1
|
Zheng J, Liu S, Yang J, Zheng S, Sun B. Per- and polyfluoroalkyl substances (PFAS) and cancer: Detection methodologies, epidemiological insights, potential carcinogenic mechanisms, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176158. [PMID: 39255941 DOI: 10.1016/j.scitotenv.2024.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sheng Liu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Junjie Yang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Tan Y, Eick SM, Dunlop AL, Barr DB, Taibl KR, Steenland K, Kannan K, Robinson M, Chang CJ, Panuwet P, Yakimavets V, Marsit CJ, Ryan PB, Liang D. A Prospective Analysis of Per- and Polyfluoroalkyl Substances from Early Pregnancy to Delivery in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117001. [PMID: 39504273 PMCID: PMC11540153 DOI: 10.1289/ehp14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Longitudinal trends in per- and polyfluoroalkyl substances (PFAS) serum concentrations across pregnancy have not been thoroughly examined, despite evidence linking prenatal PFAS exposures with adverse birth outcomes. OBJECTIVES We sought to characterize longitudinal PFAS concentrations across pregnancy and to examine the maternal-fetal transfer ratio among participants in a study of risk and protective factors for adverse birth outcomes among African Americans. METHODS In the Atlanta African American Maternal-Child cohort (2014-2020), we quantified serum concentrations of four PFAS in 376 participants and an additional eight PFAS in a subset of 301 participants during early (8-14 weeks gestation) and late pregnancy (24-30 weeks gestation). Among these, PFAS concentrations were also measured among 199 newborns with available dried blood spot (DBS) samples. We characterized the patterns, variability, and associations in PFAS concentrations at different time points across pregnancy using intraclass correlation coefficients (ICCs), maternal-newborn pairs transfer ratios, linear mixed effect models, and multivariable linear regression, adjusting for socioeconomic and prenatal predictors. RESULTS Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in > 95 % of maternal samples, with PFHxS and PFOS having the highest median concentrations. We observed high variability in PFAS concentrations across pregnancy time points (ICC = 0.03 - 0.59 ). All median PFAS concentrations increased from early to late pregnancy, except for PFOA and N-methyl perfluorooctane sulfonamido acetic acid (NMFOSAA), which decreased [paired t -test for all PFAS p < 0.05 except for PFOA and perfluorobutane sulfonic acid (PFBS)]. Prenatal serum PFAS were weakly to moderately correlated with newborn DBS PFAS (- 0.05 < rho < 0.49 ). The median maternal-fetal PFAS transfer ratio was lower for PFAS with longer carbon chains. After adjusting for socioeconomic and prenatal predictors, in linear mixed effect models, the adjusted mean PFAS concentrations significantly increased during pregnancy, except for PFOA. In multivariable linear regression, PFAS concentrations in early pregnancy significantly predicted the PFAS concentrations in late pregnancy and in newborns. DISCUSSION We found that the concentrations of most PFAS increased during pregnancy, and the magnitude of variability differed by individual PFAS. Future studies are needed to understand the influence of within-person PFAS variability during and after pregnancy on birth outcomes. https://doi.org/10.1289/EHP14334.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Kornher K, Gould CF, Manzano JM, Baines K, Kayser G, Tu X, Suarez-Torres J, Martinez D, Suarez-Lopez JR. Associations of PFASs and Pesticides with Lung Function Changes from Adolescence to Young Adulthood in the ESPINA study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315189. [PMID: 39417100 PMCID: PMC11483001 DOI: 10.1101/2024.10.09.24315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and pesticides are ubiquitous environmental exposures with increasingly recognized adverse health outcomes; however, their impact on lung function, particularly in combination, remains poorly understood. We included 381 adolescent participants from a prospective cohort study in Ecuador who underwent measurements of serum PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS] and perfluorononanoic acid [PFNA]) and urinary herbicides (glyphosate, 2,4D) and fungicides (ethylene thiourea) and had spirometric measurements in either 2016 or 2022. We characterized the association between each PFAS or pesticide and each lung function measure in log-log models estimated via ordinary least squares regression. We used quantile g-computation to assess the association of the mixture of PFAS and pesticides with lung function outcomes. After accounting for multiple hypothesis testing, and in models adjusting for household income, parental education, and exposure to tobacco, we found that, individually, PFOA, glyphosate, and ETU were associated with slight increases in FEV1/FVC between 2016 and 2022. No other individual associations were significant. In mixtures analyses, a one quartile increase in all PFASs and pesticides simultaneously was also not associated with statistically significant changes in lung function outcomes after accounting for multiple hypothesis testing. In large part, we do not provide evidence for associations of PFAS and herbicide and fungicide pesticides with lung function among adolescents in moderate-to-high-altitude agricultural communities in Ecuador.
Collapse
Affiliation(s)
- Kayleigh Kornher
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carlos F Gould
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jomel Meeko Manzano
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katie Baines
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Georgia Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Xu Y, Sui X, Li J, Zhang L, Wang P, Liu Y, Shi H, Zhang Y. Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins. ECO-ENVIRONMENT & HEALTH 2024; 3:308-316. [PMID: 39258237 PMCID: PMC11385757 DOI: 10.1016/j.eehl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placenta and adversely affect fetal development. However, there is a lack of comparison of legacy and emerging PFAS levels among different biosamples in pregnant women and their offspring. This study, based on the Shanghai Maternal-Child Pairs Cohort, analyzed the concentrations of 16 PFAS in the maternal serum, cord serum, and breast milk samples from 1,076 mother-child pairs. The placental and breastfeeding transfer efficiencies of PFAS were determined in maternal-cord and maternal-milk pairs, respectively. The binding affinities of PFAS to five transporters were simulated using molecular docking. The results suggested that PFAS were frequently detected in different biosamples. The median concentration of perfluorooctane sulfonate (PFOS) was the highest at 8.85 ng/mL, followed by perfluorooctanoic acid (PFOA) at 7.13 ng/mL and 6:2 chlorinated polyfluorinated ether sulfonate at 5.59 ng/mL in maternal serum. The median concentrations of PFOA were highest in cord serum (4.23 ng/mL) and breast milk (1.08 ng/mL). PFAS demonstrated higher placental than breastfeeding transfer efficiencies. The transfer efficiencies and the binding affinities of most PFAS to proteins exhibited alkyl chain length-dependent patterns. Furthermore, we comprehensively assessed the estimated daily intakes (EDIs) of PFAS in breastfeeding infants of different age groups and used the hazard quotient (HQ) to characterize the potential health risk. EDIs decreased with infant age, and PFOS had higher HQs than PFOA. These findings highlight the significance of considering PFAS exposure, transfer mechanism, and health risks resulting from breast milk intake in early life.
Collapse
Affiliation(s)
- Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Mahfouz M, Mahfouz Y, Harmouche-Karaki M, Matta J, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Utilizing machine learning to classify persistent organic pollutants in the serum of pregnant women: a predictive modeling approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52980-52995. [PMID: 39168932 DOI: 10.1007/s11356-024-34684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), and per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that remain detrimental to critical subpopulations, namely pregnant women. Required tests for biomonitoring are quite expensive. Moreover, statistical models aiming to discover the relationships between pollutants levels and human characteristics have their limitations. Therefore, the objective of this study is to use machine learning predictive models to further examine the pollutants' predictors, while comparing them. Levels of 33 congeners were measured in the serum of 269 pregnant women, from whom data was collected regarding sociodemographic, dietary, environmental, and anthropometric characteristics. Several machine learning algorithms were compared using "Python" for each pollutant: support vector machine (SVM), random forest, XGBoost, and neural networks. The aforementioned characteristics were included in the model as features. Prediction, accuracy, precision, recall, F1-score, area under the ROC curve (AUC), sensitivity, and specificity were retrieved to compare the models between them and among pollutants. The highest performing model for all pollutants was Random Forest. Results showed a moderate to acceptable performance and discriminative power among all POPs, with OCPs' model performing slightly better than all other models. Top related features for each model were also presented using SHAP analysis, detailing the predictors' negative or positive impact on the model. In conclusion, developing such a tool is of major importance in a context of limited financial and research resources. Nevertheless, machine learning models should always be interpreted with caution by exploring all evaluation metrics.
Collapse
Affiliation(s)
- Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon.
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Joseph Matta
- Industrial Research Institute, Lebanese University Campus, Baabda, Hadath, Lebanon, P.O. Box 112806
| | - Hassan Younes
- Institut Polytechnique UniLaSalle, Collège Santé, Equipe PANASH, Membre de l'ULR 7519, Université d'Artois, 19 Rue Pierre Waguet, 60026, Beauvais, France
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Medical Sciences Campus, Saint Joseph University of Beirut, Damascus RoadRiad Solh, P.O. Box 115076, Beirut, 1107 2180, Lebanon
| | - Ramzi Finan
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut, Lebanon, P.O. Box 166830
| | - Georges Abi-Tayeh
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut, Lebanon, P.O. Box 166830
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Beqaa, Lebanon
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon
| | - Jean-François Narbonne
- Laboratoire de Physico-Toxico Chimie Des Systèmes Naturels, University of Bordeaux, 33405, Talence, CEDEX, France
| |
Collapse
|
6
|
Frenoy P, Cano-Sancho G, Antignac JP, Marchand P, Marques C, Ren X, Severi G, Perduca V, Mancini FR. Blood levels of persistent organic pollutants among women in France in the 90's: Main profiles and individual determinants. ENVIRONMENTAL RESEARCH 2024; 258:119468. [PMID: 38908663 DOI: 10.1016/j.envres.2024.119468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
CONTEXT AND OBJECTIVES Persistent organic pollutants (POPs) are a group of organic chemical compounds potentially toxic to human health. The objectives of this study were 1) to describe the levels of POPs biomarkers in blood samples from French women collected during the 1990s and to compare them with levels measured in two more recent French studies, 2) to identify POPs exposure profiles, and 3) to explore their main determinants. METHODS 73 POPs biomarkers were measured in the blood of 468 women from the French E3N cohort (aged 45-73 years), collected between 1994 and 1999: 28 per- and polyfluoroalkyl substances, 27 organochlorine pesticides, 14 polychlorinated biphenyls and 4 polybrominated diphenyl ethers. POPs biomarker levels were described and compared with levels measured in two more recent French studies conducted by the French National Public Health Agency, the ENNS and Esteban studies. Principal component analysis was performed on POPs quantified in at least 75% of samples to identify the main exposure profiles. Linear regression models were used to estimate the associations between anthropometric, socio-demographic and lifestyle characteristics and exposure to these profiles. RESULTS Among the 73 biomarkers measured, 41 were quantified in more than 75% of samples. Levels of most pollutants that were also measured in the Esteban of ENNS studies have decreased over time. Six POPs exposure profiles were revealed, explaining 62.1% of the total variance. Most of the characteristics studied were associated with adherence to at least one of these profiles. CONCLUSION This study highlighted that most of the pollutants for which a comparison was possible decreased over the 10 or 20 years following the E3N blood collection, and identified those which, on the contrary, tended to increase. The health effects of the profiles identified could be assessed in future studies. The determinants identified should be confirmed in larger populations.
Collapse
Affiliation(s)
- Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | | | | | | | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Xuan Ren
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Italy
| | - Vittorio Perduca
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France; Université Paris Cité, CNRS, MAP5, F-75006, Paris, France
| | | |
Collapse
|
7
|
Lahne H, Gerstner D, Völkel W, Schober W, Aschenbrenner B, Herr C, Heinze S, Quartucci C. Human biomonitoring follow-up study on PFOA contamination and investigation of possible influencing factors on PFOA exposure in a German population originally exposed to emissions from a fluoropolymer production plant. Int J Hyg Environ Health 2024; 259:114387. [PMID: 38703464 DOI: 10.1016/j.ijheh.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND In the past, perfluorooctanoic acid (PFOA) was produced and applied as an emulsifier in a fluoropolymer production plant in the Altötting district, southern Bavaria (Germany). This chemical was released directly into the environment, resulting in the contamination of the local drinking water. During a human biomonitoring (HBM) survey in 2018, increased median PFOA blood serum levels, compared to a normally exposed control group with no known source of PFOA exposure from Munich, Germany, were detected in the resident population (23.18 μg/l in the general population, 20.71 μg/l in the children's group). The follow-up study aimed to investigate whether purification of the drinking water as the main PFOA exposure source has been successful in reducing internal PFOA exposure and to estimate the association of internal PFOA exposure with possible influencing factors. METHODS Only individuals who had already participated in the HBM study in 2018 were included. For the determination of the PFOA serum concentration, 5 ml of blood was drawn from each participating person. Blood samples were collected in the period from June to August 2022. Furthermore, information on sociodemographic characteristics, health status, dietary behaviour and other lifestyle factors were collected by means of a self-administered questionnaire. To examine the association of PFOA blood serum levels with possible influencing factors, such as age, gender and consumption of fish and game meat, a logistic regression model with a PFOA value > 10 μg/l as outcome was used. RESULTS A total of 764 individuals participated in the follow-up study in 2022. Analyses were performed separately for the general population (n = 559), women of reproductive age (15-49 years old) (n = 120), and children under 12 years old (n = 30). Median PFOA blood levels have decreased by 56.9% in the general population, by 59.8% in the group of women of reproductive age and by 73.4% in the group of children under 12 years old. In the general population, a higher probability of a PFOA value > 10 μg/l was found for those aged 40-59 years (Odds ratio (OR) = 2.33 (95%CI: 1.23 to 4.43, p = 0.01) and those aged 60 years and older (OR = 5.32, 95%CI: 2.78 to 10.19, p < 0.001). CONCLUSIONS In all study groups, the median PFOA serum levels decreased as expected after a half-life of four years, which confirms that contamination via drinking water has ceased. Furthermore, our study identified age as a significant predictor of internal PFOA exposure, while no influence was found for the consumption of fish and game meat. Further investigations are needed to quantify in a more detailed way the influence of dietary habits on PFOA exposure.
Collapse
Affiliation(s)
- Heidi Lahne
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany.
| | - Doris Gerstner
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany
| | - Wolfgang Völkel
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany
| | - Bettina Aschenbrenner
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany
| | - Caroline Herr
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| | - Stefanie Heinze
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| | - Caroline Quartucci
- Bavarian Health and Food Safety Authority, Institute for Occupational Health and Product Safety, Environmental Health, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany
| |
Collapse
|
8
|
Holder C, Cohen Hubal EA, Luh J, Lee MG, Melnyk LJ, Thomas K. Systematic evidence mapping of potential correlates of exposure for per- and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use. Int J Hyg Environ Health 2024; 259:114384. [PMID: 38735219 DOI: 10.1016/j.ijheh.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction. This work collected and collated evidence for correlates of PFAS human exposure as measured through sampling of biomatrices and surveys of dietary consumption and use of consumer products and articles. A systematic evidence mapping approach was applied to perform a literature search, conduct title-abstract and full-text screening, and to extract primary data into a comprehensive database for 16 PFAS. Parameters of interest included: sampling dates and locations, cohort descriptors, PFAS measured in a human biomatrix, information about food consumption in 11 categories, use of products/articles in 11 categories, and reported correlation values (and their statistical strength). The literature search and screening process yielded 103 studies with information for correlates of PFAS exposures. Detailed data were extracted and compiled on measures of PFAS correlations between biomatrix concentrations and dietary consumption and other product/article use. A majority of studies (61/103; 59%) were published after 2015 with few (8/103; 8%) prior to 2010. Studies were most abundant for dietary correlates (n = 94) with fewer publications reporting correlate assessments for product use (n = 56), while some examined both. PFOA and PFOS were assessed in almost all studies, followed by PFHxS, PFNA, and PFDA which were included in >50% of the studies. No relevant studies included PFNS or PFPeS. Among the 94 studies of dietary correlates, significant correlations were reported in 83% of the studies for one or more PFAS. The significant dietary correlations most commonly were for seafood, meats/eggs, and cereals/grains/pulses. Among the 56 studies of product/article correlates, significant correlations were reported in 70% of the studies. The significant product/article correlations most commonly were for smoking/tobacco, cosmetics/toiletries, non-stick cookware, and carpet/flooring/furniture and housing. Six of 11 product/article categories included five or fewer studies, including food containers and stain- and water-resistant products. Significant dietary and product/article correlations most commonly were positive. Some studies found a mix of positive and negative correlations depending on the PFAS, specific correlate, and specific response level, particularly for fats/oils, dairy consumption, food containers, and cosmetics/toiletries. Most of the significant findings for cereals/grains/pulses were negative correlations. Substantial evidence was found for correlations between dietary intake and biomatrix levels for several PFAS in multiple food groups. Studies examining product/article use relationships were relatively sparse, except for smoking/tobacco, and would benefit from additional research. The resulting database can inform further assessments of dietary and product use exposure relationships and can inform new research to better understand PFAS source-to-exposure relationships. The search strategy should be extended and implemented to support living evidence review in this rapidly advancing area.
Collapse
Affiliation(s)
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| | | | | | - Lisa Jo Melnyk
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA.
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| |
Collapse
|
9
|
Pacyga DC, Papandonatos GD, Rosas L, Whalen J, Smith S, Park JS, Gardiner JC, Braun JM, Schantz SL, Strakovsky RS. Associations of per- and polyfluoroalkyl substances with maternal early second trimester sex-steroid hormones. Int J Hyg Environ Health 2024; 259:114380. [PMID: 38657330 PMCID: PMC11127781 DOI: 10.1016/j.ijheh.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND/AIMS Pregnant women are exposed to persistent environmental contaminants, including per- and polyfluoroalkyl substances (PFAS) that disrupt thyroid function. However, it is unclear if PFAS alter maternal sex-steroid hormone levels, which support pregnancy health and fetal development. METHODS In Illinois women with relatively high socioeconomic status (n = 460), we quantified perfluorononanoic (PFNA), perfluorooctane sulfonic (PFOS), perfluorooctanoic (PFOA), methyl-perfluorooctane sulfonamide acetic acid, perfluorohexanesulphonic (PFHxS), perfluorodecanoic (PFDeA), and perfluoroundecanoic (PFUdA) acid concentrations in fasting serum samples at median 17 weeks gestation, along with plasma progesterone, testosterone, and estradiol. We evaluated covariate-adjusted associations of ln-transformed hormones with each ln-transformed PFAS individually using linear regression and with the PFAS mixture using quantile-based g-computation (QGComp). RESULTS Interquartile range (IQR) increases in PFOS were associated with higher progesterone (%Δ 3.0; 95%CI: -0.6, 6.6) and estradiol (%Δ: 8.1; 95%CI: 2.2, 14.4) levels. Additionally, PFHxS was positively associated with testosterone (%Δ: 10.2; 95%CI: 4.0, 16.7), whereas both PFDeA and PFUdA were inversely associated with testosterone (%Δ: -5.7; 95%CI: -10.3, -0.8, and %Δ: -4.1; 95%CI: -7.6, -0.4, respectively). The IQR-standardized PFAS mixture was not associated with progesterone (%Δ: 1.6; 95%CI: -5.8, 9.2), due equal partial positive (%Δ: 9.2; driven by PFOA) and negative (%Δ: -7.4; driven by PFOS) mixture associations. Similarly, the mixture was not associated with testosterone (%Δ: 5.3; 95%CI: -9.0, 20.1), due to similar partial positive (%Δ: 23.6; driven by PFHxS) and negative (%Δ: -17.4; driven by PFDeA) mixture associations. However, we observed a slightly stronger partial positive (%Δ: 25.6; driven by PFOS and PFUdA) than negative (%Δ: -16.3; driven by PFOA) association resulting in an overall non-significant positive trend between the mixture and estradiol (%Δ: 8.5; 95%CI: -3.7, 20.9). CONCLUSION PFAS mixture modeled using QGComp was not associated with maternal sex-steroid hormones due to potential opposing effects of certain PFAS. Additional prospective studies could corroborate these findings.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Libeth Rosas
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94158, USA
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Cinzori ME, Pacyga DC, Rosas L, Whalen J, Smith S, Park JS, Geiger SD, Gardiner JC, Braun JM, Schantz SL, Strakovsky RS. Associations of per- and polyfluoroalkyl substances with maternal metabolic and inflammatory biomarkers in early-to-mid-pregnancy. ENVIRONMENTAL RESEARCH 2024; 250:118434. [PMID: 38346483 PMCID: PMC11102845 DOI: 10.1016/j.envres.2024.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) can disrupt metabolism. Early-to-mid pregnancy is characterized by amplified metabolic processes and inflammation to support maternal adaptations and fetal growth. Thus, we cross-sectionally evaluated whether PFAS are individually and jointly associated with these processes in early-to-mid pregnancy. METHODS Pregnant Illinois women (n = 452) provided fasted blood samples at median 17 weeks gestation. We quantified serum perfluorononanoic (PFNA), perfluorooctane sulfonic (PFOS), perfluorooctanoic (PFOA), methyl-perfluorooctane sulfonamide acetic acid (Me-PFOSA-AcOH), perfluorohexanesulfonic (PFHxS), perfluorodecanoic (PFDeA), and perfluoroundecanoic (PFUdA) acid. Key outcomes were plasma glucose, insulin, C-peptide, insulin-like growth factor 1 (IGF-1), adiponectin, leptin, triglycerides, free fatty acids, total cholesterol, high-density lipoprotein (HDL) cholesterol, C-reactive protein, tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6. We calculated homeostatic model assessment for insulin resistance (HOMA-IR), low-density lipoprotein (LDL) cholesterol, and very low-density lipoprotein (VLDL). We evaluated associations of PFAS with each metabolic/inflammatory biomarker individually using covariate-adjusted linear regression and jointly using quantile-based g-computation. RESULTS In linear regression, all PFAS (except Me-PFOSA-AcOH) were negatively associated with insulin, HOMA-IR, and leptin, whereas all PFAS were positively associated with HDL cholesterol. We also observed negative associations of some PFAS with TNF-α and MCP-1; positive associations with adiponectin and total cholesterol also emerged. Additionally, PFOS was positively, whereas Me-PFOSA-AcOH was negatively, associated with triglycerides and VLDL. Each 25% increase in the PFAS mixture was associated with -31.3% lower insulin (95%CI: -45.8, -12.9), -31.9% lower HOMA-IR (95%CI: -46.4, -13.4), and -9.4% lower leptin (95%CI: -17.3, -0.8), but 7.4% higher HDL cholesterol (95%CI: 4.6, 10.3). For most outcomes, the major contributors to the PFAS mixture often differed compared to single-PFAS analyses. IMPLICATIONS Individual and joint PFAS exposures were associated with markers of maternal metabolism and inflammation in pregnancy. Further investigation is needed to elucidate possible mechanisms and consequences of these findings.
Collapse
Affiliation(s)
- Maria E Cinzori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Libeth Rosas
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, 94710, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, 94710, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94158, USA
| | - Sarah D Geiger
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, 61801, USA; Department of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| | - Susan L Schantz
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, 61801, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Jones RR, Madrigal JM, Troisi R, Surcel HM, Öhman H, Kivelä J, Kiviranta H, Rantakokko P, Koponen J, Medgyesi DN, McGlynn KA, Sampson J, Albert PS, Ward MH. Maternal serum concentrations of per- and polyfluoroalkyl substances and childhood acute lymphoblastic leukemia. J Natl Cancer Inst 2024; 116:728-736. [PMID: 38092046 PMCID: PMC11077307 DOI: 10.1093/jnci/djad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widespread and environmentally persistent chemicals with immunotoxic properties. Children are prenatally exposed through maternal transfer of PFAS to cord blood, but no studies have investigated the relationship with childhood leukemia. METHODS We measured maternal serum levels of 19 PFAS in first-trimester samples collected in 1986-2010 and evaluated associations with acute lymphoblastic leukemia in full-term offspring (aged younger than 15 years) for 400 cases and 400 controls in the Finnish Maternity Cohort, matched on sample year, mother's age, gestational age, birth order, and child's sex. We analyzed continuous and categorical exposures, estimating odds ratios (ORs) and 95% confidence intervals (CIs) via conditional logistic regression adjusted for maternal smoking and correlated PFAS (ρ ≥ ±0.3). We also stratified by calendar period, mean diagnosis age, and the child's sex. RESULTS N-methyl-perfluorooctane sulfonamidoacetic acid was associated with acute lymphoblastic leukemia in continuous models (per each doubling in levels: ORperlog2 = 1.22, 95% CI = 1.07 to 1.39), with a positive exposure-response across categories (OR>90th percentile = 2.52, 95% CI = 1.33 to 4.78; Ptrend = .01). Although we found no relationship with perfluorooctane sulfonic acid overall, an association was observed in samples collected in 1986-1995, when levels were highest (median = 17.9 µg/L; ORperlog2 = 4.01, 95% CI = 1.62 to 9.93). A positive association with perfluorononanoic acid was suggested among first births (Pinteraction = .06). The N-methyl-perfluorooctane sulfonamidoacetic acid association was mainly limited to children diagnosed before age 5 years (Pinteraction = .02). We found no consistent patterns of association with other PFAS or differences by sex. CONCLUSIONS These novel data offer evidence of a relationship between some PFAS and risk of the most common childhood cancer worldwide, including associations with the highest levels of perfluorooctanesulfonic acid and with a precursor, N-methyl-perfluorooctane sulfonamidoacetic acid.
Collapse
Affiliation(s)
- Rena R Jones
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Jessica M Madrigal
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Rebecca Troisi
- Trans-Divisional Research Program, DCEG, NCI, Rockville, MD, USA
| | - Heljä-Marja Surcel
- Biobank Borealis of Northern Finland/Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland/Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Kivelä
- Biobank Borealis of Northern Finland/Oulu University Hospital, Oulu, Finland
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Panu Rantakokko
- Environmental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jani Koponen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Danielle N Medgyesi
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | - Mary H Ward
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| |
Collapse
|
12
|
Säve-Söderbergh M, Gyllenhammar I, Schillemans T, Lindfeldt E, Vogs C, Donat-Vargas C, Halldin Ankarberg E, Glynn A, Ahrens L, Helte E, Åkesson A. Per- and polyfluoroalkyl substances (PFAS) and fetal growth: A nation-wide register-based study on PFAS in drinking water. ENVIRONMENT INTERNATIONAL 2024; 187:108727. [PMID: 38735074 DOI: 10.1016/j.envint.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of β coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.
Collapse
Affiliation(s)
- Melle Säve-Söderbergh
- Risk- and Benefit Assessment Department, Swedish Food Agency, Uppsala, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Irina Gyllenhammar
- Risk- and Benefit Assessment Department, Swedish Food Agency, Uppsala, Sweden
| | - Tessa Schillemans
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emelie Lindfeldt
- Risk- and Benefit Assessment Department, Swedish Food Agency, Uppsala, Sweden
| | - Carolina Vogs
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Barcelona Intitute for Global Health (ISGlobal), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Zhang Y, Sun Q, Mustieles V, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Predictors of Serum Per- and Polyfluoroalkyl Substances Concentrations among U.S. Couples Attending a Fertility Clinic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5685-5694. [PMID: 38502775 DOI: 10.1021/acs.est.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Previous studies have examined the predictors of PFAS concentrations among pregnant women and children. However, no study has explored the predictors of preconception PFAS concentrations among couples in the United States. This study included 572 females and 279 males (249 couples) who attended a U.S. fertility clinic between 2005 and 2019. Questionnaire information on demographics, reproductive history, and lifestyles and serum samples quantified for PFAS concentrations were collected at study enrollment. We examined the PFAS distribution and correlation within couples. We used Ridge regressions to predict the serum concentration of each PFAS in females and males using data of (1) socio-demographic and reproductive history, (2) diet, (3) behavioral factors, and (4) all factors included in (1) to (3) after accounting for temporal exposure trends. We used general linear models for univariate association of each factor with the PFAS concentration. We found moderate to high correlations for PFAS concentrations within couples. Among all examined factors, diet explained more of the variation in PFAS concentrations (1-48%), while behavioral factors explained the least (0-4%). Individuals reporting White race, with a higher body mass index, and nulliparous women had higher PFAS concentrations than others. Fish and shellfish consumption was positively associated with PFAS concentrations among both females and males, while intake of beans (females), peas (male), kale (females), and tortilla (both) was inversely associated with PFAS concentrations. Our findings provide important data for identifying sources of couples' PFAS exposure and informing interventions to reduce PFAS exposure in the preconception period.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012, Spain
- University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| |
Collapse
|
14
|
Madrigal JM, Troisi R, Surcel HM, Öhman H, Kivelä J, Kiviranta H, Rantakokko P, Koponen J, Medgyesi DN, Kitahara CM, McGlynn KA, Sampson J, Albert PS, Ward MH, Jones RR. Prediagnostic serum concentrations of per- and polyfluoroalkyl substances and risk of papillary thyroid cancer in the Finnish Maternity Cohort. Int J Cancer 2024; 154:979-991. [PMID: 37902275 PMCID: PMC11286200 DOI: 10.1002/ijc.34776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.
Collapse
Affiliation(s)
- Jessica M. Madrigal
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | | | - Heljä-Marja Surcel
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Kivelä
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hannu Kiviranta
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Jani Koponen
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Danielle N. Medgyesi
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | - Mary H. Ward
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| |
Collapse
|
15
|
Batzella E, Rosato I, Pitter G, Da Re F, Russo F, Canova C, Fletcher T. Determinants of PFOA Serum Half-Life after End of Exposure: A Longitudinal Study on Highly Exposed Subjects in the Veneto Region. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27002. [PMID: 38306197 PMCID: PMC10836585 DOI: 10.1289/ehp13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widely used, ubiquitous, and highly persistent man-made chemicals. Groundwater of a vast area of the Veneto Region (northeastern Italy) was found to be contaminated by PFAS from a manufacturing plant active since the late 1960s. As a result, residents were overexposed to PFAS through drinking water until 2013, mainly to perfluorooctanoic acid (PFOA). OBJECTIVES The aim of the present study was to estimate the rates of decline in serum PFOA and their corresponding serum half-lives, while characterizing their determinants. METHODS We investigated 5,860 subjects more than 14 years of age who enrolled in the second surveillance round of the regional health surveillance program. Two blood samples were collected between 2017 and 2022 (average time between measurements: 4 years). Serum PFOA excretion rates and half-lives were estimated based on linear mixed effect models, modeling subject-specific serum PFOA concentrations over time and correcting for background concentrations. For modeling determinants of half-life [age, sex, body mass index (BMI), smoking-habit, alcohol consumption, and estimated glomerular filtration rate (eGFR)], we added interaction terms between each covariate and the elapsed time between measurements. Perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) apparent half-lives were also estimated. A separate analysis was conducted in children (n = 480 ). All analyses were stratified by sex. RESULTS Median initial serum concentrations of PFOA was 49 ng / mL (range: 0.5-1,090), with a median reduction of 62.45%. The mean estimated PFOA half-life was 2.36 years [95% confidence interval (CI): 2.33, 2.40], shorter in women (2.04; 95% CI: 2.00, 2.08) compared to men (2.83; 95% CI: 2.78, 2.89). Half-lives varied when stratified by some contributing factors, with faster excretion rates in nonsmokers and nonalcohol drinkers (especially in males). CONCLUSIONS This study, to our knowledge the largest on PFOA half-life, provides precise estimates in young adults whose exposure via drinking water has largely ceased. For other PFAS, longer half-lives than reported in other studies can be explained by some ongoing exposure to PFAS via other routes. https://doi.org/10.1289/EHP13152.
Collapse
Affiliation(s)
- Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Isabella Rosato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gisella Pitter
- Screening Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Filippo Da Re
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Chen HC, Cao WC, Liu XF, Liu X, Cheng QY, Zhou Y, Wen S. [Contamination levels of perfluorinated and polyfluoroalkyl compounds in breast milk and assessment of their exposure risk to infants]. Se Pu 2024; 42:211-216. [PMID: 38374602 PMCID: PMC10877470 DOI: 10.3724/sp.j.1123.2023.09023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
The purposes of this study are to explore the contamination levels of perfluorinated and polyfluoroalkyl substances (PFASs) in breast milk and assess their exposure risk to infants. Based on data from a birth cohort study conducted in Yingcheng, Hubei Province, from 2018 to 2021, the contents of 23 types of PFASs in the breast milk of 324 pregnant women were determined using isotope dilution-high performance liquid chromatography-tandem mass spectrometry. Multiple linear regression was then performed to analyze the effects of various demographic characteristics and eating habits on the concentration of PFASs in breast milk. The daily PFASs intake of infants through breast milk was estimated, and the exposure risk of infants was also assessed. The results revealed that 23 types of PFASs in breast milk had good linear relationships in the range of 0.2-100 ng/mL, with correlation coefficients greater than 0.992. The limits of detection were 5-42 pg/mL, the limits of quantification were 15-126 pg/mL, the recoveries were 65.6%-108.1%, and the relative standard deviations were 1.6%-12.8%. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoate acid (PFOA), and perfluorohexanesulfonic acid (PFHxS), with median concentrations of 200.7, 63.5, and 25.2 pg/mL, respectively, were the main PFASs found in breast milk. The detection rates of these three contaminants were higher than 80%, whereas the detection rates of other compounds were lower than 45%. The results of multiple linear regression showed that older pregnant women and a higher frequency of pickled food intake may be related to increased PFAS levels in breast milk whereas a higher frequency of legume intake may be related to decreased PFAS levels in breast milk. The median estimated daily intakes (EDIs) of PFOS, PFOA, and PFHxS for infants were 25.1, 7.9, and 3.2 ng/(kg·d), respectively. In summary, this study found notable PFAS levels in breast milk in Yingcheng, Hubei Province. Among these PFASs, PFOS, PFOA, and PFHxS were the main contaminants. Maternal age as well as pickled food and legume intake may affect the PFAS level in breast milk. The health risk of PFAS intake through breast milk to some infants is worthy of attention and further study.
Collapse
Affiliation(s)
- Hai-Chuan Chen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Wen-Cheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xiao-Fang Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Qing-Yun Cheng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| |
Collapse
|
17
|
Li S, Li G, Lin Y, Sun F, Zheng L, Yu Y, Xu H. Association between Perfluoroalkyl Substances in Follicular Fluid and Polycystic Ovary Syndrome in Infertile Women. TOXICS 2024; 12:104. [PMID: 38393199 PMCID: PMC10893032 DOI: 10.3390/toxics12020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
In recent years, perfluoroalkyl substances (PFASs), a family of fluorinated organic com pounds, have garnered much attention due to their reproductive and developmental toxicity in humans. Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease that affects women of reproductive age and is a significant contributor to female infertility. A previous study suggested that PFASs play a possible role in PCOS. We conducted a clinical study investigating the relationship between PCOS and PFAS in follicular fluid. A total of 73 infertile patients with PCOS and 218 controls were recruited from the International Peace Maternity and Child Health Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine. The concentrations of 12 PFASs in follicular fluid samples and sex hormones in serum were measured. Correlation analysis and multiple linear regression revealed a positive relationship between perfluorooctanoic acid (PFOA) and testosterone (T) concentrations. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for each PFAS were estimated using multivariable logistic regression and quantile-based g-computation (QGC). The PFOA concentrations in follicular fluid were correlated with increased odds of PCOS (second vs. first quartile: OR = 3.65, 95% CI: 1.47-9.05, p = 0.005; third vs. first quartile: OR = 2.91, 95% CI: 1.17-7.26, p = 0.022; fourth vs. first quartile: OR = 3.13, 95% CI: 1.21-8.09, p = 0.019; P for trend = 0.032). This association was confirmed with QGC. Mediation analysis suggested that the mediation effect of T in association with PFOA and PCOS was not statistically significant. Our study suggests that PFOA may be a risk factor for PCOS.
Collapse
Affiliation(s)
- Sen Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Guojing Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Liqiang Zheng
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Yingying Yu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Hong Xu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| |
Collapse
|
18
|
Hyötyläinen T, McGlinchey A, Salihovic S, Schubert A, Douglas A, Hay DC, O'Shaughnessy PJ, Iredale JP, Shaw S, Fowler PA, Orešič M. In utero exposures to perfluoroalkyl substances and the human fetal liver metabolome in Scotland: a cross-sectional study. Lancet Planet Health 2024; 8:e5-e17. [PMID: 38199723 DOI: 10.1016/s2542-5196(23)00257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.
Collapse
Affiliation(s)
| | - Aidan McGlinchey
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Samira Salihovic
- School of Science and Technology, Örebro University, Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Antonia Schubert
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Alex Douglas
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | | | - Sophie Shaw
- All Wales Medical Genomics Service, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Paul A Fowler
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
19
|
Cioni L, Plassmann M, Benskin JP, Coêlho ACM, Nøst TH, Rylander C, Nikiforov V, Sandanger TM, Herzke D. Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14849-14860. [PMID: 37747946 PMCID: PMC10569050 DOI: 10.1021/acs.est.3c03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0-4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Therese H. Nøst
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Charlotta Rylander
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | | | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for public Health, Oslo NO-0213, Norway
| |
Collapse
|
20
|
Rhee J, Loftfield E, Albanes D, Layne TM, Stolzenberg-Solomon R, Liao LM, Playdon MC, Berndt SI, Sampson JN, Freedman ND, Moore SC, Purdue MP. A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate. ENVIRONMENT INTERNATIONAL 2023; 180:108198. [PMID: 37716341 PMCID: PMC10591812 DOI: 10.1016/j.envint.2023.108198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Exposures to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), environmentally persistent chemicals detectable in the blood of most Americans, have been associated with several health outcomes. To offer insight into their possible biologic effects, we evaluated the metabolomic correlates of circulating PFOS and PFOA among 3,647 participants in eight nested case-control serum metabolomic profiling studies from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. METHODS Metabolomic profiling was conducted by Metabolon Inc., using ultra high-performance liquid chromatography/tandem accurate mass spectrometry. We conducted study-specific multivariable linear regression analyses estimating the associations of metabolite levels with levels of PFOS or PFOA. For metabolites measured in at least 3 of 8 nested case-control studies, random effects meta-analysis was used to summarize study-specific results (1,038 metabolites in PFOS analyses and 1,100 in PFOA analyses). RESULTS The meta-analysis identified 51 and 38 metabolites associated with PFOS and PFOA, respectively, at a Bonferroni-corrected significance level (4.8x10-5 and 4.6x10-5, respectively). For both PFOS and PFOA, the most common types of associated metabolites were lipids (sphingolipids, fatty acid metabolites) and xenobiotics (xanthine metabolites, chemicals). Positive associations were commonly observed with lipid metabolites sphingomyelin (d18:1/18:0) (P = 2.0x10-10 and 2.0x10-8, respectively), 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = 2.7x10-15, 1.1x10-17), and lignoceroylcarnitine (C24) (P = 2.6x10-8, 6.2x10-6). The strongest positive associations were observed for chemicals 3,5-dichloro-2,6-dihydroxybenzoic acid (P = 3.0x10-112 and 6.8x10-13, respectively) and 3-bromo-5-chloro-2,6-dihydroxybenzoic acid (P = 1.6x10-14, 2.3x10-6). Other metabolites positively associated with PFOS included D-glucose (carbohydrate), carotene diol (vitamin A metabolism), and L-alpha-aminobutyric acid (glutathione metabolism), while uric acid (purine metabolite) was positively associated with PFOA. PFOS associations were consistent even after adjusting for PFOA as a covariate, while PFOA associations were greatly attenuated with PFOS adjustment. CONCLUSIONS In this large metabolomic study, we observed robust positive associations with PFOS for several molecules. Further investigation of these metabolites may offer insight into PFOS-related biologic effects.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tracy M Layne
- Department of Obstetrics, Gynecology, and Reproductive Science, and Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Linda M Liao
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
21
|
Sultan H, Buckley JP, Kalkwarf HJ, Cecil KM, Chen A, Lanphear BP, Yolton K, Braun JM. Dietary per- and polyfluoroalkyl substance (PFAS) exposure in adolescents: The HOME study. ENVIRONMENTAL RESEARCH 2023; 231:115953. [PMID: 37142081 PMCID: PMC10330479 DOI: 10.1016/j.envres.2023.115953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Diet is the primary exposure pathway for per- and polyfluoroalkyl substances (PFAS) in non-occupationally exposed populations. Few studies have examined associations of dietary quality and macronutrient intake with PFAS exposure among US adolescents. OBJECTIVE To assess relationships of self-reported dietary quality and macronutrient intake with serum PFAS concentrations in adolescents. METHODS We used cross-sectional data from 193 Cincinnati, Ohio area adolescents (median age 12.3 years) collected from 2016 to 2019. Using 24-h food recalls completed by adolescents on three separate days, we derived Healthy Eating Index (HEI) scores, HEI components, and macronutrient intake. We measured perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations in fasting serum samples. Using linear regression, we estimated covariate-adjusted associations between dietary variables and serum PFAS concentrations. RESULTS The median HEI score was 44 and median serum PFOA, PFOS, PFHxS, and PFNA concentrations were 1.3, 2.4, 0.7, and 0.3 ng/mL respectively. In adjusted models, higher total HEI scores, whole fruit and total fruit HEI component scores, and total dietary fiber intake were associated with lower concentrations of all four PFAS. For example, serum PFOA concentrations were 7% lower (95% CI: -15, 2) per standard deviation increase in total HEI score and 9% lower (95% CI: -18, 1) per standard deviation increase in dietary fiber. SIGNIFICANCE Given adverse health effects associated with PFAS exposure, it is crucial to understand modifiable exposure pathways. Findings from this study may inform future policy decisions aiming to limit human exposure to PFAS.
Collapse
Affiliation(s)
- Harry Sultan
- College of Brown University, Providence, RI, USA; Institute at Brown for Environment and Society, Providence, RI, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Kim M Cecil
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Friedman C, Dabelea D, Keil AP, Adgate JL, Glueck DH, Calafat AM, Starling AP. Maternal serum per- and polyfluoroalkyl substances during pregnancy and breastfeeding duration. Environ Epidemiol 2023; 7:e260. [PMID: 37545807 PMCID: PMC10402953 DOI: 10.1097/ee9.0000000000000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine-disrupting chemicals that may affect breastfeeding duration. We examined associations between maternal PFAS concentrations during pregnancy and breastfeeding cessation. We investigated potential effect modification by parity status. Methods Among 555 women enrolled in the Healthy Start study (2009-2014), we quantified maternal serum concentrations of 5 PFAS during mid- to late-pregnancy (mean 27 weeks of gestation). Participants self-reported their breastfeeding practices through 18-24 months postnatally. Among all participants and stratified by parity, we estimated associations between maternal PFAS concentrations and breastfeeding discontinuation by 3 and 6 months, using Poisson regression, and breastfeeding duration, using Cox regression. Results Median PFAS concentrations were similar to those in the general US population. Associations between PFAS and breastfeeding duration differed by parity status. After adjusting for covariates, among primiparous women, associations between PFAS and breastfeeding cessation by 3 and 6 months were generally null, with some inverse associations. Among multiparous women, there were positive associations between perfluorohexane sulfonate, perfluorooctane sulfonate, perfluorooctanoate (PFOA), and perfluorononanoate and breastfeeding cessation by 3 and 6 months. For example, per ln-ng/mL increase in PFOA, the risk ratio for breastfeeding discontinuation by 6 months was 1.45 (95% confidence interval, 1.18, 1.78). Hazard ratios reflected similar patterns between PFAS and breastfeeding duration. Conclusions Among primiparous women, we did not find evidence for associations between PFAS concentrations and breastfeeding duration. In contrast, among multiparous women, PFAS serum concentrations were generally inversely associated with breastfeeding duration, though estimates may be biased due to confounding by unmeasured previous breastfeeding.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deborah H. Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Antonia M. Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Draghi S, Pavlovic R, Pellegrini A, Fidani M, Riva F, Brecchia G, Agradi S, Arioli F, Vigo D, Di Cesare F, Curone G. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods 2023; 12:2449. [PMID: 37444187 DOI: 10.3390/foods12132449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bovine milk is a pillar of the human diet and plays a key role in the nutrition of infants. Perfluoroalkyl substances (PFASs) are well-recognized highly stable organic compounds that are able to pollute ecosystems persistently and threaten both human and animal health. The study aimed to analyze the distribution of 14 PFASs within the milk matrix by comparing their content in whole milk, and its skimmed and creamed fractions. Raw milk samples were individually collected from 23 healthy cows (10 primiparous and 13 multiparous) reared on a farm in Northern Italy not surrounded by known point sources of PFASs. Each sample was fractioned in whole, skim, and cream components to undergo PFAS analysis using liquid chromatography-high-resolution mass spectrometry. All samples contained at least one PFAS, with perfluorobutanoic acid (PFBA) being the primary contaminant in all three fractions, followed by perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). PFOS was shown to be significantly (p < 0.001) more concentrated in cream than in raw and skimmed milk. Multiparous cows showed a higher frequency of positive samples in all analyzed fractions. Further research is necessary to assess the risk of dairy diets and high-fat dairy products and to investigate the toxicological effects of PFASs on cattle, even in environments without known PFAS sources.
Collapse
Affiliation(s)
- Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | - Marco Fidani
- UNIRELAB Srl, Via Gramsci 70, 20019 Settimo Milanese, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
24
|
Groisman L, Berman T, Quinn A, Pariente G, Rorman E, Karakis I, Gat R, Sarov B, Novack L. Levels of PFAS concentrations in the placenta and pregnancy complications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115165. [PMID: 37348217 DOI: 10.1016/j.ecoenv.2023.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Recent research has raised concerns about the potential health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure, particularly during critical periods of development such as pregnancy. In this study, we sought to investigate the presence and potential impacts of PFAS in the placenta. METHODS We measured 13 PFAS compounds in placental tissue samples among 50 women who gave birth at a tertiary medical center in southern Israel. The sample comprised of 10 women with pregnancy-related complications (preterm birth, preeclampsia, gestational diabetes or small-for-gestational age) and 40 women without complications individually matched to cases by age. RESULTS For five (5) out of 13 PFAS compounds (Perfluorooctane Sulfonate (PFOS), perfluorooctanoic acid (PFOA), Perfluorohexanesulphonic acid (PFHxS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA)) median concentrations were lower or comparable to placental measurements in different international populations. Geometric mean was estimated at 0.09 ng/g (90%CI:0.07;0.10) for PFOA, 0.05 ng/g for PFNA (90%CI:0.04;0.07), 0.03 ng/g for PFDA (90%CI:0.01;0.03), 0.06 ng/g for PFHxS (90%CI:0.05;0.07), 0.23 ng/g for PFOS linear measurement (90%CI:0.20;0.26) and 0.25 ng/g (90%CI:0.22;0.30) for PFOS summed concentrations that included non-linear isomers. Composite outcome of pregnancy-related complications was associated with elevated PFOA placental concentrations at an odds ratio (OR)= 1.82 (90%CI:1.06;3.13) for an increase of one quintile of PFOA value and adjusted to maternal gravidity in a conditional logistic regression. CONCLUSION This pilot study indicates a widespread exposure to multiple PFAS compounds in placental tissue of pregnant women in Israel. These findings warrant further validation through comprehensive national human biomonitoring initiatives.
Collapse
Affiliation(s)
- Luda Groisman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Tamar Berman
- Department of Health Promotion, Tel Aviv University, Israel; Department of Environmental Health, Israel Ministry of Health, Israel, Tel Aviv University, Israel
| | - Anna Quinn
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Gali Pariente
- The Division of Obstetrics and Gynecology, Soroka University Medical Center, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Israel Ministry of Health, Tel Aviv, Israel
| | - Isabella Karakis
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Department of Environmental Epidemiology, Israel Ministry of Health, Israel
| | - Roni Gat
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel
| | - Batia Sarov
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel
| | - Lena Novack
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Israel; Soroka University Medical Center, Negev Environmental Health Research Institute, Israel.
| |
Collapse
|
25
|
Chaney C, Wiley KS. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999-2018. ENVIRONMENTAL RESEARCH 2023; 227:115714. [PMID: 36965790 DOI: 10.1016/j.envres.2023.115714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are endocrine disrupting chemicals that have myriad effects on human physiology. Estrogenic PFASs may influence biological aging by mimicking the activity of endogenous estrogens, which can decrease inflammation and oxidative stress and enhance telomerase activity. We hypothesized that PFAS exposure would be differentially associated with measures of biological aging based on biological sex and reproductive stage. METHODS We analyzed associations between serum PFAS levels and measures of biological aging for pre- and postmenopausal women and men (n = 3193) using data from the 2003 to 2018 waves of the National Health and Nutrition Examination Survey. Examining PFASs both individually and in mixture models, we investigated four measures of clinical aging (Homeostatic Dysregulation, the Klemera-Doubal Method, Phenotypic Age Acceleration, and Allostatic Load), oxidative stress, and telomere length. RESULTS PFOA and PFOS were negatively associated with Phenotypic Age Acceleration (e.g. decelerated aging) for men B = -0.22, 95% CI: -0.32, -0.12; B = -0.04, 95% CI: -0.06, -0.03) , premenopausal women (B = -0.58, 95% CI: -0.83, -0.32; B = -0.15, 95% CI: -0.20, -0.09), and postmenopausal women (B= -0.22, 95% CI: -0.43, -0.01; B = -0.05, 95% CI: -0.08, -0.02). In mixture models, we found net negative effects for Phenotypic Age Acceleration and Allostatic Load for men, premenopausal women, and postmenopausal women. We also found significant mixture effects for the antioxidants bilirubin and albumin among the three sample groups. We found no evidence to support effects on telomere length. DISCUSSION Our findings suggest that PFAS exposure may be inversely associated with some measures of biological aging at the relatively low levels of exposure in this sample, regardless of reproductive stage and sex, which does not support our hypothesis. This research provides insights into how PFAS exposure may variably influence aging measures depending on the physiological process investigated.
Collapse
Affiliation(s)
- C Chaney
- Department of Anthropology, Yale University, New Haven, CT, USA.
| | - K S Wiley
- Department of Anthropology, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Forthun IH, Roelants M, Haug LS, Knutsen HK, Schell LM, Jugessur A, Bjerknes R, Sabaredzovic A, Bruserud IS, Juliusson PB. Levels of per- and polyfluoroalkyl substances (PFAS) in Norwegian children stratified by age and sex - Data from the Bergen Growth Study 2. Int J Hyg Environ Health 2023; 252:114199. [PMID: 37295275 DOI: 10.1016/j.ijheh.2023.114199] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIM Due to the persistence, bioaccumulation and potential adverse health effects, there have been restrictions and phase out in the production of certain per- and polyfluoroalkyl substances (PFAS) since the early 2000s. Published serum levels of PFAS during childhood are variable and may reflect the impact of age, sex, sampling year and exposure history. Surveying the concentrations of PFAS in children is vital to provide information regarding exposure during this critical time of development. The aim of the current study was therefore to evaluate serum concentrations of PFAS in Norwegian schoolchildren according to age and sex. MATERIAL AND METHODS Serum samples from 1094 children (645 girls and 449 boys) aged 6-16 years, attending schools in Bergen, Norway, were analyzed for 19 PFAS. The samples were collected in 2016 as part of the Bergen Growth Study 2. Statistical analyses included Student t-test, one-way ANOVA and Spearman's correlation analysis of log-transformed data. RESULTS Of the 19 PFAS examined, 11 were detected in the serum samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and perfluorononaoic acid (PFNA) were present in all samples with geometric means of 2.67, 1.35, 0.47 and 0.68 ng/mL, respectively. In total, 203 children (19%) had PFAS levels above the safety limits set by the German Human Biomonitoring Commission. Significantly higher serum concentrations were found in boys compared to girls for PFOS, PFNA, PFHxS and perfluoroheptanesulfonic acid (PFHpS). Furthermore, serum concentrations of PFOS, PFOA, PFHxS and PFHpS were significantly higher in children under the age of 12 years than in older children. CONCLUSIONS PFAS exposure was widespread in the sample population of Norwegian children analyzed in this study. Approximately one out of five children had PFAS levels above safety limits, indicating a potential risk of negative health effects. The majority of the analyzed PFAS showed higher levels in boys than in girls and decreased serum concentrations with age, which may be explained by changes related to growth and maturation.
Collapse
Affiliation(s)
- Ingvild Halsør Forthun
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| | - Mathieu Roelants
- Department of Public Health and Primary Care, Centre for Environment and Health KU Leuven, Leuven, Belgium
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway; Center for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Katrine Knutsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway; Center for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Lawrence M Schell
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, USA
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Robert Bjerknes
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Ingvild Særvold Bruserud
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Faculty of Health, VID Specialized University, Bergen, Norway
| | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Department of Health Registry Research and Development, Norwegian Institute of Public Health, Bergen, Norway
| |
Collapse
|
27
|
Mahfouz M, Harmouche-Karaki M, Matta J, Mahfouz Y, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiki F, Narbonne JF. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. TOXICS 2023; 11:toxics11050455. [PMID: 37235269 DOI: 10.3390/toxics11050455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The understanding of per- and polyfluoroalkyl substances (PFAS) health effects is rapidly advancing among critical populations. Therefore, the objective of this study was to assess PFAS serum levels among Lebanese pregnant women, cord serum and human milk levels, their determinants, and effects on newborn anthropometry. METHODS We measured concentrations of six PFAS (PFHpA, PFOA, PFHxS, PFOS, PFNA and PFDA) using liquid chromatography MS/MS for 419 participants, of which 269 had sociodemographic, anthropometric, environmental and dietary information. RESULTS The percentage of detection for PFHpA, PFOA, PFHxS and PFOS was 36.3-37.7%. PFOA and PFOS levels (95th percentile) were higher than HBM-I and HBM-II values. While PFAS were not detected in cord serum, five compounds were detected in human milk. Multivariate regression showed that fish/shellfish consumption, vicinity to illegal incineration and higher educational level were associated with an almost twice higher risk of elevated PFHpA, PFOA, PFHxS and PFOS serum levels. Higher PFAS levels in human milk were observed with higher eggs and dairy products consumption, in addition to tap water (preliminary findings). Higher PFHpA was significantly associated with lower newborn weight-for-length Z-score at birth. CONCLUSIONS Findings establish the need for further studies, and urgent action to reduce exposure among subgroups with higher PFAS levels.
Collapse
Affiliation(s)
- Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Joseph Matta
- Industrial Research Institute, Lebanese University Campus, Hadath Baabda P.O. Box 112806, Lebanon
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Pascale Salameh
- School of Medicine, Lebanese American University, Byblos 1102 2801, Lebanon
| | - Hassan Younes
- Institut Polytechnique UniLaSalle, Collège Santé, Equipe PANASH, Membre de l'ULR 7519, Université d'Artois, 19 Rue Pierre Waguet, 60026 Beauvais, France
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O. Box 115076, Riad Solh Beirut 1107 2180, Lebanon
| | - Ramzi Finan
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | - Georges Abi-Tayeh
- Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, Beirut P.O. Box 166830, Lebanon
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Beqaa, Lebanon
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon
| | - Farouk Skaiki
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon
| | - Jean-François Narbonne
- Laboratoire de Physico-Toxico Chimie des Systèmes Naturels, University of Bordeaux, CEDEX, 33405 Talence France
| |
Collapse
|
28
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
29
|
Huo X, Liang W, Tang W, Ao Y, Tian Y, Zhang Q, Zhang J. Dietary and maternal sociodemographic determinants of perfluoroalkyl and polyfluoroalkyl substance levels in pregnant women. CHEMOSPHERE 2023; 332:138863. [PMID: 37156286 DOI: 10.1016/j.chemosphere.2023.138863] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Diet, including drinking water, and demographic characteristics have been associated with PFAS exposure levels in the general population. But data in pregnant women are scarce. We aimed to examine the PFAS levels in relation to these factors in early pregnancy and included 2545 pregnant women in early pregnancy from the Shanghai Birth Cohort. Ten PFAS were measured using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in plasma samples at around 14 weeks of gestation. Geometric mean (GM) ratios were used to estimate the associations between demographic characteristics, food intake and source of drinking water and concentrations of nine PFAS with a detection rate of at least 70%, and the total perfluoroalkyl carboxylic acids (∑PFCA), perfluoroalkyl sulfonic acids (∑PFSA) and all the PFAS concentrations (∑PFAS). Median concentrations of plasma PFAS ranged from 0.03 ng/mL for PFBS to 11.56 ng/mL for PFOA. In the multivariable linear models, maternal age, parity, parental education level, marine fish, freshwater fish, shellfish, shrimps, crabs, animal kidneys, animal liver, eggs, and bone soup in early pregnancy were positively associated with plasma concentrations of certain PFAS. Whereas pre-pregnancy BMI, plant-based foods, and drinking bottled water were negatively associated with some PFAS concentrations. In summary, this study suggested that fish and seafood, animal offal, and high-fat foods (eggs and bone soup) were significant sources of PFAS. PFAS exposure may be reduced by consuming more plant-based foods and potential interventions, such as drinking water treatment.
Collapse
Affiliation(s)
- Xiaona Huo
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Jun Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine. 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
30
|
Food simulants and real food – What do we know about the migration of PFAS from paper based food contact materials? Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
31
|
Fábelová L, Beneito A, Casas M, Colles A, Dalsager L, Den Hond E, Dereumeaux C, Ferguson K, Gilles L, Govarts E, Irizar A, Lopez Espinosa MJ, Montazeri P, Morrens B, Patayová H, Rausová K, Richterová D, Rodriguez Martin L, Santa-Marina L, Schettgen T, Schoeters G, Haug LS, Uhl M, Villanger GD, Vrijheid M, Zaros C, Palkovičová Murínová Ľ. PFAS levels and exposure determinants in sensitive population groups. CHEMOSPHERE 2023; 313:137530. [PMID: 36509187 PMCID: PMC9846180 DOI: 10.1016/j.chemosphere.2022.137530] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants. The first exposure to PFAS occurs in utero, after birth it continues via breast milk, food intake, environment, and consumer products that contain these chemicals. Our aim was to identify determinants of PFAS concentrations in sensitive population subgroups- pregnant women and newborns. METHODS Nine European birth cohorts provided exposure data on PFAS in pregnant women (INMA-Gipuzkoa, Sabadell, Valencia, ELFE and MoBa; total N = 5897) or newborns (3xG study, FLEHS 2, FLEHS 3 and PRENATAL; total N = 940). PFOS, PFOA, PFHxS and PFNA concentrations were measured in maternal or cord blood, depending on the cohort (FLEHS 2 measured only PFOS and PFOA). PFAS concentrations were analysed according to maternal characteristics (age, BMI, parity, previous breastfeeding, smoking, and food consumption during pregnancy) and parental educational level. The association between potential determinants and PFAS concentrations was evaluated using multiple linear regression models. RESULTS We observed significant variations in PFAS concentrations among cohorts. Higher PFAS concentrations were associated with higher maternal age, primipara birth, and educational level, both for maternal blood and cord blood. Higher PFAS concentrations in maternal blood were associated with higher consumption of fish and seafood, meat, offal and eggs. In cord blood, higher PFHxS concentrations were associated with daily meat consumption and higher PFNA with offal consumption. Daily milk and dairy consumption were associated with lower concentrations of PFAS in both, pregnant women and newborns. CONCLUSION High detection rates of the four most abundant PFAS demonstrate ubiquitous exposure of sensitive populations, which is of concern. This study identified several determinants of PFAS exposure in pregnant women and newborns, including dietary factors, and these findings can be used for proposing measures to reduce PFAS exposure, particularly from dietary sources.
Collapse
Affiliation(s)
- L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - A Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - M Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Dalsager
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - E Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - K Ferguson
- National Institute of Environmental Health Sciences (NIEHS), North Carolina, USA
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - M J Lopez Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | | | - B Morrens
- Faculty of Social Sciences, University of Antwerp, Belgium
| | - H Patayová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - T Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - G D Villanger
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - C Zaros
- Institut national d'études démographiques (INED), Aubervilliers, France
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
32
|
Ding J, Dai Y, Zhang J, Wang Z, Zhang L, Xu S, Tan R, Guo J, Qi X, Chang X, Wu C, Zhou Z. Associations of perfluoroalkyl substances with adipocytokines in umbilical cord serum: A mixtures approach. ENVIRONMENTAL RESEARCH 2023; 216:114654. [PMID: 36309220 DOI: 10.1016/j.envres.2022.114654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), a kind of emerging environmental endocrine disruptors, may interfere with the secretion of adipokines and affect fetal metabolic function and intrauterine development. However, the epidemiological evidence is limited and inconsistent. We examined the associations of single and multiple PFAS exposures in utero with adipocytokine concentrations in umbilical cord serum. METHODS This study included 1111 mother-infant pairs from Sheyang Mini Birth Cohort Study (SMBCS), and quantified 12 PFAS and two adipokine in umbilical cord serum. Generalized linear models (GLMs) and Bayesian Kernel Machine Regression (BKMR) models were applied to estimate the associations of single- and mixed- PFAS exposure with adipokines, respectively. Furthermore, sex-stratification was done in each model to assess the sexually dimorphic effects of PFAS. RESULTS 10 PFAS were detected with median concentrations (μg/L) ranging from 0.04 to 3.97, (except 2.7% for PFOSA and 1.7% for PFDS, which were excluded). In GLMs, for each doubling increase in PFBS, PFHpA, PFHxS, PFHpS, PFUnDA and PFDoDA, leptin decreased between 14.04% for PFBS and 22.69% for PFHpS (P < 0.05). PFAS, except for PFNA, were positively associated with adiponectin, and for each doubling of PFAS, adiponectin increased between 3.27% for PFBS and 12.28% for PFHxS (P < 0.05). In addition, infant gender modified the associations of PFAS with adipokines, especially the associations of PFBS, PFOA and PFHxS with adiponectin. Similarly, significant associations of PFAS mixtures with leptin and adiponectin were observed in the BKMR models. PFDA, PFOS, PFNA and PFHpS were identified as important contributors. In the sex-stratified analysis of BKMR models, the associations between PFAS mixtures and adipokines were more pronounced in males. CONCLUSIONS PFAS levels were significantly associated with adipokines in cord serum, suggesting that intrauterine mixture of PFAS exposure may be related to decreased fetal leptin level but increased fetal adiponectin level and the associations may be sex-specific.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Ruonan Tan
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
33
|
Wang W, Hong X, Zhao F, Wu J, Wang B. The effects of perfluoroalkyl and polyfluoroalkyl substances on female fertility: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 216:114718. [PMID: 36334833 DOI: 10.1016/j.envres.2022.114718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The reproductive toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been verified in both animal and in vitro experiments, however, the association between PFAS and female fertility remains contradictory in population studies. Therefore, in this systematic review and meta-analysis, we evaluated the effects of PFAS on female fertility based on population evidence. METHODS Electronic searches of the Web of Science, PubMed, The Cochrane Library, and Embase databases were conducted (from inception to March 2022) to collect observational studies related to PFAS and female fertility. Two evaluators independently screened the literature, extracted information and evaluated the risk of bias for the included studies, meta-analysis was performed using R software. RESULTS A total of 5468 records were searched and 13 articles fully met the inclusion criteria. Meta-analysis showed that perfluorooctanoic acid (PFOA) exposure was negatively associated with the female fecundability odds ratio (FOR = 0.88, 95% confidence interval (Cl) [0.78; 0.98]) and positively associated with the odds ratio for infertility (OR = 1.33, 95%Cl [1.03; 1.73]). Perfluorooctane sulfonate (PFOS) exposure was negatively associated with the fecundability odds ratio (FOR = 0.94, 95% CI [0.90; 0.98]). Pooled effect values for perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonate (PFHxS) exposure did not find sufficient evidence for an association with female fertility. CONCLUSION Based on the evidence provided by the current study, increased levels of PFAS exposure are associated with reduced fertility in women, this was characterized by a reduction in fecundability odds ratio and an increase in odds ratio for infertility. This finding could partially explain the decline in female fertility and provide insight into risk assessment when manufacturing products containing PFAS.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Chiu WA, Lynch MT, Lay CR, Antezana A, Malek P, Sokolinski S, Rogers RD. Bayesian Estimation of Human Population Toxicokinetics of PFOA, PFOS, PFHxS, and PFNA from Studies of Contaminated Drinking Water. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127001. [PMID: 36454223 PMCID: PMC9714558 DOI: 10.1289/ehp10103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/03/2022] [Accepted: 10/27/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Setting health-protective standards for poly- and perfluoroalkyl substances (PFAS) exposure requires estimates of their population toxicokinetics, but existing studies have reported widely varying PFAS half-lives (T½) and volumes of distribution (Vd). OBJECTIVES We combined data from multiple studies to develop harmonized estimates of T½ and Vd, along with their interindividual variability, for four PFAS commonly found in drinking water: perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). METHODS We identified published data on PFAS concentrations in human serum with corresponding drinking water measurements, separated into training and testing data sets. We fit training data sets to a one-compartment model incorporating interindividual variability, time-dependent drinking water concentrations, and background exposures. Use of a hierarchical Bayesian approach allowed us to incorporate informative priors at the population level, as well as at the study level. We compared posterior predictions to testing data sets to evaluate model performance. RESULTS Posterior median (95% CI) estimates of T½ (in years) for the population geometric mean were 3.14 (2.69, 3.73) for PFOA, 3.36 (2.52, 4.42) for PFOS, 2.35 (1.65, 3.16) for PFNA, and 8.30 (5.38, 13.5) for PFHxS, all of which were within the range of previously published values. The extensive individual-level data for PFOA allowed accurate estimation of population variability, with a population geometric standard deviation of 1.57 (95% CI: 1.42, 1.73); data from other PFAS were also consistent with this degree of population variability. Vd estimates ranged from 0.19 to 0.43L/kg across the four PFAS, which tended to be slightly higher than previously published estimates. DISCUSSION These results have direct application in both risk assessment (quantitative interspecies extrapolation and uncertainty factors for interindividual variability) and risk communication (interpretation of monitoring data). In addition, this study provides a rigorous methodology for further refinement with additional data, as well as application to other PFAS. https://doi.org/10.1289/EHP10103.
Collapse
Affiliation(s)
- Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | - Rachel D. Rogers
- Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
36
|
Blomberg A, Mortensen J, Weihe P, Grandjean P. Bone mass density following developmental exposures to perfluoroalkyl substances (PFAS): a longitudinal cohort study. Environ Health 2022; 21:113. [PMID: 36402982 PMCID: PMC9675242 DOI: 10.1186/s12940-022-00929-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental exposures to industrial chemicals, including perfluoroalkyl substances (PFAS), may play a role in bone development and future risk of osteoporosis. However, as prospective evidence is limited, the role of developmental PFAS exposures in bone density changes in childhood is unclear. The objective of this study was to estimate associations between serum-PFAS concentrations measured in infancy and early childhood and areal bone mineral density (aBMD) measured at age 9 years in a birth cohort of children from the Faroe Islands. METHODS We prospectively measured concentrations of five PFAS in cord serum and serum collected at 18 months, 5 years and 9 years, and conducted whole-body DXA scans at the 9-year clinical visit. Our study included 366 mother-child pairs with DXA scans and at least one PFAS measurement. We estimated covariate-adjusted associations of individual PFAS concentrations with age-, sex- and height-adjusted aBMD z-scores using multivariable regression models and applied formal mediation analysis to estimate the possible impact of by several measures of body composition. We also evaluated whether associations were modified by child sex. RESULTS We found PFAS exposures in childhood to be negatively associated with aBMD z-scores, with the strongest association seen for perfluorononanoic acid (PFNA) at age 5 years. A doubling in age-5 PFNA was associated with a 0.15 decrease in aBMD z-score (95% CI: - 0.26, - 0.039). The PFNA-aBMD association was significantly stronger in males than females, although effect modification by sex was not significant for other PFAS exposures. Results from the mediation analysis suggested that any potential associations between aBMD and 18-month PFAS concentrations may be mediated by total body fat and BMI, although most estimated total effects for PFAS exposures at age 18 months were non-significant. PFAS exposures at age 9 were not associated with age-9 aBMD z-scores. CONCLUSIONS The PFAS-aBMD associations identified in this and previous studies suggest that bone may be a target tissue for PFAS. Pediatric bone density has been demonstrated to strongly track through young adulthood and possibly beyond; therefore, these prospective results may have important public health implications.
Collapse
Affiliation(s)
- Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 2, 22363, Lund, Sweden.
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, The Faroese National Hospital, Torshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Torshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
37
|
Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. TOXICS 2022; 10:650. [PMID: 36355941 PMCID: PMC9695392 DOI: 10.3390/toxics10110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth. However, limited investigations considered the roles of parity and delivery on PFASs distributions and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher maternal ages who underwent cesarean section were associated with elevated PFASs burden, while parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was significantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): -0.274, -0.031, p = 0.014), 0.217 kg (95% CI: -0.385, -0.049, p = 0.012), and 0.137 kg (95% CI: -0.270, -0.003, p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate (PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27, 3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth. In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum, which was influenced by maternal characteristics and significantly associated with several birth outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuren Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
38
|
Jain RB, Ducatman A. Serum concentrations of selected perfluoroalkyl substances for US females compared to males as they age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156891. [PMID: 35753482 DOI: 10.1016/j.scitotenv.2022.156891] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Ram B Jain
- Independent Researcher, Loganville, GA, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
39
|
Hærvig KK, Petersen KU, Hougaard KS, Lindh C, Ramlau-Hansen CH, Toft G, Giwercman A, Høyer BB, Flachs EM, Bonde JP, Tøttenborg SS. Maternal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Male Reproductive Function in Young Adulthood: Combined Exposure to Seven PFAS. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:107001. [PMID: 36197086 PMCID: PMC9533763 DOI: 10.1289/ehp10285] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Concerns remain about the human reproductive toxicity of the widespread per- and polyfluoroalkyl substances (PFAS) during early stages of development. OBJECTIVES We examined associations between maternal plasma PFAS levels during early pregnancy and male offspring reproductive function in adulthood. METHODS The study included 864 young men (age range:18.9-21.2 y) from the Fetal Programming of Semen Quality (FEPOS) cohort established between 2017 and 2019. Plasma samples from their mothers, primarily from the first trimester, were retrieved from the Danish National Biobank and levels of 15 PFAS were measured. Seven PFAS had detectable levels above the limit of detection in >80% of the samples and were included in analyses. Semen quality, testicular volume, and levels of reproductive hormones and PFAS were assessed in the young men. We used weighted quantile sum (WQS) regression to estimate the associations between combined exposure to maternal PFAS and reproductive function, and negative binomial regression to estimate the associations of single substances, while adjusting for a range of a priori-defined fetal and postnatal risk factors. RESULTS By a 1-unit increase in the WQS index, combined maternal PFAS exposure was associated with lower sperm concentration (-8%; 95% CI: -16%, -1%), total sperm count (-10%; 95% CI: -17%, -2%), and a higher proportion of nonprogressive and immotile sperm (5%; 95% CI: 1%, 8%) in the young men. Different PFAS contributed to the associations with varying strengths; however, perfluoroheptanoic acid was identified as the main contributor in the analyses of all three outcomes despite the low concentration. We saw no clear association between exposure to maternal PFAS and testicular volume or reproductive hormones. DISCUSSION In a sample of young men from the general Danish population, we observed consistent inverse associations between exposure to maternal PFAS and semen quality. The study needs to be replicated in other populations, taking combined exposure, as well as emerging short-chain PFAS, into consideration. https://doi.org/10.1289/EHP10285.
Collapse
Affiliation(s)
- Katia Keglberg Hærvig
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Birgit Bjerre Høyer
- Department of Regional Development, Region of Southern Denmark, Vejle, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Jensen RC, Glintborg D, Timmermann CAG, Nielsen F, Boye H, Madsen JB, Bilenberg N, Grandjean P, Jensen TK, Andersen MS. Higher free thyroxine associated with PFAS exposure in first trimester. The Odense Child Cohort. ENVIRONMENTAL RESEARCH 2022; 212:113492. [PMID: 35597289 DOI: 10.1016/j.envres.2022.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are endocrine disrupting chemicals with elimination half-lives ranging from four to eight years. Experimental studies found PFAS able to interfere with thyroid hormone-binding proteins. During the first 20 weeks of gestation (GW), the fetus is reliant on placental transfer of maternal thyroid hormones, mainly free thyroxine (FT4). However, previous studies investigating associations between exposure to PFAS and thyroid hormone status mainly focused on blood samples from late pregnancy or umbilical cord with mixed findings. OBJECTIVES To investigate associations between serum-PFAS concentrations and thyroid hormone status in early pregnancy as reflected by FT4 and thyroid-stimulating hormone (TSH). METHODS In the Odense Child Cohort, a single-center study, we measured maternal pregnancy serum concentrations of five PFAS: perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA); and FT4 and TSH in 1048 pregnant women at median GW 12 (25th, 75th percentile: 10, 15). Multivariate linear regression models were performed to estimate associations between PFAS exposure and thyroid hormone status. RESULTS A doubling in PFOS, PFOA, and PFNA concentrations was associated with an increment in FT4 concentration by 1.85% (95% CI: 0.66%, 3.05%), 1.29% (95% CI: 0.21%, 2.39%), and 1.70% (95% CI: 0.48%, 2.94%), respectively, in adjusted analyses. A statistically significant dose-response relationship was observed across exposure quartiles for PFOS, PFOA, and PFNA in the association with FT4. No association was found between concentrations of PFAS and TSH in adjusted analyses. CONCLUSION Exposure to PFOS, PFOA, and PFNA was associated with higher FT4 concentrations in women during early pregnancy. The potential clinical implications of these findings remain to be clarified.
Collapse
Affiliation(s)
- Richard Christian Jensen
- Department of Endocrinology, Odense University Hospital, Søndre Blvd. 29, 5000, Odense C, Denmark; Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense C, Denmark.
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Søndre Blvd. 29, 5000, Odense C, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense C, Denmark; National Institute of Public Health, University of Southern Denmark, Studiestræde 6, 1455, København K, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense C, Denmark
| | - Henriette Boye
- Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000, Odense C, Denmark
| | - Jeppe Buur Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, Kabbeltoft 25, University Hospital of Southern Denmark, 7100, Vejle, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000, Odense C, Denmark; Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, J. B. Winsløws Vej 16, 5000, Odense, Denmark
| | - Philippe Grandjean
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense C, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 677 Huntington Avenue Boston, MA, 02115, USA
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense C, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000, Odense C, Denmark; OPEN, University of Southern Denmark, J. B. Winsløws Vej 9a, 5000, Odense C, Denmark
| | - Marianne S Andersen
- Department of Endocrinology, Odense University Hospital, Søndre Blvd. 29, 5000, Odense C, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense, Denmark
| |
Collapse
|
41
|
Oh J, Bennett DH, Tancredi DJ, Calafat AM, Schmidt RJ, Hertz-Picciotto I, Shin HM. Longitudinal Changes in Maternal Serum Concentrations of Per- and Polyfluoroalkyl Substances from Pregnancy to Two Years Postpartum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11449-11459. [PMID: 35904360 PMCID: PMC9798824 DOI: 10.1021/acs.est.1c07970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and lactation is of increasing public health concern, but little is known about longitudinal changes in maternal PFAS concentrations from pregnancy to a few years postpartum. We quantified 11 PFAS in 251 serum samples prospectively collected from 42 Northern California mothers during the first, second, and third trimesters of pregnancy and at 3, 6, and 24 months after delivery over 2009-2017. We fit separate linear mixed models during pregnancy, early postpartum, and late postpartum to estimate percent changes of PFAS for each subperiod. Among five PFAS detected in more than 99% of samples, linear and branched perfluorooctanesulfonate (n- and Sm-PFOS), linear perfluorooctanoate (n-PFOA), and perfluorononanoate (PFNA) concentrations changed -4% to -3% per month during pregnancy. During early postpartum, perfluorohexanesulfonate (PFHxS) and n-PFOA concentrations changed -6% and -5%, respectively, per month, and Sm-PFOS and PFNA concentrations changed -1% per month. During late postpartum, n-PFOS, Sm-PFOS, and PFNA concentrations changed -1% per month. Breastfeeding duration was the primary determinant of n-PFOA and PFNA concentrations during late postpartum, showing negative associations. Our findings might be useful for reconstructing reliable prenatal or early life PFAS exposures for offspring.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas 76019, USA
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, University of California, Davis, California 95817, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California 95817, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas 76019, USA
- Department of Environmental Science, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
42
|
Rovira J, Martínez MÁ, Mari M, Cunha SC, Fernandes JO, Marmelo I, Marques A, Haug LS, Thomsen C, Nadal M, Domingo JL, Schuhmacher M. Mixture of environmental pollutants in breast milk from a Spanish cohort of nursing mothers. ENVIRONMENT INTERNATIONAL 2022; 166:107375. [PMID: 35777115 DOI: 10.1016/j.envint.2022.107375] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Breastfeeding is one of the most effective ways to ensure child health and survival, with several benefits for both the infants and their mothers. However, breast milk can contain environmental pollutants with endocrine disruption capacity, neurotoxicity and/or potential to alter microbiota. Monitoring breast milk provides information on the current chemical exposure of breastfed infants and, in addition, on the current and historical exposure of nursing mothers. In this study, the levels of a wide range of pollutants were measured in breast milk of Spanish nursing mothers. Target chemicals were dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), oxy-chlordane, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), per- and poly-fluoroalkyl substances (PFASs) (including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)), chlorpyrifos, bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and a number of toxic and essential elements. Traces of most chemicals were found. A correlation between the levels of some persistent organic pollutants (POPs) and maternal characteristics (age and body mass index) was observed, while smoking was associated to higher concentrations of some toxic elements. Higher levels of PCBs were detected in samples from Spanish primiparous mothers compared to non-Spanish multiparous women. Breast milk from low-income mothers showed higher content of DDT and DDE than high-income mothers. Although breastfeeding is clearly beneficial for babies, the exposure to this mixture of hazardous substances, as well as their interaction and combined effects must not be disregarded.
Collapse
Affiliation(s)
- Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - María Ángeles Martínez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Montse Mari
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Jose Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Isa Marmelo
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
43
|
Girardi P, Lupo A, Mastromatteo LY, Scrimin S. Mothers living with contamination of perfluoroalkyl substances: an assessment of the perceived health risk and self-reported diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60491-60507. [PMID: 35426015 DOI: 10.1007/s11356-022-20085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Widespread contamination of the superficial, drinking, and groundwater by perfluoroalkyl substances (PFASs) was discovered in the Veneto Region (northeast of Italy) in 2013. Mothers from the contaminated area were concerned about the effects of PFAS on their own and their children's health. We determined the factors that influenced the perceived risk of PFAS and the presence of self-reported diseases by conducting a study with 384 mothers of children aged 1-13 years living in the contaminated area (Red Zone, Veneto, Italy). Information on demography, the sources of exposure, and the health condition of the mothers was collected through an online survey. The serum PFAS concentration was recorded for some of the participants. We determined the factors influencing the perceived risk, risk of health outcomes, and serum PFAS levels through regression analyses. The PFAS perceived risk of the mothers increased with an increase in the trust in scientific institutions and social media, and when many friends were present, trust in politics and full-time employment had a protective effect. The PFAS perceived risk increased the occurrences of self-reported and autoimmune diseases. Longer residence (> 20 years) in the most exposed area (Red Zone A) increased the frequency of some health outcomes. Serum PFAS concentrations decreased with breastfeeding, but increased with tap water consumption, residence in Red Zone A, and residence time. The PFAS perceived risk of the mothers was associated with many factors that influenced reporting of health issues. The association between PFAS exposure and health outcomes needs further investigation.
Collapse
Affiliation(s)
- Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Alice Lupo
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | | | - Sara Scrimin
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Bashir T, Asiseh F, Jefferson-Moore K, Obeng-Gyasi E. The Association of Per- and Polyfluoroalkyl Substances Serum Levels and Allostatic Load by Country of Birth and the Length of Time in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9438. [PMID: 35954796 PMCID: PMC9367790 DOI: 10.3390/ijerph19159438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Objectives: The aim of this study was to examine the association of per- and polyfluoroalkyl (PFAS) concentrations and allostatic load (AL) by the county of birth and the length of time in the United States of America (U.S.), in a representative sample of U.S. adults. Methods: Data from the 2007−2014 National Health and Nutrition Examination Survey (NHANES) were used in this cross-sectional study on the U.S. adults aged 20 and older. The analysis was stratified by the length of time in the U.S. and by the county of birth. In all, the sample contained those who were US-born (n = 10,264), Mexico-born (n = 4018), other Spanish speaking country-born (n = 2989), and other not−Hispanic speaking country-born (n = 3911). Poisson models were used to assess the differences in AL and PFAS levels depending on country of birth and length of time in the U.S. Results: Estimates indicated that those born in Other non−Spanish speaking counties had the highest PFAS levels among the country of birth category in the database. Regarding length of time in the U.S., those born in Mexico had low PFAS levels when their length of time in the U.S. was short. The Mexico-born category presented the most at-risk high serum PFAS levels, with AL levels increasing by length of time in the U.S. (p-value < 0.001). Conclusion: This study found that PFAS concentrations increased by the length of time residing in the U.S. Those born in other non−Hispanic counties had the highest PFAS levels among all the categories. In general, AL and PFAS levels are mostly associated with the length of time in the U.S., with foreign-born individuals having increased levels of both the longer they stay.
Collapse
Affiliation(s)
- Tahir Bashir
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Environmental Health and Disease Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Fafanyo Asiseh
- Department of Economics, Deese College of Business and Economics, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Kenrett Jefferson-Moore
- Department of Agribusiness, Applied Economics and Agriscience Education, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Environmental Health and Disease Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
45
|
Rawn DFK, Dufresne G, Clément G, Fraser WD, Arbuckle TE. Perfluorinated alkyl substances in Canadian human milk as part of the Maternal-Infant Research on Environmental Chemicals (MIREC) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154888. [PMID: 35367260 DOI: 10.1016/j.scitotenv.2022.154888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Perfluorinated alkyl substances (PFAS) were determined in human milk samples (n = 664) from participants in the Maternal-Infant Research on Environmental Chemicals (MIREC) study. ΣPFAS concentrations (sum of seven PFAS) ranged from 3.1 ng L-1 to 603 ng L-1, with a median concentration of 106 ng L-1 in the Canadian mothers' milk analyzed. These data comprise the first pan-Canadian dataset of PFAS in human milk. Perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonate (L-PFOS) were the dominant contributors to ΣPFAS in human milk samples. An inverse relationship between ΣPFAS concentrations and age was observed (Spearman correlation - 0.184). Primiparous women had elevated PFAS concentrations in milk relative to women who had children previously (p < 0.001). In contrast, the region of maternal birth did not influence ΣPFAS concentrations (p = 0.156). Although China and Norway have observed consistently detectable levels of perfluoroundecanoic acid (PFUdA) in human milk, PFAS with long carbon chains (n ≥ 11) were not present above method detection limits in Canadian human milk samples analyzed as part of the MIREC study. In conclusion, despite the presence of low levels of environmental contaminants in human milk, Health Canada supports breastfeeding due to the benefits to both infants and mothers.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator: 2203C, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Guy Dufresne
- Health Canada, Health Products Laboratory Program, Health Products Laboratory and Microbiology Laboratory Longueuil, 1001 Saint-Laurent Ouest, Longueuil, QC J4K 1C7, Canada
| | - Geneviève Clément
- Health Canada, Health Products Laboratory Program, Health Products Laboratory and Microbiology Laboratory Longueuil, 1001 Saint-Laurent Ouest, Longueuil, QC J4K 1C7, Canada
| | - William D Fraser
- CHU Sainte-Justine, Centre de recherche, Université de Montréal, Montréal, QC, Canada. Current Address: Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Address Locator: 0801A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
46
|
Peterson AK, Eckel SP, Habre R, Yang T, Faham D, Farzan SF, Grubbs BH, Kannan K, Robinson M, Lerner D, Al-Marayati LA, Walker DK, Grant EG, Bastain TM, Breton CV. Prenatal Perfluorooctanoic Acid (PFOA) Exposure Is Associated With Lower Infant Birthweight Within the MADRES Pregnancy Cohort. FRONTIERS IN EPIDEMIOLOGY 2022; 2:934715. [PMID: 38455325 PMCID: PMC10910958 DOI: 10.3389/fepid.2022.934715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 03/09/2024]
Abstract
Introduction Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals found in household products that can cross the placenta during pregnancy. We investigated whether PFAS exposure during pregnancy was associated with infant birth outcomes in a predominantly urban Hispanic population. Methods Serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were measured in 342 prenatal biospecimens (mean gestational age: 21 ± 9 weeks) from participants in the ongoing Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) cohort. PFAS compounds were modeled continuously or categorically, depending on the percentage of samples detected. The birth outcomes assessed were birthweight, gestational age at birth, and birthweight for gestational age (BW-for-GA) z-scores that accounted for parity or infant sex. Single pollutant and multipollutant linear regression models were performed to evaluate associations between PFAS exposures and birth outcomes, adjusting for sociodemographic, perinatal, and study design covariates. Results Maternal participants (n = 342) were on average 29 ± 6 years old at study entry and were predominantly Hispanic (76%). Infants were born at a mean of 39 ± 2 weeks of gestation and weighed on average 3,278 ± 522 g. PFOS and PFHxS were detected in 100% of the samples while PFNA, PFOA, and PFDA were detected in 70%, 65%, and 57% of the samples, respectively. PFAS levels were generally lower in this cohort than in comparable cohorts. Women with detected levels of PFOA during pregnancy had infants weighing on average 119.7 g less (95% CI -216.7, -22.7) than women with undetected levels of PFOA in adjusted single pollutant models. PFOA results were also statistically significant in BW-for-GA z-score models that were specific for sex or parity. In models that were mutually adjusted for five detected PFAS compounds, PFOA results remained comparable; however, the association was only significant in BW-for-GA z-scores that were specific for parity (β = -0.3; 95% CI -0.6, -0.01). We found no significant adjusted associations with the remaining PFAS concentrations and the birth outcomes assessed. Conclusion Prenatal exposure to PFOA was associated with lower birthweight in infants, suggesting that exposure to these chemicals during critical periods of development might have important implications for children's health.
Collapse
Affiliation(s)
- Alicia K. Peterson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dema Faham
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Deborah Lerner
- Eisner Pediatric and Family Medical Center, Eisner Health, Los Angeles, CA, United States
| | - Laila A. Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daphne K. Walker
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Edward G. Grant
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Liu X, Luo K, Zhang J, Yu H, Chen D. Exposure of Preconception Couples to Legacy and Emerging Per- and Polyfluoroalkyl Substances: Variations Within and Between Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6172-6181. [PMID: 35016501 DOI: 10.1021/acs.est.1c07422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploration of the exposure of preconception couples to per- and polyfluoroalkyl substances (PFAS), as well as the most important influencing factors, promotes the understanding of the joint effects of parental exposure on reproductive health. In the present study, a total of 938 preconception couples recruited through the Shanghai Birth Cohort were investigated for the variations of PFAS exposure and contributing factors within and between couples. While linear perfluorooctanoic acid (n-PFOA, median 20.4 ng/mL) and linear perfluorooctanesulfonic acid (n-PFOS, 12.1 ng/mL) remained dominant in plasma, emerging PFAS, particularly 6:2 chlorinated polyfluorinated ether sulfonate (10.5 ng/mL), 6:2 polyfluoroalkyl phosphate diester (0.41 ng/mL), and branched PFOS or PFOA isomers, were also frequently detected. Although individual PFAS were generally correlated within couples, gender differences significantly existed in the concentrations of most individual PFAS and isomer profiles of PFOS and PFOA. Men generally exhibited higher plasma concentrations than their partners, likely reflecting gender-specific elimination pathway and kinetics. Couple-based PFAS exposure also varied greatly. After adjustment for individual factors, several household factors, including annual household income, dwelling floor type, drinking water source, and living near farmlands, were found to be associated with couple-based PFAS exposure. Our study constitutes one of the few studies addressing couple-based exposure to PFAS and lays a solid ground for further assessment of the impacts of parental exposure on reproductive health.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Hao Yu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Nyström J, Benskin JP, Plassmann M, Sandblom O, Glynn A, Lampa E, Gyllenhammar I, Moraeus L, Lignell S. Demographic, life-style and physiological determinants of serum per- and polyfluoroalkyl substance (PFAS) concentrations in a national cross-sectional survey of Swedish adolescents. ENVIRONMENTAL RESEARCH 2022; 208:112674. [PMID: 34998808 DOI: 10.1016/j.envres.2022.112674] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/02/2022] [Indexed: 05/09/2023]
Abstract
PER: and polyfluoroalkyl substances (PFAS) may affect adolescent health, yet factors related to PFAS concentrations in serum are poorly understood. We studied demographic, life-style and physiological determinants of serum PFAS concentrations in Swedish adolescents from a nation-wide survey, Riksmaten Adolescents 2016-17 (RMA, age 10-21 years, n = 1098). Serum samples were analyzed for 42 PFAS, using liquid chromatography-tandem mass spectrometry. The cumulative probability model was used to estimate associations between serum PFAS and determinants, using ordinal logistic regression. Legacy linear (lin-) perfluorooctanoic acid (PFOA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), lin-perfluorohexanesulfonic acid (PFHxS) and lin-/branched (br-) perfluorooctanesulfonic acid (PFOS) were quantifiable in ≥70% of the samples. The emerging PFAS 9-chlorohexanedecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS) was quantified in 5.4% of the samples, suggesting initiation of long-range transport far from production sites. Median concentrations of all legacy PFAS were <2 ng/g serum, with a few participants having very high (>100 ng/g serum) lin-PFHxS and lin-/br-PFOS concentrations due to previous high exposure from PFAS-contaminated drinking water. Legacy PFAS exposure was strongly associated with birth country of the participants and their mothers. 2-fold higher estimated adjusted mean (EAM) concentrations were seen among high income country participants with mothers from high income countries than among low/lower-middle income country participants with mothers from the same category. Menstruating females had lower br-PFOS EAM concentrations than those who were not. Iron status (plasma ferritin) among females may be a marker of intensity of menstrual bleeding, but it was not significantly associated with legacy PFAS concentrations among females. Further studies are needed to determine how physiological changes occurring around menstruation affect the toxicokinetics of PFAS in females. In conclusion, PFAS are pollutants of the industrialized world and some of the identified determinants may be overlooked confounders/effect modifiers that should be included in future PFAS/health studies among adolescents.
Collapse
Affiliation(s)
- Jennifer Nyström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Merle Plassmann
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Oskar Sandblom
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Lotta Moraeus
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| |
Collapse
|
49
|
Oh J, Shin HM, Nishimura T, Rahman MS, Takahashi N, Tsuchiya KJ. Perfluorooctanoate and perfluorooctane sulfonate in umbilical cord blood and child cognitive development: Hamamatsu Birth Cohort for Mothers and Children (HBC Study). ENVIRONMENT INTERNATIONAL 2022; 163:107215. [PMID: 35378444 DOI: 10.1016/j.envint.2022.107215] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been shown to affect offspring behaviors in laboratory animals. Several epidemiological studies investigated associations between prenatal PFAS exposure and child neurodevelopment, but results were inconclusive. We examined associations between cord blood concentrations of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) and cognitive development in children from 4 to 40 months of age. METHODS This study included 598 mother-child pairs who participated in the Hamamatsu Birth Cohort Study for Mothers and Children (HBC Study), a prospective birth cohort study in Japan. PFOA and PFOS were quantified in cord blood. The Mullen Scales of Early Learning (MSEL) was used to assess child cognitive function at 4, 6, 10, 14, 18, 24, 32, and 40 months of age. For each of log 2-transformed PFOA and PFOS concentrations, we examined: 1) associations with the scores of MSEL Early Learning Composite (Composite) and four subscales (Fine Motor, Visual Reception, Receptive Language, Expressive Language) at each assessment time point; and 2) associations with longitudinal changes in the Composite and subscale scores. RESULTS MSEL Composite scores were inversely associated with PFOA at 18 months of age (per 2-fold increase in concentration: β = -2.23, 95% CI: -3.91, -0.56), but not at other ages. When accounting for changes in scores from 4 to 40 months of age, PFOA and PFOS were positively associated with Composite as well as Receptive and Expressive Language scores. Child's sex modified associations between PFOA and Composite scores at 14, 18, and 40 months and those between PFOS and Composite scores at 14 months, showing negative associations among females. CONCLUSIONS In this study, cord blood PFOA and PFOS concentrations showed mixed associations with child cognitive functions at specific age but had positive associations with longitudinal changes in cognitive development from 4 to 40 months of age.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mohammad Shafiur Rahman
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nagahide Takahashi
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
50
|
Li J, Luo K, Liu X, Tang S, Zhang J, Chen D. Chemical-specific determinants for pre-conceptional exposure to emerging and legacy per- and polyfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152501. [PMID: 34968602 DOI: 10.1016/j.scitotenv.2021.152501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The exposure of preconception women to per- and polyfluoroalkyl substances (PFASs) could negatively affect her reproductive health. However, chemical-specific determinants for pre-conceptional exposure to PFASs, particularly the emerging ones, remain poorly understood. In the present study, it was found that the total PFAS concentration ranged from 8.9 to 440.3 ng/mL (median: 49.6 ng/mL) in 1060 preconception women. The PFAS exposure profile was dominated by PFOA (16.8 ng/mL), followed by PFOS (13.3 ng/mL), 6:2 Cl-PFESA (8.9 ng/mL), PFDA (2.4 ng/mL), PFNA (2.1 ng/mL), and others. The pre-conceptional exposure to the selected PFASs was significantly associated, in a chemical-specific pattern, with multiple demographic characteristics and the consumption frequency of different types of food. In particular, the exposure to 6:2 Cl-PFESA was associated with age, parity, alcohol drinking, educational level, household income, and the consumption frequency of red meat, marine and freshwater fish, shellfish, and shrimp. However, our analysis revealed that the investigated sociodemographic and diet variables only explained a relatively small proportion (1.3%-18.7%) of PFAS concentration variations, raising the need of exploring additional factors critical to pre-conceptional PFAS exposure. Overall, the identification of chemical-specific determinants would greatly facilitate the understanding of the link between pre-conceptional exposure and health outcomes, and the mitigation of human exposure to PFAS, particularly the emerging ones.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|