHODS Thirty-nine placenta samples from women in the Azuero peninsula (Panama) were analyzed. Five OCPs [p-p'-dichlorodiphenyldichloroethylene (p-p'-DDE), beta-hexachlorohexane (β-HCH), γ-hexachlorohexane (lindane), hexachlorobenzene (HCB) and mirex] and three PCB congeners (PCB-138, PCB-153 and PCB-180) were quantified in placenta extracts. The xenoestrogenic activity of extracts was assessed with the E-Screen bioassay to estimate the total effective xenoestrogen burden (TEXB). RESULTS All placental samples were positive for at least three POP residues and >70% for at least six. The frequencies of quantified OCPs ranged from 100% for p,p'-DDE and HCB to 30.8% for β-HCH. The highest median concentration was for lindane (380.0 pg/g placenta), followed by p,p'-DDE (280.0 pg/g placenta), and HCB (90.0 pg/g placenta). Exposure to p,p'-DDE was associated with greater meat consumption, suggesting that animal fat is a major source of exposure to DDT metabolites. The frequency of detected PCBs ranged between 70 and 90%; the highest median concentration was for PCB 138 (17.0 pg/g placenta), followed by PCB 153 (16.0 pg/g placenta). All placentas were positive in the estrogenicity bioassay with a median TEXB-α of 0.91 pM Eeq/g of placenta. Exposure to lindane was positively associated with the xenoestrogenicity of TEXB- α, whereas this association was negative in the case of exposure to PCB 153. CONCLUSIONS To our best knowledge, this study contributes the first evidence on the presence of POPs and xenoestrogenic burden in placentas from Latin-American women. Given concerns about the consequences of prenatal exposure to these compounds on children's health, preventive measures are highly recommended to eliminate or minimize the risk of OCP exposure during pregnancy.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain.
| | | | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E- 28029, Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E- 18016, Granada, Spain
| | - J M Molina-Molina
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - E Medianero
- Departamento de Ciencias Ambientales, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama; Secretaria Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama
| | - S I Nicolás-Delgado
- Departamento de Ginecología y Obstetricia, Hospital Joaquín Pablo Franco Sayas, Ministerio de Salud, Los Santos, Panama
| | - L Sánchez-Pinzón
- Clínica de Cesación de Tabaco y Clínica del Empleado Local, Región de Salud de Azuero, Ministerio de Salud, Los Santos, Panama
| | - V Núñez-Samudio
- Departamento de Salud Pública, Sección de Epidemiología, Región de Salud de Herrera, Ministerio de Salud, Panama; Instituto de Ciencias Médicas, Las Tablas, Los Santos, Panama
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E- 28029, Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E- 18016, Granada, Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E- 18016, Granada, Spain
| | - N E Alvarado-González
- Instituto Especializado de Análisis (IEA), Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama
| |
Collapse
|
2
|
Wielsøe M, Molina-Molina JM, Rodríguez-Carrillo A, Mustieles V, Olea N, Fernandez MF, Bonefeld-Jørgensen EC. Xeno-estrogenic activity of real-life mixtures of perfluoroalkylated substances in human placenta homogenates. Reprod Toxicol 2023; 120:108444. [PMID: 37473930 DOI: 10.1016/j.reprotox.2023.108444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Humans are simultaneously exposed to complex chemical mixtures, and its combined effect can affect human health. As part of the HBM4EU project, the actual mixture of perfluoroalkylated substances (PFAS) in 25 human placenta samples was extracted by chromatographic methods and assessed for xeno-estrogenic activity using two in-vitro bioassays: the estrogen receptor transactivity and the E-Screen assay. Most of the PFAS extracts displayed xeno-estrogenic activity, in one or both assays. The xeno-estrogenic activities in the two bioassays were not correlated, but both assays showed an overall negative correlation with placenta concentrations of single PFAS. Xeno-estrogenic activities were significantly related to maternal characteristics; being higher in young, smokers and primiparous women, but not with fetal growth (birth weight, birth length, head circumference, gestational age, placenta weight). The presented extraction method can be used to study the combined effect of real-life mixtures of PFAS in relation to health outcomes in large-scale human biomonitoring studies.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark.
| | - Jose-Manuel Molina-Molina
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Nicolas Olea
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Mariana F Fernandez
- Center for Biomedical Research (CIBM) & Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), E-18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), E-28029, Spain
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, GRL-3905 Nuussuaq, Greenland
| |
Collapse
|
3
|
Rodríguez-Carrillo A, Rosenmai AK, Mustieles V, Couderq S, Fini JB, Vela-Soria F, Molina-Molina JM, Ferrando-Marco P, Wielsøe M, Long M, Bonefeld-Jorgensen EC, Olea N, Vinggaard AM, Fernández MF. Assessment of chemical mixtures using biomarkers of combined biological activity: A screening study in human placentas. Reprod Toxicol 2021; 100:143-154. [PMID: 33444715 DOI: 10.1016/j.reprotox.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Humans are simultaneously exposed to complex mixtures of chemicals with limited knowledge on potential health effects, therefore improved tools for assessing these mixtures are needed. As part of the Human Biomonitoring for Europe (HBM4EU) Project, we aimed to examine the combined biological activity of chemical mixtures extracted from human placentas using one in vivo and four in vitro bioassays, also known as biomarkers of combined effect. Relevant endocrine activities (proliferative and/or reporter gene assays) and four endpoints were tested: the estrogen receptor (ER), androgen receptor (AR), and aryl hydrocarbon receptor (AhR) activities, as well as thyroid hormone (TH) signaling. Correlations among bioassays and their functional shapes were evaluated. Results showed that all placental extracts agonized or antagonized at least three of the abovementioned endpoints. Most placentas induced ER-mediated transactivation and ER-dependent cell proliferation, together with a strong inhibition of TH signaling and the AR transactivity; while the induction of the AhR was found in only one placental extract. The effects in the two estrogenic bioassays were positively and significantly correlated and the AR-antagonism activity showed a positive borderline-significant correlation with both estrogenic bioassay activities. However, the in vivo anti-thyroid activities of placental extracts were not correlated with any of the tested in vitro assays. Findings highlight the importance of comprehensively mapping the biological effects of "real-world" chemical mixtures present in human samples, through a battery of in vitro and in vivo bioassays. This approach should be a complementary tool for epidemiological studies to further elucidate the combined biological fingerprint triggered by chemical mixtures.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Anna Kjerstine Rosenmai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain.
| | - Stephan Couderq
- Physiologie moléculaire et Adaptation, Département "Adaptation du Vivant," UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Jean-Baptiste Fini
- Physiologie moléculaire et Adaptation, Département "Adaptation du Vivant," UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Fernando Vela-Soria
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Jose Manuel Molina-Molina
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Eva Cecilie Bonefeld-Jorgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain.
| |
Collapse
|
4
|
Zare Jeddi M, Hopf NB, Viegas S, Price AB, Paini A, van Thriel C, Benfenati E, Ndaw S, Bessems J, Behnisch PA, Leng G, Duca RC, Verhagen H, Cubadda F, Brennan L, Ali I, David A, Mustieles V, Fernandez MF, Louro H, Pasanen-Kase R. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. ENVIRONMENT INTERNATIONAL 2021; 146:106257. [PMID: 33395925 DOI: 10.1016/j.envint.2020.106257] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Effect biomarkers can be used to elucidate relationships between exposure to environmental chemicals and their mixtures with associated health outcomes, but they are often underused, as underlying biological mechanisms are not understood. We aim to provide an overview of available effect biomarkers for monitoring chemical exposures in the general and occupational populations, and highlight their potential in monitoring humans exposed to chemical mixtures. We also discuss the role of the adverse outcome pathway (AOP) framework and physiologically based kinetic and dynamic (PBK/D) modelling to strengthen the understanding of the biological mechanism of effect biomarkers, and in particular for use in regulatory risk assessments. An interdisciplinary network of experts from the European chapter of the International Society for Exposure Science (ISES Europe) and the Organization for Economic Co-operation and Development (OECD) Occupational Biomonitoring activity of Working Parties of Hazard and Exposure Assessment group worked together to map the conventional framework of biomarkers and provided recommendations for their systematic use. We summarized the key aspects of this work here, and discussed these in three parts. Part I, we inventory available effect biomarkers and promising new biomarkers for the general population based on the H2020 Human Biomonitoring for Europe (HBM4EU) initiative. Part II, we provide an overview AOP and PBK/D modelling use that improved the selection and interpretation of effect biomarkers. Part III, we describe the collected expertise from the OECD Occupational Biomonitoring subtask effect biomarkers in prioritizing relevant mode of actions (MoAs) and suitable effect biomarkers. Furthermore, we propose a tiered risk assessment approach for occupational biomonitoring. Several effect biomarkers, especially for use in occupational settings, are validated. They offer a direct assessment of the overall health risks associated with exposure to chemicals, chemical mixtures and their transformation products. Promising novel effect biomarkers are emerging for biomonitoring of the general population. Efforts are being dedicated to prioritizing molecular and biochemical effect biomarkers that can provide a causal link in exposure-health outcome associations. This mechanistic approach has great potential in improving human health risk assessment. New techniques such as in silico methods (e.g. QSAR, PBK/D modelling) as well as 'omics data will aid this process. Our multidisciplinary review represents a starting point for enhancing the identification of effect biomarkers and their mechanistic pathways following the AOP framework. This may help in prioritizing the effect biomarker implementation as well as defining threshold limits for chemical mixtures in a more structured way. Several ex vivo biomarkers have been proposed to evaluate combined effects including genotoxicity and xeno-estrogenicity. There is a regulatory need to derive effect-based trigger values using the increasing mechanistic knowledge coming from the AOP framework to address adverse health effects due to exposure to chemical mixtures. Such a mechanistic strategy would reduce the fragmentation observed in different regulations. It could also stimulate a harmonized use of effect biomarkers in a more comparable way, in particular for risk assessments to chemical mixtures.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1150-090 Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Anna Bal Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19, 20156 Milano, Italy
| | - Sophie Ndaw
- INRS-French National Research and Safety Institute, France
| | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Belgium
| | - Peter A Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Gabriele Leng
- Currenta GmbH Co. OHG, Institute of Biomonitoring, Leverkusen, Germany
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg
| | - Hans Verhagen
- Food Safety & Nutrition Consultancy (FSNConsultancy), Zeist, the Netherlands
| | - Francesco Cubadda
- Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisboa and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work (ABCH), Switzerland.
| |
Collapse
|
5
|
Vinggaard AM, Bonefeld-Jørgensen EC, Jensen TK, Fernandez MF, Rosenmai AK, Taxvig C, Rodriguez-Carrillo A, Wielsøe M, Long M, Olea N, Antignac JP, Hamers T, Lamoree M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. ENVIRONMENT INTERNATIONAL 2021; 146:106191. [PMID: 33068852 DOI: 10.1016/j.envint.2020.106191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Humans are exposed to a large number of chemicals from sources such as the environment, food, and consumer products. There is growing concern that human exposure to chemical mixtures, especially during critical periods of development, increases the risk of adverse health effects in newborns or later in life. Historically, the one-chemical-at-a-time approach has been applied both for exposure assessment and hazard characterisation, leading to insufficient knowledge about human health effects caused by exposure to mixtures of chemicals that have the same target. To circumvent this challenge researchers can apply in vitro assays to analyse both exposure to and human health effects of chemical mixtures in biological samples. The advantages of using in vitro assays are: (i) that an integrated effect is measured, taking combined mixture effects into account and (ii) that in vitro assays can reduce complexity in identification of Chemicals of Emerging Concern (CECs) in human tissues. We have reviewed the state-of-the-art on the use of receptor-based in vitro assays to assess human exposure to chemical mixtures and related health impacts. A total of 43 studies were identified, in which endpoints for the arylhydrocarbon receptor (AhR), the estrogen receptor (ER), and the androgen receptor (AR) were used. The majority of studies reported biological activities that could be associated with breast cancer incidence, male reproductive health effects, developmental toxicities, human demographic characteristics or lifestyle factors such as dietary patterns. A few studies used the bioactivities to check the coverage of the chemical analyses of the human samples, whereas in vitro assays have so far not regularly been used for identifying CECs in human samples, but rather in environmental matrices or food packaging materials. A huge field of novel applications using receptor-based in vitro assays for mixture toxicity assessment on human samples and effect-directed analysis (EDA) using high resolution mass spectrometry (HRMS) for identification of toxic compounds waits for exploration. In the future this could lead to a paradigm shift in the way we unravel adverse human health effects caused by chemical mixtures.
Collapse
Affiliation(s)
- Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland's Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Tina Kold Jensen
- Dep of Environmental Medicine, University of Southern Denmark, Denmark
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Nicolas Olea
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Timo Hamers
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
6
|
Gea M, Toso A, Schilirò T. Estrogenic activity of biological samples as a biomarker. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140050. [PMID: 32927569 DOI: 10.1016/j.scitotenv.2020.140050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Biological assays can evaluate the cumulative effect of a mixture, considering synergistic/antagonistic interactions and effects of unknown/unconsidered compounds. Therefore, their application could increase in the next years also to analyse biological samples. The aim of this review is to discuss the methodological approach and the application of estrogenic activity assays in human biological samples. 75 research articles were analysed and divided according to whether they used these assays: i) to quantify the level of estrogens and/or as a biomarker of estrogenic status ii) as a biomarker of exposure to endocrine disrupting chemicals (EDCs). For the first purpose, some authors extracted biological samples while others tested them directly without any treatment. The study of these methodologies outlined that the methodology applied influenced the specificity of analysis. The estrogenic activity biomarker was used to analyse physiological variations of estrogens, pediatric diseases, hormone-dependent diseases and estrogen suppression/enhancement after pharmaceutical treatments. For the second purpose, some authors extracted samples while others tested them directly, some authors divided endogenous estrogens from xenoestrogens while others tested samples without separation. The analysis of these methodologies outlined some limitations related to the efficiency of extraction and the incorrect separation of some compounds. The studies which applied this EDC biomarker showed that it was correlated with some EDCs, it varied according to the exposure of the population and it allowed the identification of some relationships between EDC exposure and breast cancer, type 1 diabetes and adverse health effects on children. In conclusion, the estrogenic activity of biological samples can be a useful tool: to quantify low levels of 17β-estradiol, to assess the combined effect of endogenous estrogens and xenoestrogens, to estimate the estrogenic status providing considerable insight into physiological or pathological conditions, to evaluate EDC presence implementing the existing knowledge about EDC exposure and adverse health effects.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Anna Toso
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| |
Collapse
|
7
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|
8
|
Kassotis CD, Stapleton HM. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne) 2019; 10:39. [PMID: 30792693 PMCID: PMC6374316 DOI: 10.3389/fendo.2019.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/17/2019] [Indexed: 01/29/2023] Open
Abstract
Obesity and metabolic disorders are of great societal concern and generate substantial human health care costs globally. Interventions have resulted in only minimal impacts on disrupting this worsening health trend, increasing attention on putative environmental contributors. Exposure to numerous environmental contaminants have, over decades, been demonstrated to result in increased metabolic dysfunction and/or weight gain in cell and animal models, and in some cases, even in humans. There are numerous mechanisms through which environmental contaminants may contribute to metabolic dysfunction, though certain mechanisms, such as activation of the peroxisome proliferator activated receptor gamma or the retinoid x receptor, have received considerably more attention than less-studied mechanisms such as antagonism of the thyroid receptor, androgen receptor, or mitochondrial toxicity. As such, research on putative metabolic disruptors is growing rapidly, as is our understanding of molecular mechanisms underlying these effects. Concurrent with these advances, new research has evaluated current models of adipogenesis, and new models have been proposed. Only in the last several years have studies really begun to address complex mixtures of contaminants and how these mixtures may disrupt metabolic health in environmentally relevant exposure scenarios. Several studies have begun to assess environmental mixtures from various environments and study the mechanisms underlying their putative metabolic dysfunction; these studies hold real promise in highlighting crucial mechanisms driving observed organismal effects. In addition, high-throughput toxicity databases (ToxCast, etc.) may provide future benefits in prioritizing chemicals for in vivo testing, particularly once the causative molecular mechanisms promoting dysfunction are better understood and expert critiques are used to hone the databases. In this review, we will review the available literature linking metabolic disruption to endocrine-mediated molecular mechanisms, discuss the novel application of environmental mixtures and implications for in vivo metabolic health, and discuss the putative utility of applying high-throughput toxicity databases to answering complex organismal health outcome questions.
Collapse
|
9
|
Bjerregaard-Olesen C, Bach CC, Long M, Wielsøe M, Bech BH, Henriksen TB, Olsen J, Bonefeld-Jørgensen EC. Associations of Fetal Growth Outcomes with Measures of the Combined Xenoestrogenic Activity of Maternal Serum Perfluorinated Alkyl Acids in Danish Pregnant Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17006. [PMID: 30676078 PMCID: PMC6381822 DOI: 10.1289/ehp1884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Higher concentrations of single perfluorinated alkyl acids (PFAAs) have been associated with lower birth weight (BW), but few studies have examined the combined effects of PFAA mixtures. PFAAs have been reported to induce estrogen receptor (ER) transactivity, and estrogens may influence human fetal growth. We hypothesize that mixtures of PFAAs may affect human fetal growth by disrupting the ER. OBJECTIVES We aimed to study the associations between the combined xenoestrogenic activity of PFAAs in pregnant women's serum and offspring BW, length, and head circumference. METHODS We extracted the actual mixture of PFAAs from the serum of 702 Danish pregnant women (gestational wk 11–13) enrolled in the Aarhus Birth Cohort (ABC) using solid phase extraction, high-performance liquid chromatography (HPLC), and weak anion exchange. PFAA-induced xenoestrogenic receptor transactivation (XER) was determined using the stable transfected MVLN cell line. Associations between XER and measures of fetal growth were estimated using multivariable linear regression with primary adjustment for maternal age, body mass index (BMI), educational level, smoking, and alcohol intake, and sensitivity analyses with additional adjustment for gestational age (GA) (linear and quadratic). RESULTS On average, an interquartile range (IQR) increase in XER was associated with a [Formula: see text] [95% confidence interval (CI): [Formula: see text], [Formula: see text]] decrease in BW and a [Formula: see text] (95% CI: 0.1, 0.5) decrease in birth length. Upon additional adjustment for GA, the estimated mean differences were [Formula: see text] (95% CI: [Formula: see text], 4) and [Formula: see text] (95% CI: [Formula: see text], 0.0), respectively. CONCLUSION Higher-serum PFAA-induced xenoestrogenic activities were associated with lower BW and length in offspring, suggesting that PFAA mixtures may affect fetal growth by disrupting ER function. https://doi.org/10.1289/EHP1884.
Collapse
Affiliation(s)
- Christian Bjerregaard-Olesen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Cathrine Carlsen Bach
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Manhai Long
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Jørn Olsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Centre for Health Research, Institute of Nursing and Health Sciences, University of Greenland, Nuuk, Greenland
| |
Collapse
|
10
|
Freire C, Amaya E, Gil F, Fernández MF, Murcia M, Llop S, Andiarena A, Aurrekoetxea J, Bustamante M, Guxens M, Ezama E, Fernández-Tardón G, Olea N. Prenatal co-exposure to neurotoxic metals and neurodevelopment in preschool children: The Environment and Childhood (INMA) Project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:340-351. [PMID: 29190557 DOI: 10.1016/j.scitotenv.2017.11.273] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 05/04/2023]
Abstract
We sought to determine whether prenatal co-exposure to As, Cd, Hg, Mn, and Pb was associated with impaired neurodevelopment in preschool children from the Spanish Environment and Childhood (INMA) Project, using the placenta as exposure matrix. We measured metal levels in placenta tissue samples randomly selected from five of the seven population-based birth cohorts participating in the INMA Project, collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was carried through the use of the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5years. Data on placental metal levels, MSCA scores, and relevant covariates was available for 302 children. Mn was detected in all placental samples, Cd in nearly all placentas (99%) and As, Hg, and Pb in 22%, 58%, and 17% of the placentas, respectively. After adjusting for potential confounders, detectable As levels were associated with decrements in global and verbal executive functions and quantitative abilities; detectable Hg was associated with lower scores on the verbal function of posterior cortex in a dose-response manner, and non-linearly related to poorer motor function and gross motor skills; and Mn levels were associated with decrement in perceptual-performance skills in a dose-response manner but with better memory span and quantitative skills. A synergistic interactive effect was found between As and Pb with respect to the general cognitive score, whereas an antagonistic interaction was found between Mn and Hg. Prenatal exposure to As and Hg may be a risk factor for cognitive and motor impairment in children, while the effects of Cd and Mn on neurodevelopment are less clear. Future studies should examine combined and interactive effects of exposure to multiple metals during vulnerable periods of brain development prospectively.
Collapse
Affiliation(s)
- Carmen Freire
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Esperanza Amaya
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Mariana F Fernández
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, School of Medicine, and Centre for Biomedical Research, University of Granada, 18071 Granada, Spain.
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020 Valencia, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020 Valencia, Spain
| | - Ainara Andiarena
- BIODONOSTIA Health Research Institute, 20014 San Sebastián, Spain; University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - Juanjo Aurrekoetxea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; BIODONOSTIA Health Research Institute, 20014 San Sebastián, Spain; Department of Preventive Medicine and Public Health, University of Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Subdirección de Salud Pública de Gipuzkoa, Department of Health of the Basque Government, 20013 San Sebastián, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08036 Barcelona, Spain; Pompeu Fabra Universtiy (UPF), 08002 Barcelona, Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08036 Barcelona, Spain; Pompeu Fabra Universtiy (UPF), 08002 Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Esteban Ezama
- Cicom, Alternativa en Salud Mental, 33001 Oviedo, Spain
| | - Guillermo Fernández-Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Nicolás Olea
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, School of Medicine, and Centre for Biomedical Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|
11
|
Buñay J, Larriba E, Patiño-Garcia D, Cruz-Fernandes L, Castañeda-Zegarra S, Rodriguez-Fernandez M, del Mazo J, Moreno RD. Editor’s Highlight: Differential Effects of Exposure to Single Versus a Mixture of Endocrine-Disrupting Chemicals on Steroidogenesis Pathway in Mouse Testes. Toxicol Sci 2017; 161:76-86. [DOI: 10.1093/toxsci/kfx200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Julio Buñay
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - Daniel Patiño-Garcia
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| | - Leonor Cruz-Fernandes
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| | - Sergio Castañeda-Zegarra
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| | - María Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile (PUC), Santiago 8331150, Chile
| |
Collapse
|
12
|
Abstract
Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during gestation, infancy and childhood. The fetus, infant and child might have enhanced sensitivity to environmental stressors such as EDCs due to their rapid development and increased exposure to some EDCs as a consequence of development-specific behaviour, anatomy and physiology. In this Review, I discuss epidemiological studies examining the relationship between early-life exposure to bisphenol A (BPA), phthalates, triclosan and perfluoroalkyl substances (PFAS) with childhood neurobehavioural disorders and obesity. The available epidemiological evidence suggest that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehaviour (BPA and phthalates) and excess adiposity or increased risk of obesity and/or overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability and elucidating the presence and nature of sexually dimorphic EDC effects would enable stronger inferences to be made from epidemiological studies than currently possible. Ultimately, improved estimates of the causal effects of EDC exposures on child health could help identify susceptible subpopulations and lead to public health interventions to reduce these exposures.
Collapse
Affiliation(s)
- Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02912
| |
Collapse
|
13
|
Vrooman LA, Xin F, Bartolomei MS. Morphologic and molecular changes in the placenta: what we can learn from environmental exposures. Fertil Steril 2016; 106:930-40. [PMID: 27523298 DOI: 10.1016/j.fertnstert.2016.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
In mammals, the extraembryonic tissues, which include the placenta, are crucial for embryonic development and growth. Because the placenta is no longer needed for postnatal life, however, it has been relatively understudied as a tissue of interest in biomedical research. Recently, increased efforts have been placed on understanding the placenta and how it may play a key role in human health and disease. In this review, we discuss two very different types of environmental exposures: assisted reproductive technologies and in utero exposure to endocrine-disrupting chemicals. We summarize the current literature on their effects on placental development in both rodent and human, and comment on the potential use of placental biomarkers as predictors of offspring health outcomes.
Collapse
Affiliation(s)
- Lisa A Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frances Xin
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Pontelli RCN, Nunes AA, Oliveira DSVWB. [Impact on human health of endocrine disruptors present in environmental water bodies: is there an association with obesity?]. CIENCIA & SAUDE COLETIVA 2016; 21:753-66. [PMID: 26960088 DOI: 10.1590/1413-81232015213.25212015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023] Open
Abstract
There is growing evidence that endocrine disruptors (ED) may adversely affect humans. Surface and underground water are the main sources for obtaining potable water, however they can be contaminated with ED, which are not completely removed by conventional water and sewage treatment processes. Some health problems are related to the exposure of humans to ED, obesity being one of them. There is currently an increase in the prevalence of obesity worldwide, a fact that is considered a concern in view of its potential impact on the health care system, since obesity is the major risk factor of the leading chronic diseases including diabetes and cardiovascular disease. By means of a review of the literature, this paper sought to gather scientific publications linking exposure to ED with obesity, in order to verify the importance of removal of ED from water bodies, thereby preserving the population's health and aquatic biota. Most of the selected studies suggest an association between ED and obesity in humans.
Collapse
Affiliation(s)
- Regina Célia Nucci Pontelli
- Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil,
| | - Altacilio Aparecido Nunes
- Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil,
| | - de Sonia Valle Walter Borges Oliveira
- Departamento de Administração, Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
15
|
de Cock M, De Boer MR, Lamoree M, Legler J, Van De Bor M. Prenatal exposure to endocrine disrupting chemicals and birth weight-A prospective cohort study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:178-185. [PMID: 26605905 DOI: 10.1080/10934529.2015.1087753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Prenatal exposure to endocrine disrupting chemicals may affect fetal development through disruption of hormonal actions and epigenetic modifications, potentially predisposing individuals to later on-set health risks, such as obesity. The objective of this study was to determine associations between biological exposure markers of various endocrine disrupting chemicals and birth weight in a newly established, prospective mother-child cohort in the Netherlands. Birth weight (n = 91) was obtained from birth records, and exposure to dichlorodiphenyldichloroethylene (DDE), three di-2-ethylhexyl phthalate (DEHP) metabolites, polychlorinated biphenyl-153, perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) was determined in cord plasma. For DDE, exposure was also measured in breast milk. Linear regression analysis was used to determine associations between compounds and birth weight, which were stratified for gender and adjusted for a priori defined covariates. Increased exposure to DDE was associated with lower birth weight in boys (>95.89 ng L-1, -325.9 g, 95% CI -634.26 to -17.56), whereas in girls a tendency towards a higher birth weight was observed. Lower birth weights for boys were also observed for high exposure to MECPP, and to a certain extent also for PFOA. MEHHP and PFOS exposure on the other hand were associated with higher birth weights in boys. In girls no effects were observed for these compounds. It can be concluded that prenatal exposure to DDE, perfluorinated alkyl acids, and phthalates was associated with changes in birth weight in this population. Associations were gender specific, and appeared to be non-linear. Since the population was relatively small, results should be interpreted with caution.
Collapse
Affiliation(s)
- Marijke de Cock
- a Health and Life Sciences Section, Faculty of Earth and Life Sciences, VU University , Amsterdam , The Netherlands
| | | | - Marja Lamoree
- c Institute for Environmental Studies, Faculty of Earth and Life Sciences, VU University , Amsterdam , The Netherlands
| | - Juliette Legler
- c Institute for Environmental Studies, Faculty of Earth and Life Sciences, VU University , Amsterdam , The Netherlands
| | - Margot Van De Bor
- a Health and Life Sciences Section, Faculty of Earth and Life Sciences, VU University , Amsterdam , The Netherlands
| |
Collapse
|
16
|
Vilahur N, Bustamante M, Morales E, Motta V, Fernandez MF, Salas LA, Escaramis G, Ballester F, Murcia M, Tardon A, Riaño I, Santa-Marina L, Ibarluzea J, Arrebola JP, Estivill X, Bollati V, Sunyer J, Olea N. Prenatal exposure to mixtures of xenoestrogens and genome-wide DNA methylation in human placenta. Epigenomics 2016; 8:43-54. [DOI: 10.2217/epi.15.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: In utero exposure to xenostrogens may modify the epigenome. We explored the association of prenatal exposure to mixtures of xenoestrogens and genome-wide placental DNA methylation. Materials & methods: Sex-specific associations between methylation changes in placental DNA by doubling the concentration of TEXB-alpha exposure were evaluated by robust multiple linear regression. Two CpG sites were selected for validation and replication in additional male born placentas. Results: No significant associations were found, although the top significant CpGs in boys were located in the LRPAP1, HAGH, PPARGC1B, KCNQ1 and KCNQ1DN genes, previously associated to birth weight, Type 2 diabetes, obesity or steroid hormone signaling. Neither technical validation nor biological replication of the results was found in boys for LRPAP and PPARGC1B. Conclusion: Some suggestive genes were differentially methylated in boys in relation to prenatal xenoestrogen exposure, but our initial findings could not be validated or replicated.
Collapse
Affiliation(s)
- Nadia Vilahur
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Genomics & Disease Group, Bioinformatics & Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Genomics & Disease Group, Bioinformatics & Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Eva Morales
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- IMIB-Arrixaca Research Institute, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Valeria Motta
- EPIGET – Epidemiology, Epigenetics & Toxicology Lab – Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mariana Fátima Fernandez
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Radiology, University of Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Spain
| | - Lucas Andrés Salas
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Georgia Escaramis
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Genomics & Disease Group, Bioinformatics & Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- FISABIO-Universitat de València – Universitat Jaume I Joint Research Unit of Epidemiology & Environmental Health, Valencia, Spain
- University of Valencia, Valencia, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- FISABIO-Universitat de València – Universitat Jaume I Joint Research Unit of Epidemiology & Environmental Health, Valencia, Spain
| | - Adonina Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- University of Oviedo, Oviedo, Asturias, Spain
| | - Isolina Riaño
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Hospital San Agustín, SESPA, Asturias, Spain
| | - Loreto Santa-Marina
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Biodonostia, Health Research Institute, San Sebastián, Spain
- Public Health of Gipuzkoa, Department of Health, Government of the Basque Country, San Sebastian, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Biodonostia, Health Research Institute, San Sebastián, Spain
- Public Health of Gipuzkoa, Department of Health, Government of the Basque Country, San Sebastian, Spain
| | - Juan Pedro Arrebola
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Radiology, University of Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Spain
| | - Xavier Estivill
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Genomics & Disease Group, Bioinformatics & Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics & Toxicology Lab – Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Milan, Italy
| | - Jordi Sunyer
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Nicolás Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Radiology, University of Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, Spain
| |
Collapse
|
17
|
Braun JM, Gennings C, Hauser R, Webster TF. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A6-9. [PMID: 26720830 PMCID: PMC4710611 DOI: 10.1289/ehp.1510569] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Humans are exposed to a large number of environmental chemicals: Some of these may be toxic, and many others have unknown or poorly characterized health effects. There is intense interest in determining the impact of exposure to environmental chemical mixtures on human health. As the study of mixtures continues to evolve in the field of environmental epidemiology, it is imperative that we understand the methodologic challenges of this research and the types of questions we can address using epidemiological data. In this article, we summarize some of the unique challenges in exposure assessment, statistical methods, and methodology that epidemiologists face in addressing chemical mixtures. We propose three broad questions that epidemiological studies can address: a) What are the potential health impacts of individual chemical agents? b) What is the interaction among agents? And c) what are the health effects of cumulative exposure to multiple agents? As the field of mixtures research grows, we can use these three questions as a basis for defining our research questions and for developing methods that will help us better understand the effect of chemical exposures on human disease and well-being.
Collapse
Affiliation(s)
- Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
- Address correspondence to J.M. Braun, Department of Epidemiology, Brown University School of Public Health, 121 Main St., Providence, RI 02912 USA. E-mail:
| | - Chris Gennings
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, Eskenazi B. In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:636-42. [PMID: 25738596 PMCID: PMC4455588 DOI: 10.1289/ehp.1408417] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are lipophilic flame retardants that bioaccumulate in humans. Child serum PBDE concentrations in California are among the highest worldwide. PBDEs may be associated with obesity by disrupting endocrine systems. OBJECTIVE In this study, we examined whether pre- and postnatal exposure to the components of pentaBDE mixture was associated with childhood obesity in a population of Latino children participating in a longitudinal birth cohort study in the Salinas Valley, California. METHODS We measured PBDEs in serum collected from 224 mothers during pregnancy and their children at 7 years of age, and examined associations with body mass index (BMI) at age 7 years. RESULTS Maternal PBDE serum levels during pregnancy were associated with higher BMI z-scores in boys (BMI z-score βadjusted = 0.26; 95% CI: -0.19, 0.72) but lower scores in girls (BMI z-score βadjusted = -0.41; 95% CI: -0.87, -0.05) at 7 years of age (pinteraction = 0.04). In addition, child's serum BDE-153 concentration (log10), but not other pentaBDE congeners, demonstrated inverse associations with BMI at age 7 years (BMI z-score βadjusted = -1.15; 95% CI: -1.53, -0.77), but there was no interaction by sex. CONCLUSIONS We estimated sex-specific associations with maternal PBDE levels during pregnancy and BMI at 7 years of age, finding positive associations in boys and negative associations in girls. Children's serum BDE-153 concentrations were inversely associated with BMI at 7 years with no difference by sex. Future studies should examine the longitudinal trends in obesity with PBDE exposure and changes in hormonal environment as children transition through puberty, as well as evaluate the potential for reverse causality.
Collapse
Affiliation(s)
- Ayca Erkin-Cakmak
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Koong LY, Watson CS. Rapid, nongenomic signaling effects of several xenoestrogens involved in early- vs. late-stage prostate cancer cell proliferation. ACTA ACUST UNITED AC 2015. [DOI: 10.4161/23273747.2014.995003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke Y Koong
- Biochemistry & Molecular Biology Department; University of Texas Medical Branch; Galveston, TX USA
| | | |
Collapse
|
20
|
Fong JP, Lee FJ, Lu IS, Uang SN, Lee CC. Relationship between urinary concentrations of di(2-ethylhexyl) phthalate (DEHP) metabolites and reproductive hormones in polyvinyl chloride production workers. Occup Environ Med 2015; 72:346-53. [DOI: 10.1136/oemed-2014-102532] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/15/2015] [Indexed: 11/03/2022]
|
21
|
Hu Y, Wang R, Xiang Z, Qian W, Han X, Li D. Mixture effects of nonylphenol and di-n-butyl phthalate (monobutyl phthalate) on the tight junctions between Sertoli cells in male rats in vitro and in vivo. ACTA ACUST UNITED AC 2014; 66:445-54. [DOI: 10.1016/j.etp.2014.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
22
|
Vilahur N, Fernández MF, Bustamante M, Ramos R, Forns J, Ballester F, Murcia M, Riaño I, Ibarluzea J, Olea N, Sunyer J. In utero exposure to mixtures of xenoestrogens and child neuropsychological development. ENVIRONMENTAL RESEARCH 2014; 134:98-104. [PMID: 25086706 DOI: 10.1016/j.envres.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND To date, no epidemiological studies have explored the impact and persistence of in utero exposure to mixtures of xenoestrogens on the developing brain. We aimed to assess whether the cumulative effect of xenoestrogens in the placenta is associated with altered infant neuropsychological functioning at two and at four years of age, and if associations differ among boys and girls. METHODS Cumulative prenatal exposure to xenoestrogens was quantified in the placenta using the biomarker Total Effective Xenoestrogen Burden (TEXB-alpha) in 489 participants from the INMA (Childhood and the Environment) Project. TEXB-alpha was split in tertiles to test its association with the mental and psychomotor scores of the Bayley Scales of Infant Development (BSID) at 1-2 years of age, and with the McCarthy Scales of Children׳s Abilities (MSCA) general cognitive index and motor scale assessed at 4-5 years of age. Interactions with sex were investigated. RESULTS After adjustment for potential confounders, no association was observed between TEXB-alpha and mental scores at 1-2 years of age. We found a significant interactions with sex for the association between TEXB-alpha and infant psychomotor development (interaction p-value=0.029). Boys in the third tertile of exposure scored on average 5.2 points less than those in the first tertile on tests of motor development at 1-2 years of age (p-value=0.052), while no associations were observed in girls. However, this association disappeared in children at 4-5 years of age and no association between TEXB-alpha and children׳s cognition was found. CONCLUSIONS Our results suggest that boys' early motor development might be more vulnerable to prenatal exposure to mixtures of xenoestrogens, but associations do not persist in preschool children.
Collapse
Affiliation(s)
- Nadia Vilahur
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain.
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospital Universitario San Cecilio, Granada, Spain
| | - Mariona Bustamante
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Rosa Ramos
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Joan Forns
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Mario Murcia
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain
| | - Isolina Riaño
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; University of Oviedo, Asturias, Oviedo, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Biodonostia, Health Research Institute, San Sebastián, Spain; Sub-Directorate for Public Health of Gipuzkoa, Department of Health, Government of the Basque Country, San Sebastian, Spain
| | - Nicolás Olea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), C/ Doctor Aiguader, 83. 08003 Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Health and Life Sciences, University Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
23
|
Vilahur N, Bustamante M, Byun HM, Fernandez MF, Santa Marina L, Basterrechea M, Ballester F, Murcia M, Tardón A, Fernández-Somoano A, Estivill X, Olea N, Sunyer J, Baccarelli AA. Prenatal exposure to mixtures of xenoestrogens and repetitive element DNA methylation changes in human placenta. ENVIRONMENT INTERNATIONAL 2014; 71:81-7. [PMID: 24980756 PMCID: PMC4122792 DOI: 10.1016/j.envint.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 06/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to endocrine disrupting compounds (EDCs) has previously shown to alter epigenetic marks. OBJECTIVES In this work we explore whether prenatal exposure to mixtures of xenoestrogens has the potential to alter the placenta epigenome, by studying DNA methylation in retrotransposons as a surrogate of global DNA methylation. METHODS The biomarker total effective xenoestrogen burden (TEXB) was measured in 192 placentas from participants in the longitudinal INMA Project. DNA methylation was quantitatively assessed by bisulfite pyrosequencing on 10 different retrotransposons including 3 different long interspersed nuclear elements (LINEs), 4 short interspersed nuclear elements (SINEs) and 3 human endogenous retroviruses (HERVs). Associations were tested using linear mixed-effects regression models and sex interaction was evaluated. RESULTS A significant sex interaction was observed for AluYb8 (p-value for interaction <0.001, significant at Bonferroni corrected p-value threshold of 0.0025). Boys with the highest TEXB-alpha levels of exposure (third tertile) presented on average a decrease of 0.84% in methylation compared to those in the first tertile (p-value<0.001), while no significant effects were found in girls (p-value=0.134). CONCLUSIONS Our findings suggest that boys may be more susceptible to the effect of exposure to xenoestrogens during prenatal development, producing shifts in DNA methylation of certain sensitive genomic repetitive sequences in a tissue important for fetal growth and development.
Collapse
Affiliation(s)
- Nadia Vilahur
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| | - Mariona Bustamante
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Mariana F Fernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospital Universitario San Cecilio, Granada, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Subdirección de Salud Pública de Gipuzkoa, Department of Health of the Basque, Spain; Health Research Institute, BIODONOSTIA, Basque Country, Spain
| | - Mikel Basterrechea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Subdirección de Salud Pública de Gipuzkoa, Department of Health of the Basque, Spain; Health Research Institute, BIODONOSTIA, Basque Country, Spain
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Valencia, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; University of Oviedo, Oviedo, Asturias, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; University of Oviedo, Oviedo, Asturias, Spain
| | - Xavier Estivill
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Health and Life Sciences, University Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Nicolas Olea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, Centro de Investigación Biomédica, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospital Universitario San Cecilio, Granada, Spain
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Health and Life Sciences, University Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
|
25
|
de Cock M, van de Bor M. Obesogenic effects of endocrine disruptors, what do we know from animal and human studies? ENVIRONMENT INTERNATIONAL 2014; 70:15-24. [PMID: 24879368 DOI: 10.1016/j.envint.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hormonal actions and activation of receptors involved in adipogenesis and brain development during the prenatal period may be affected by exposure to certain chemicals. Experimental studies have shown that amongst others polychlorinated biphenyl (PCB)-153 and dichlorodiphenyltrichloroethane (DDT) may have obesogenic effects in prenatally exposed mice. OBJECTIVE To provide an overview of five classes of chemicals which have frequently been indicated as potential obesogens, and to discuss the evidence available regarding early life exposure to these compounds and overweight later in life. METHODS Pubmed was systematically searched for publications which related early life exposure to endocrine disrupting chemicals (EDCs) to growth parameters later in life. We included 19 studies, which were published from 1995 and onwards. RESULTS Both positive and negative associations are observed between early life exposure and weight or height at various ages, including as early as 14 months, as well as until 20 years of age. In none of the included studies negative associations between perinatal exposure to EDCs and body mass index (BMI) were found and in several studies a positive association was observed. Dose-response relations appear to be non-monotonic. CONCLUSION For certain EDCs, early life exposure may be associated with weight homeostasis later in life, however not necessarily in an obesogenic direction. More sensitive measures of adiposity as well as long-term follow-up are warranted for future studies.
Collapse
Affiliation(s)
- Marijke de Cock
- VU University, Department of Health and Life Sciences, Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands.
| | - Margot van de Bor
- VU University, Department of Health and Life Sciences, Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Slama R, Ballester F, Casas M, Cordier S, Eggesbø M, Iniguez C, Nieuwenhuijsen M, Philippat C, Rey S, Vandentorren S, Vrijheid M. Epidemiologic tools to study the influence of environmental factors on fecundity and pregnancy-related outcomes. Epidemiol Rev 2013; 36:148-64. [PMID: 24363355 DOI: 10.1093/epirev/mxt011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adverse pregnancy outcomes entail a large health burden for the mother and offspring; a part of it might be avoided by better understanding the role of environmental factors in their etiology. Our aims were to review the assessment tools to characterize fecundity troubles and pregnancy-related outcomes in human populations and their sensitivity to environmental factors. For each outcome, we reviewed the possible study designs, main sources of bias, and their suggested cures. In terms of study design, for most pregnancy outcomes, cohorts with recruitment early during or even before pregnancy allow efficient characterization of pregnancy-related events, time-varying confounders, and in utero exposures that may impact birth outcomes and child health. Studies on congenital anomalies require specific designs, assessment of anomalies in medical pregnancy terminations, and, for congenital anomalies diagnosed postnatally, follow-up during several months after birth. Statistical analyses should take into account environmental exposures during the relevant time windows; survival models are an appropriate approach for fecundity, fetal loss, and gestational duration/preterm delivery. Analysis of gestational duration could distinguish pregnancies according to delivery induction (and possibly pregnancy-related conditions). In conclusion, careful design and analysis are required to better characterize environmental effects on human reproduction.
Collapse
Affiliation(s)
- Rémy Slama
- Abbreviations: PROM, premature rupture of the fetal membranes; TTP, time to pregnancy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiménez-Díaz I, Molina-Molina J, Zafra-Gómez A, Ballesteros O, Navalón A, Real M, Sáenz J, Fernández M, Olea N. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC–MS/MS. Assessment of their in vitro endocrine activity. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 936:80-7. [DOI: 10.1016/j.jchromb.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 12/31/2022]
|
28
|
Arrebola JP, Pumarega J, Gasull M, Fernandez MF, Martin-Olmedo P, Molina-Molina JM, Fernández-Rodríguez M, Porta M, Olea N. Adipose tissue concentrations of persistent organic pollutants and prevalence of type 2 diabetes in adults from Southern Spain. ENVIRONMENTAL RESEARCH 2013; 122:31-37. [PMID: 23290489 DOI: 10.1016/j.envres.2012.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
There is increasing evidence that environmental factors play an important role in the development of type 2 diabetes. Several persistent organic pollutants are suspected to contribute to the increasing prevalence and risk of type 2 diabetes. The aim of this study was to investigate the association of the body burden of three organochlorine pesticides and three polychlorinated biphenyls and the overall estrogenic activity with the risk of type 2 diabetes in a sample of adults from Southern Spain. Samples of adipose tissue and serum were obtained from 386 subjects undergoing non-cancer-related surgery and were extracted using validated methodologies. Residues of persistent organic pollutants were analyzed by means of high-resolution gas chromatography with a mass spectrometry detector in tandem mode. The overall estrogenicity of the adipose tissue extracts was measured by using the total effective xenoestrogen burden (TEXB) biomarker. Data on lifestyle, dietary habits, and health status were gathered from face-to-face interviews and clinical records. Statistical analyses were performed with unconditional logistic regression and different adjustment levels. In the models adjusted for adipose tissue origin, sex, age, and body mass index, the 2nd and 3rd tertiles of adipose tissue concentrations of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) were positively associated with the risk of diabetes [odds ratios (95% confidence interval)=3.6 (0.8-17.3) and 4.4 (1.0-21.0), respectively]. A positive association with β-hexachlorocyclohexane was also found when body mass index and adipose tissue origin were removed from the models, with odds ratios (95% confidence interval) of 3.3 (1.0-10.4) and 5.5 (1.7-17.3), for the 2nd and 3rd tertiles of exposure, respectively. In addition, a statistically significant interaction was observed between p,p'-DDE and body mass index, such that the risk of diabetes increased with tertiles of exposure in a linear manner in non-obese subjects but not in the obese, in whom an inverted U-shape pattern was observed.
Collapse
Affiliation(s)
- Juan P Arrebola
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|