1
|
Chen H, Chernick M, Dong W, Xie L, Hinton DE. The role of chorion integrity on the bioaccumulation and toxicity of selenium nanoparticles in Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107170. [PMID: 39586123 DOI: 10.1016/j.aquatox.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Selenium nanoparticles (nano-Se) have a wide range of biomedical and agricultural applications. However, there is little information on the potential toxicity of nano-Se once it enters the environment, particularly in fish. The first line of defense from contaminants that embryonic fish have is the chorion, but the degree to which the chorion protects the developing embryo is unknown. Japanese medaka (Oryzias latipes) embryos were exposed to nano-Se in a wide range of concentrations (0.1-400 µM). The importance of chorion integrity was evaluated by exposing embryos to 16 nm nano-Se under four degrees of dechorionation: intact, roughened, partially-dechorionated, fully-dechorionated. Then, effects of particle size on embryos and larvae were determined using four sizes of nano-Se particles (16, 25-50, 50, 100 nm). The results showed that nano-Se exposure reduced survival, development, and hatching. Nano-Se was observed to adsorb on the chorion, with the amount decreasing with increased degree of dechorionation. Toxicity increased with increasing degree of dechorionation, and smaller-sized nano-Se crossed intact chorion more readily and resulted in higher toxicity than larger ones. In larvae, nano-Se accumulated on the skin and was more toxic compared to embryos. This study demonstrated the importance of the chorion in protecting developing embryos and effects of nanoparticle size on its bioavailability and subsequent toxicity.
Collapse
Affiliation(s)
- Hongxing Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| |
Collapse
|
2
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
3
|
Xu Y, Zhou Q, Luan J, Hou J. Recoverability of zebrafish from decabromodiphenyl ether exposure: The persisted interference with extracellular matrix production and collagen synthesis and the enhancement of arrhythmias. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176349. [PMID: 39299332 DOI: 10.1016/j.scitotenv.2024.176349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
As a widely used brominated flame retardant, the widespread presence of decabromodiphenyl ether (BDE-209) in the natural environment and the toxicity risks it poses are well established, but the recoverability of BDE-209-induced individual injuries remains unknown. Therefore, a 7-day depuration experiment following a 4-day exposure of zebrafish to BDE-209 was conducted to confirm the recoverability and its mode of action. Oxidative stress after depuration was significantly reduced compared with BDE-209 exposure as indicated by the decreased expression level of oxidative stress-related genes and the reduced MDA, Gpx, and GST in zebrafish, indicating a gradual recovery of antioxidant activity. However, BDE-209 inhibition of extracellular matrix (ECM) proteins worsened after depuration. Mechanistically, BDE-209 mediated ECM production and secretion by down-regulating integrin expression. Furthermore, BDE-209 inhibition of collagen synthesis worsened after depuration. Biochemical assays and histopathological observations revealed a same result in zebrafish. Mechanistically, lysine hydroxylation is inhibited thereby affecting collagen synthesis. Interestingly, zebrafish showed arrhythmia after depuration compared to BDE-209 exposure, and abnormal changes in ATPase levels indicated that disturbances in Ca2+ homeostasis contributed to arrhythmia. Collectively, BDE-209-induced interference with ECM production and collagen synthesis persisted after depuration, which will provide new insights for understanding the recovery patterns of individuals under BDE-209 stress.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qi Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jian Luan
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Wang Y, Wang X, Sui S, Liu Z. Endocrine disrupting and carcinogenic effects of decabromodiphenyl ether. Front Endocrinol (Lausanne) 2023; 14:1183815. [PMID: 37334308 PMCID: PMC10272517 DOI: 10.3389/fendo.2023.1183815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Background Decabromodiphenyl ether (BDE209), an essential industrial flame retardant that is widely used, has recently been reported to be increasing in human serum. Due to the structural similarity between BDE209 and thyroid hormones, its toxic effects on the thyroid are of particular concern. Methods Original articles in the PubMed database were collected using the terms "BDE209", "decabromodiphenyl ether", "endocrine disrupting", "thyroid", "carcinogenesis", "polybrominated diphenyl ethers", "PBDEs," and their synonyms from inception up to October of 2022. Results Of the 748 studies initially identified, 45 were selected, which emphasized the adverse effects of BDE209 on endocrine system. BDE209 may have a toxic effect not only on thyroid function but also on thyroid cancer tumorigenesis at multiple levels, such as by directly interfering with the TR, hypothalamic-pituitary-thyroid (HPT) axis, enzyme activity, and methylation. However, it is impossible to draw a definitive conclusion on the exact pathway of thyroid toxicity from BDE209. Conclusions Although the toxic effects of BDE209 on the thyroid have been well investigated, its tumorigenic effects remain unclear and further research is necessary.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinpei Wang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shaofeng Sui
- Department of Environmental Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
7
|
Faria M, Bellot M, Soto O, Prats E, Montemurro N, Manjarrés D, Gómez-Canela C, Raldúa D. Developmental exposure to sertraline impaired zebrafish behavioral and neurochemical profiles. Front Physiol 2022; 13:1040598. [PMID: 36467683 PMCID: PMC9716079 DOI: 10.3389/fphys.2022.1040598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
The number of people suffering from mental health problems is rising, with anxiety and depression now the most commonly diagnosed psychiatric conditions. Selective serotonin reuptake inhibitors (SSRIs) are one of the most prescribed pharmaceuticals to treat these conditions, which has led to their common detection in many aquatic ecosystems. As the monoaminergic system shows a high degree of structural conservation across diverse animal phyla, a reasonable assumption is that the environmental levels of SSRIs in surface water can lead to adverse effects on fish and other aquatic wildlife. For instance, Sertraline (SER), a widely prescribed SSRI, has been shown to induce adverse effects in fish, albeit most of the reports used exposure concentrations exceeding those occurring in natural environments. Therefore, there is still a great lack of knowledge regarding SERs effects in fish species, especially during early life stages. This study describes the evaluation of developmental exposure of zebrafish (Danio rerio) to environmentally relevant concentrations of SER (from 0.01 to 10 μg/L), using a battery of key survival behaviors and further relating them with the expression of genes and neurochemical profiles of the monoaminergic system. We found that developmental exposure to SER did not affect embryo morphogenesis and growth. However, concentrations as low as 0.1 μg/L induced hypolocomotion and delayed learning. The observed behavioral impairment was associated with augmented serotonin levels rather than other neurochemicals and molecular markers, highlighting the relationship between serotonin signaling and behavior in zebrafish.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marina Bellot
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Oscar Soto
- Universitat Ramon Llull, Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Barcelona, Spain
| | - Nicola Montemurro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Diana Manjarrés
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
8
|
Wang C, Zeng L, Li Y, Shi C, Peng Y, Pan R, Huang M, Wang S, Zhang J, Li H. Decabromodiphenyl ethane induces locomotion neurotoxicity and potential Alzheimer's disease risks through intensifying amyloid-beta deposition by inhibiting transthyretin/transthyretin-like proteins. ENVIRONMENT INTERNATIONAL 2022; 168:107482. [PMID: 35998411 DOI: 10.1016/j.envint.2022.107482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
As a major alternative to traditional brominated flame retardants (BFRs), decabromodiphenyl ethane (DBDPE) is widely used and has been commonly detected in various environmental media and organisms. Few previous studies have focused on DBDPE-induced locomotion neurotoxicity, and the exact molecular mechanisms and related health risks remain unclear. In this study, we first analyzed the locomotion indicators of nematodes following DBDPE exposure, demonstrated that DBDPE caused locomotion neurotoxicity, and identified that a series of the transthyretin (TTR)-like genes participated in the regulation of nematode motility by transcriptomic analysis, gene transcription validation and TTR-like mutant verification. Subsequently, this study demonstrated that DBDPE exacerbated amyloid-beta (Aβ) deposition by repressing TTR/TTR-like gene transcription based on Alzheimer's disease (AD) model nematodes and human SH-SY5Y cells following DBDPE exposure and further revealed that DBDPE reduced the binding between TTR and Aβ by competing with the strand G region sites on the TTR/TTR-like protein, ultimately exacerbating Aβ deposition and the risk of AD. In short, our study demonstrated that DBDPE induced locomotion neurotoxicity and potential AD risks through intensifying Aβ deposition by inhibiting TTR/TTR-like proteins, providing reference support for risk management and policy formulation related to DBDPE and similarly structured novel BFRs.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yeyong Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chongli Shi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yi Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ruolin Pan
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengyan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Susu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Wang J, Dai GD. Comparative Effects of Brominated Flame Retardants BDE-209, TBBPA, and HBCD on Neurotoxicity in Mice. Chem Res Toxicol 2022; 35:1512-1518. [PMID: 35950316 DOI: 10.1021/acs.chemrestox.2c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brominated flame retardants (BFRs) are ubiquitous industrial chemicals. In China, BFRs that are applied in large quantities include decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCD). Although findings are not always unequivocal, mounting evidence in vivo suggests that the BFRs have potential neurotoxicity. The present study aimed to assess and compare the neurotoxic effects of these three BFRs' exposure. Male mice were orally exposed to BDE-209, TBBPA, or HBCD at 50 and 100 mg/kg bw/day for 28 days. The cognitive behavior, oxidative stress (ROS, MDA, and GSH), apoptosis-related genes (caspase-3, bax, and bcl-2), memory-related proteins (BDNF and PSD-95), and neurotransmitters (AChE and ChAT) were detected comparatively. Results showed that high doses of BDE-209, TBBPA, and HBCD exposure impaired spatial memory of mice, elevated ROS and MDA and reduced GSH levels of hippocampus, upregulated caspase-3 and bax expressions, decreased BDNF and PSD-95 levels, and disordered AChE and ChAT levels. Notably, BDE-209 caused greater adverse effects > HBCD > TBBPA. This study confirms and extends that these three BFRs had similar neurotoxic effects at current concentrations, although they may be more or less toxic.
Collapse
Affiliation(s)
- Juan Wang
- Clinical Nursing Department, Nursing College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Guo-Dong Dai
- Department of Neurosurgery, Xianning Central Hospital, Xianning 437100, PR China
| |
Collapse
|
10
|
Pérez-Iglesias JM, González P, Calderón MR, Natale GS, Almeida CA. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50845-50855. [PMID: 35243576 DOI: 10.1007/s11356-022-19462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2',3,3',4,4',5,'5',6,6'-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 μg L-1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid-reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 μg L-1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 μg L-1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Patricia González
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Mirian Roxana Calderón
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medioambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47 (CP 1900), La Plata, Argentina
| | - César Américo Almeida
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina.
| |
Collapse
|
11
|
Faria M, Bellot M, Bedrossiantz J, Ramírez JRR, Prats E, Garcia-Reyero N, Gomez-Canela C, Mestres J, Rovira X, Barata C, Oliván LMG, Llebaria A, Raldua D. Environmental levels of carbaryl impair zebrafish larvae behaviour: The potential role of ADRA2B and HTR2B. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128563. [PMID: 35248961 DOI: 10.1016/j.jhazmat.2022.128563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours. Interestingly, the observed behavioural effects induced by carbaryl were acetylcholinesterase-independent. To elucidate the molecular initiating event that resulted in the observed behavioural effects, in silico predictions were followed by in vitro validation. We identified two target proteins that potentially interacted with carbaryl, the α2B adrenoceptor (ADRA2B) and the serotonin 2B receptor (HTR2B). Using a pharmacological approach, we then tested the hypothesis that carbaryl had antagonistic interactions with both receptors. Similar to yohimbine and SB204741, which are prototypic antagonists of ADRA2B and HTR2B, respectively, carbaryl increased the heart rate of zebrafish larvae. When we compared the behavioural effects of a 24-h exposure to these pharmacological antagonists with those of carbaryl, a high degree of similarity was found. These results strongly suggest that antagonism of both ADRA2B and HTR2B is the molecular initiating event that leads to adverse outcomes in zebrafish larvae that have undergone 24 h of exposure to environmentally relevant levels of carbaryl.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Xavier Rovira
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
12
|
Li Z, Guo J, Jia K, Zheng Z, Chen X, Bai Z, Yang Y, Chen B, Yuan W, Chen W, Yang J. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113140. [PMID: 34979306 DOI: 10.1016/j.ecoenv.2021.113140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxyfluorfen (OXY) is widely used in agriculture as a herbicide, resulting in its continuous accumulation in the environment. The presence of OXY can be detected in soil and rivers. However, until now, the potential toxicity of OXY to aquatic organisms has not been evaluated. In this study, zebrafish was used as a model animal to evaluate OXY-induced liver toxicity. The study found that 0.25, 0.5, and 1 mg/L of OXY affected the early development of zebrafish and severely damaged the lipid and sugar metabolism in the liver of zebrafish larvae. Furthermore, a metabolic function disorder caused liver damage. OXY also caused inflammation by upregulating the inflammatory factors IL-6, IL-8, and TNF-α, and activated the apoptotic pathway to inhibit hepatocyte proliferation, resulting in zebrafish liver toxicity. Our research showed that OXY had certain toxic effects on zebrafish development and liver and could cause potential harm to other aquatic organisms and humans.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 30031, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Zhonghui Bai
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Bo Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weihua Chen
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
13
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Li X, Zhang Y, Dong X, Zhou G, Sang Y, Gao L, Zhou X, Sun Z. DNA methylation changes induced by BDE-209 are related to DNA damage response and germ cell development in GC-2spd. J Environ Sci (China) 2021; 109:161-170. [PMID: 34607665 DOI: 10.1016/j.jes.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
Decabrominated diphenyl ether (BDE-209) is generally utilized in multiple polymer materials as common brominated flame retardant. BDE-209 has been listed as persistent organic pollutants (POPs), which was considered to be reproductive toxin in the environment. But it still remains unclear about the effects of BDE-209 on DNA methylation and the induced-male reproductive toxicity. Due to the extensive epigenetic regulation in germ line development, we hypothesize that BDE-209 exposure impacts the statue of DNA methylation in spermatocytes in vitro. Therefore, the mouse GC-2spd (GC-2) cells were used for the genome wide DNA methylation analysis after treated with 32 μg/mL BDE-209 for 24 hr. The results showed that BDE-209 caused genomic methylation changes with 32,083 differentially methylated CpGs in GC-2 cells, including 16,164 (50.38%) hypermethylated and 15,919 (49.62%) hypomethylated sites. With integrated analysis of DNA methylation data and functional enrichment, we found that BDE-209 might affect the functional transcription in cell growth and sperm development by differential gene methylation. qRT-PCR validation demonstrated the involvement of p53-dependent DNA damage response in the GC-2 cells after BDE-209 exposure. In general, our findings indicated that BDE-209-induced genome wide methylation changes could be interrelated with reproductive dysfunction. This study might provide new insights into the mechanisms of male reproductive toxicity under the environmental exposure to BDE-209.
Collapse
Affiliation(s)
- Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaomin Dong
- Experimental Center for basic medical teaching, Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.
Collapse
Affiliation(s)
- Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
16
|
Folle NMT, Azevedo-Linhares M, Garcia JRE, Esquivel L, Grotzner SR, Oliveira ECD, Filipak Neto F, Oliveira Ribeiro CAD. 2,4,6-Tribromophenol is toxic to Oreochromis niloticus (Linnaeus, 1758) after trophic and subchronic exposure. CHEMOSPHERE 2021; 268:128785. [PMID: 33168290 DOI: 10.1016/j.chemosphere.2020.128785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The presence of 2,4,6-Tribromophenol (TBP) in the environment increased the risk of exposure to aquatic organisms affecting the animal development or metabolism. The current study investigated the low, subchronic and trophic effect of TBP in both, male and female adult of Oreochromis niloticus. The fish were exposed to 0.5 or 50 ng g-1 of TBP every ten days for 70 days. Then, hepatosomatic (HSI) and gonadosomatic (GSI) indexes, erythrocyte parameters (hemoglobin content, nuclear morphology and morphometrical abnormalities), biochemical endpoints (glutathione S-Transferase and catalase activities, non-protein thiols, lipid peroxidation and protein carbonylation levels in the liver; and acetylcholinesterase activity in the brain and muscle), histopathological analysis (liver) and vitellogenin levels (plasma) were considered. TBP affected the HSI in male and female fish, but not the GSI. Principal Component Analysis revealed that erythrocytes from males are more sensitive to TBP exposure. Likewise, TBP induced the expression of vitellogenin, CAT activity and liver lesion in male fish comparatively with control group, but GST and NPT were influenced only by sex. Finally, the results showed that the antioxidant mechanism and cholinesterase activity effects were more pronounced in male than in female. The current data shows evidences of estrogenic endocrine disruption and toxicity in O. niloticus exposed to TBP, revealing the risk of exposure to biota.
Collapse
Affiliation(s)
- Nilce Mary Turcatti Folle
- Departamento de Biologia Celular, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba-PR, Brazil
| | - Maristela Azevedo-Linhares
- Centro de Tecnologia Em Saúde e Meio Ambiente, Instituto de Tecnologia Do Paraná, CEP 81350-010, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro. Paulo Lopes - SC, CEP 88490-000, Brazil
| | - Sonia Regina Grotzner
- Departamento de Biologia Celular, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba-PR, Brazil
| | - Elton Celton de Oliveira
- Universidade Tecnológica Federal Do Paraná. Campus Dois Vizinhos, CEP 82660-000, Dois Vizinhos, PR. Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba-PR, Brazil
| | | |
Collapse
|
17
|
Jin Y, Li J, Deng X, Xia B, Song Q, Zhao Y, He X, Li Y, Xu Z, Xie A, Lin J, Zhang Y, Chen S. Association between fetal growth restriction and maternal exposure to polybrominated diphenyl ethers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110623. [PMID: 32361490 DOI: 10.1016/j.ecoenv.2020.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/06/2023]
Abstract
Humans are exposed to polybrominated diphenyl ethers (PBDEs) via ingestion of food, dust inhalation, and dermal absorption. Exposure to PBDEs via the placenta and breast milk is a special and important pathway in infants. This nested case-control study aimed to investigate the levels of PBDEs in maternal serum and colostrum, and to assess the association between the occurrence of fetal growth restriction (FGR) and prenatal exposure to PBDEs. We recruited 293 mother-newborn pairs, including 98 FGR cases and 195 healthy controls in Wenzhou, China. Maternal serum and colostrum samples were collected during pregnancy and after delivery, respectively, and the levels of PBDEs were measured by gas chromatography-tandem mass spectrometry. The total levels of PBDEs in maternal serum and colostrum were found to be in equilibrium, but congener profiles of PBDEs in these matrices were different. Increased BDE-207, BDE-209, ∑BDE196-209 and ∑PBDEs levels in maternal serum and BDE-99, ∑BDE17-154 and ∑PBDEs levels in colostrum were correlated with decreased birth weight Z score. Increased concentrations of higher brominated BDEs in maternal serum (odds ratio (OR) = 1.010, 95%CI = 1.003-1.018) and low-to moderately brominated BDEs in colostrum (OR = 1.004, 95%CI = 1.000-1.009) were associated with increased risk of FGR, which showed an exposure-response relationship. In addition, infants with FGR were more exposed to PBDEs in colostrum after birth than healthy infants. Longitudinal birth cohort studies are needed to determine the prolonged effect of PBDEs exposure on the growth of FGR infants in the future.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Department of Pediatrics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jialin Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaokai Deng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bin Xia
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yingya Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaoxiao He
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yimei Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhangye Xu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ailan Xie
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
18
|
Jia K, Cheng B, Huang L, Xiao J, Bai Z, Liao X, Cao Z, Shen T, Zhang C, Hu C, Lu H. Thiophanate-methyl induces severe hepatotoxicity in zebrafish. CHEMOSPHERE 2020; 248:125941. [PMID: 32004883 DOI: 10.1016/j.chemosphere.2020.125941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Thiophanate-methyl (TM) is widely used all over the world and is a typical example of pesticide residues, which can be detected in the soil, and even in vegetables and fruits. However, the molecular mechanisms underlying the hepatotoxicity of TM are not well understood. In this study, we utilized zebrafish to comprehensively evaluate the hepatotoxicity of TM and explore how the molecular mechanisms of hepatotoxicity are induced. The zebrafish larvae were exposed in 6.25, 12.5 and 25 mg/L TM from 72 to 144 hpf, while the adults were exposed in 2, 4 and 6 mg/L TM for 28 days. Here, we found that 12.5 and 25 mg/L TM induces specifically serious hepatotoxicity but not the toxicity of other organs in zebrafish larvae and adults. Moreover, it might triggered hepatotoxicity by activating the caspase-3 through apoptotic pathways and oxidative stress in zebrafish. Subsequently, this resulted in a metabolic imbalance in the zebrafish's liver. In conclusion, our results disclosed the fact that TM may induce severe hepatotoxicity by mediating activation of caspase-3 and oxidative stress in zebrafish.
Collapse
Affiliation(s)
- Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Lirong Huang
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zhonghui Bai
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xinjun Liao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Tianzhu Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Chunping Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
19
|
Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol Appl Pharmacol 2019; 373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
|
20
|
Alfonso S, Blanc M, Joassard L, Keiter SH, Munschy C, Loizeau V, Bégout ML, Cousin X. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:29-38. [PMID: 30605867 DOI: 10.1016/j.aquatox.2018.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants extensively used during the 20th century and still present in aquatic environments despite their ban. Effects of exposure to these compounds over generations are poorly documented. Therefore, our aims were to characterize behavioral responses and underlying molecular mechanisms in zebrafish exposed to an environmentally relevant mixture of PCBs and PBDEs as well as in four unexposed offspring generations. Zebrafish (F0) were chronically exposed from the first meal onward to a diet spiked with a mixture containing 22 PCB and 7 PBDE congeners in proportions and concentrations reflecting environmental situations (ΣPCBs = 1991 and ΣPBDEs = 411 ng/g). Four offspring generations (F1 to F4) were obtained from this F0 and were not further exposed. Behavior was assessed at both larval and adult stages. Mechanisms related to behavioral defects (habenula maturation and c-fos transcription) and methylation (dnmts transcription) were monitored in larvae. Exposed adult F0 as well as F1 and F3 adults displayed no behavioral change while F2 expressed anxiety-like behavior. Larval behavior was also disrupted, i.e. hyperactive after light to dark transition in F1 or hypoactive in F2, F3 and F4. Behavioral disruptions may be related to defect in habenula maturation (observed in F1) and change in c-fos transcription (observed in F1 and F2). Transcription of the gene encoding DNA methyltransferase (dnmt3ba) was also modified in all generations. Our results lead us to hypothesize that chronic dietary exposure to an environmentally relevant mixture of PCB and PBDE triggers multigenerational and transgenerational molecular and behavioral disruptions in a vertebrate model.
Collapse
Affiliation(s)
- Sébastien Alfonso
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France.
| | - Mélanie Blanc
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Lucette Joassard
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Catherine Munschy
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Rue de l'Ile d'Yeu, BP 21105, F-44311, Nantes, Cedex 3, France
| | - Véronique Loizeau
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, ZI Pointe du Diable, CS 10070, F-29280, Plouzané, France
| | - Marie-Laure Bégout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Xavier Cousin
- UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France; Inra, UMR GABI, Inra, AgroParisTech, Domaine de Vilvert, Batiment 231, F-78350 Jouy-en-Josas, France
| |
Collapse
|
21
|
Jin MQ, Zhang D, Zhang Y, Zhou SS, Lu XT, Zhao HT. Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane. J Zhejiang Univ Sci B 2018; 19:400-408. [PMID: 29732751 DOI: 10.1631/jzus.b1800033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Decabromodiphenylethane (DBDPE) has been widely used as an alternative flame retardant due to the restriction or phase-out of traditional polybrominated diphenyl ethers (PBDEs), and is of increasing concern regarding its ubiquity, persistence, and potential adverse effects. In the present study, the toxicological effects of DBDPE were evaluated using zebrafish as an in vivo model. Upon being exposed to DBDPE-polluted sediments for a short term, it was found that the mortality and malformation of zebrafish (including edema, bent notochord, and bent tail) were not affected even at the highest concentration tested (1000.0 µg/kg dry sediment). Regarding behavioral responses, it was found that zebrafish larvae of 48 hours post fertilization (hpf) in all groups escaped successfully with a touch to the dorsal fin. However, when exposed to the highest DBDPE concentration, the larvae of 120 hpf exhibited significantly smaller distances as compared to the control. Moreover, the results of the acetylcholinesterase (AChE) activity, the expression levels of two important nerve-related genes, and the cell apoptosis all indicated that DBDPE posed low neurotoxicity in embryo-larval zebrafish. The results in this study shed some light on the potential risks of DBDPE in the real environment and highlight the application of the sediment exposure route in the future.
Collapse
Affiliation(s)
- Mei-Qing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dong Zhang
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ying Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200062, China
| | - Shan-Shan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xian-Ting Lu
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong-Ting Zhao
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
22
|
Fu H, Xia Y, Chen Y, Xu T, Xu L, Guo Z, Xu H, Xie HQ, Zhao B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8065-8074. [PMID: 29995397 DOI: 10.1021/acs.est.7b04004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.
Collapse
Affiliation(s)
- Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Haiming Xu
- School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia Hui Autonomous Region 750004 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| |
Collapse
|
23
|
Wang S, Wu C, Liu Z, You H. Studies on the interaction of BDE-47 and BDE-209 with acetylcholinesterase (AChE) based on the neurotoxicity through fluorescence, UV–vis spectra, and molecular docking. Toxicol Lett 2018; 287:42-48. [DOI: 10.1016/j.toxlet.2018.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/09/2022]
|
24
|
Schüttler A, Reiche K, Altenburger R, Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol Sci 2018; 157:291-304. [PMID: 28329862 PMCID: PMC5443304 DOI: 10.1093/toxsci/kfx045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have been published in the past years investigating the transcriptome of the zebrafish embryo (ZFE) upon being subjected to chemical stress. Aiming at a more mechanistic understanding of the results of such studies, knowledge about commonalities of transcript regulation in response to chemical stress is needed. Thus, our goal in this study was to identify and interpret genes and gene sets constituting a general response to chemical exposure. Therefore, we aggregated and reanalyzed published toxicogenomics data obtained with the ZFE. We found that overlap of differentially transcribed genes in response to chemical stress across independent studies is generally low and the most commonly differentially transcribed genes appear in less than 50% of all treatments across studies. However, effect size analysis revealed several genes showing a common trend of differential expression, among which genes related to calcium homeostasis emerged as key, especially in exposure settings up to 24 h post-fertilization. Additionally, we found that these and other downregulated genes are often linked to anatomical regions developing during the respective exposure period. Genes showing a trend of increased expression were, among others, linked to signaling pathways (e.g., Wnt, Fgf) as well as lysosomal structures and apoptosis. The findings of this study help to increase the understanding of chemical stress responses in the developing zebrafish embryo and provide a starting point to improve experimental designs for this model system. In future, improved time- and concentration-resolved experiments should offer better understanding of stress response patterns and access to mechanistic information.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraβe 1, Leipzig, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipig, Germany
| |
Collapse
|
25
|
Chao SJ, Huang CP, Chen PC, Huang C. Teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209) in the presence of nano-SiO 2 particles. CHEMOSPHERE 2017; 178:449-457. [PMID: 28342993 DOI: 10.1016/j.chemosphere.2017.03.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
This study investigated the influence of nano-SiO2 particles (nSiO2) on the teratogenic responses of zebrafish embryos to decabromodiphenyl ether (BDE-209). Zebrafish embryos were exposed to BDE-209 in the absence and presence of nSiO2 for 96 h post fertilization (hpf). Results showed that formation of nSiO2-BDE-209 associates promoted both extracellular and intracellular uptake of BDE-209 by zebrafish embryos, thereby increasing the bioconcentration of BDE-209 on the chorion surface and the embryos. Results also showed embryos delay hatching temporarily when co-exposure to BDE-209 and nSiO2 at 60 hpf. Furthermore, there was heartbeat decline (28.3 beats/10s) and increase in irregular heartbeat (45.8%) in zebrafish larvae at 96 hpf, compared to the sole exposure to BDE-209 (32.7 beats/10s and 0%). Malformation in terms of spinal curvature (SC), pericardial edema (PE) and yolk sac edema (YSE) were observed on zebrafish larvae at 33.9, 23.4, and 18%, respectively. Overall, abnormal development of zebrafish was apparent when co-exposure to BDE-209 and nSiO2. All relevant evidence considered, nSiO2 could facilitate the transport of BDE-209 towards zebrafish embryos and negatively impact the development of zebrafish.
Collapse
Affiliation(s)
- Shu-Ju Chao
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chin Pao Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan; Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Pei-Chung Chen
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
26
|
Liang J, Xia X, Zaman WQ, Zhang W, Lin K, Hu S, Lin Z. Bioaccumulation and toxic effects of decabromodiphenyl ether in the presence of nanoscale zero-valent iron in an earthworm-soil system. CHEMOSPHERE 2017; 169:78-88. [PMID: 27863305 DOI: 10.1016/j.chemosphere.2016.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
In this study, the bioaccumulation and toxic effects of decabromodiphenyl ether (BDE209) (1 and 10 mg kg-1) were investigated in the earthworm Eisenia fetida in the presence of different levels of nanoscale zero-valent iron (nZVI) (100, 500, and 1000 mg kg-1) in an earthworm-soil system. The results demonstrated that compared to single BDE209 exposure, the addition of high levels of nZVI significantly (P < 0.05) inhibited growth and respiration, while increased the avoidance response of earthworms. The perturbations of antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) and the malondialdehyde (MDA) content clearly revealed that oxidative stress was induced by the two chemicals. The histopathological observations of the body wall of earthworms under a combined exposure of 10 mg kg-1 BDE209 with 500 or 1000 mg kg-1 nZVI illustrated the presence of a serious injury in the intestinal tissues after a 28-day exposure. Additionally, a gas chromatography-mass spectrometry analysis revealed that the coexistence of high level of nZVI significantly (P < 0.05) decreased the bioaccumulation of BDE209 in earthworms; BDE208 and BDE206 were the predominant congeners of debrominated metabolites, and 4,6-dibromobenzene-1,2,3,5-tetraol along with benzene-1,2,4,5-tetraol were determined as the two main intermediates. The possible degradation pathways were proposed on the basis of the identified products. This work provides useful information on the biological effects of BDE209 and nZVI.
Collapse
Affiliation(s)
- Jun Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhifen Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
27
|
Choi J, Jang YC, Kim JG. Substance flow analysis and environmental releases of PBDEs in life cycle of automobiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1085-1094. [PMID: 27694018 DOI: 10.1016/j.scitotenv.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, have been widely used in many applications in industry such as automobiles, textiles, and electronics. This study focused on a quantitative substance flow analysis (SFA) of PBDEs in automobiles in order to identify their flow by life cycle and treatment pathways of PBDEs-containing materials in end-of-life vehicles (ELVs) in Korea. In addition, this study has estimated environmental releases of PBDEs in automobiles by life cycle in Korea. During this study, PBDEs were analyzed for the samples collected from several ELVs treatment facilities using X-ray fluorescence and gas chromatography/mass spectrometry (GC/MS) methods. The system boundary for SFA of PBDEs ranged from manufacturing/trade to disposal stage of automobiles by life cycle. Based on the result of the SFA, it was found that the amount of PBDEs in automobiles were the highest in use stage (7748ton/year), followed by production stage (1743ton/year) in 2014. In disposal stage, automobile shredded residues (ASR) and seat fabrics were the main components with relatively high levels of PBDEs in ELVs. The major treatment methods of such components included incineration (84%), energy recovery (9%), and landfilling (6%). This research indicates that PBDEs were emitted the highest amount from interior components during the use stage of automobiles, followed by recycling processes such as dismantling and shredding. This study suggests that PBDEs in ASR and seat fabrics should be properly managed to prevent the widespread dispersion in the environment.
Collapse
Affiliation(s)
- Jonghyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| | - Yong-Chul Jang
- Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| | - Jong-Guk Kim
- Department of Environmental Engineering, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
28
|
Ruczyńska W, Szlinder-Richert J, Drgas A. The occurrence of endocrine disrupting compounds in off-shore sediments from the southern Baltic Sea. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1193-1207. [PMID: 27461960 DOI: 10.1039/c6em00193a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents the study on the occurrence and spatial distribution of polybrominated diphenyl ethers (PBDEs), butyltin compounds (BTCs), bisphenol A (BPA), and alkylphenols (APs) in sediments. The study focused mainly on off-shore surface sediments collected from the southern Baltic Sea. The pollutant concentrations were as follows: <LOQ-0.158 μg kg(-1) dw ∑9PBDEs, 0.02-1.06 μg kg(-1) dw BDE-209; <LOQ-20.13 μg Sn kg(-1) dw ∑BTCs and 2.7-1001 μg kg(-1) dw nonylphenols (NPs). The spatial distribution of the analyzed compounds was highly related to the organic matter content in the sediments. Only BDE-209 concentrations were the highest in sandy sediments collected near the point source of pollution. This suggests the fresh anthropogenic input of BDE-209 into the marine environment. The principal component analysis (PCA) confirms these observations-the distribution of ∑BTCs, NPs, and ∑9PBDEs was mainly determined by the physicochemical properties of the sediments, while the distribution of BDE-209 was also related to other factors, such as proximity to the pollution source. According to the environmental standards applied in this work, NPs, and to a lesser extent TBT, might pose a risk to aquatic life in the present study area as they occur in some sediments in concentrations higher than those that might cause adverse effects on biota.
Collapse
Affiliation(s)
- Wiesława Ruczyńska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland.
| | | | | |
Collapse
|
29
|
Bai X, Chen T, Gao Y, Li H, Li Z, Liu Z. The protective effects of insulin-like growth factor-1 on neurochemical phenotypes of dorsal root ganglion neurons with BDE-209-induced neurotoxicity in vitro. Toxicol Ind Health 2016; 33:250-264. [PMID: 27090441 DOI: 10.1177/0748233716638004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment as contaminants, in which 2,2',3,3',4,4',5,5',6,6'-decabrominated diphenyl ether (BDE-209) is the most abundant PBDE found in human samples. BDE-209 has been shown to cause neurotoxicity of primary sensory neurons with few effective therapeutic options available. Here, cultured dorsal root ganglion (DRG) neurons were used to determine the therapeutic effects of insulin-like growth factor-1 (IGF-1) on BDE-209-induced neurotoxicity. The results showed that IGF-1 promoted neurite outgrowth and cell viability of DRG neurons with BDE-209-induced neurotoxicity. IGF-1 inhibited oxidative stress and apoptotic cell death caused by BDE-209 exposure. IGF-1 could reverse the decrease in growth-associated protein-43 (GAP-43) and calcitonin gene-related peptide (CGRP), but not neurofilament-200 (NF-200), expression resulting from BDE-209 exposure. The effects of IGF-1 could be blocked by the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, either alone or in combination. IGF-1 may play an important role in neuroprotective effects on DRG neurons with BDE-209-induced neurotoxicity through inhibiting oxidative stress and apoptosis and regulating GAP-43 and CGRP expression of DRG neurons. Both ERK1/2 and PI3K/Akt signaling pathways were involved in the effects of IGF-1. Thus, IGF-1 might be one of the therapeutic agents on BDE-209-induced neurotoxicity.
Collapse
Affiliation(s)
- Xue Bai
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Tianhua Chen
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Yang Gao
- 2 Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hao Li
- 3 Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, China
| | - Zhenzhong Li
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Zhen Liu
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
30
|
Planchart A, Mattingly CJ, Allen D, Ceger P, Casey W, Hinton D, Kanungo J, Kullman SW, Tal T, Bondesson M, Burgess SM, Sullivan C, Kim C, Behl M, Padilla S, Reif DM, Tanguay RL, Hamm J. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX 2016; 33:435-452. [PMID: 27328013 PMCID: PMC5270630 DOI: 10.14573/altex.1601281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We alsoreview many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Carolyn J. Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Patricia Ceger
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jyotshna Kanungo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Seth W. Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Tamara Tal
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Maria Bondesson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | | - Con Sullivan
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Carol Kim
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Mamta Behl
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David M. Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Jon Hamm
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
31
|
Zhang C, Chen D, Liu X, Du L. Role of brominated diphenyl ether-209 in the proliferation and apoptosis of rat cultured neural stem cells in vitro. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0007-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Barón E, Dissanayake A, Vilà-Cano J, Crowther C, Readman JW, Jha AN, Eljarrat E, Barceló D. Evaluation of the Genotoxic and Physiological Effects of Decabromodiphenyl Ether (BDE-209) and Dechlorane Plus (DP) Flame Retardants in Marine Mussels (Mytilus galloprovincialis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2700-2708. [PMID: 26829245 DOI: 10.1021/acs.est.5b05814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 μg/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 μg/L for DP and 56, 100, and 200 μg/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209.
Collapse
Affiliation(s)
- Enrique Barón
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Awantha Dissanayake
- School of Biological Sciences, Plymouth University , Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Judit Vilà-Cano
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Charlotte Crowther
- School of Biological Sciences, Plymouth University , Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - James W Readman
- School of Biological Sciences, Plymouth University , Drake Circus, Plymouth PL4 8AA, United Kingdom
- School of Geography, Earth & Environmental Sciences, Plymouth University , Drake Circus, Plymouth PL4 8AA, United Kingdom
- Plymouth Marine Laboratory , Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University , Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona , Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
33
|
Gill S, Hou Y, Li N, Pulido O, Bowers W. Developmental neurotoxicity of polybrominated diphenyl ethers mixture de71 in Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:482-93. [PMID: 27294297 DOI: 10.1080/15287394.2016.1182001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are a class of brominated flame retardants that are recognized as global environmental contaminants and a potential adverse health risk. The objective of this study was to evaluate the developmental impacts on rat Sprague-Dawley (SD) pups at postnatal day (PND) 11, 21, 50, 105, and 250 after perinatal exposure to a DE71 mixture. These PNDs corresponded to juveniles, young, and mature adults, respectively. The analysis included histopathological, transcriptional evaluation, and Western blots in both hippocampus and midbrain. There were no marked histopathological changes, but significant transcriptional alterations were observed at PND 21 and 250 in midbrain. These changes occurred in a number of the markers of the cholinergic system, including acetylcholinesterase, muscarinic and nicotinic receptors, and structural gene,s including those of neurofilaments, cell adhesion molecules including N-cadherin and CAMKII, and cytokines. The markers were upregulated at least twofold or greater at PND 21. These biomarkers were predominantly altered in males at low dose (0.3 mg/kg), whereas females were affected only at high concentration (30 mg/kg). At PND 250 both males and females showed downregulation of markers in both intermediate- and high-dose groups. Our results support the findings that in utero and lactational exposure to DE71 mixture leads to transcriptional alterations in midbrain of adult SD rats.
Collapse
Affiliation(s)
- Santokh Gill
- a Regulatory Toxicology Research Division , Health Products and Foods Branch, Health Canada , Ottawa , Ontario , Canada
| | - Yangxun Hou
- a Regulatory Toxicology Research Division , Health Products and Foods Branch, Health Canada , Ottawa , Ontario , Canada
| | - Nanqin Li
- b Hazard Identification Division , Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario , Canada
| | - Olga Pulido
- c Departmental of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Wayne Bowers
- b Hazard Identification Division , Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario , Canada
- d Department of Neuroscience , Carleton University , Ottawa , Ontario , Canada
| |
Collapse
|
34
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
35
|
Hendriks HS, Westerink RH. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol 2015; 52:248-69. [DOI: 10.1016/j.ntt.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
36
|
Chen L, Yang Z, Ren YY, Zhang ZY, Wang XL, Yang XS, Yang L, Zhong B. Fourier transform infrared spectroscopy-thermogravimetry analysis of the thermal decomposition mechanism of an effective flame retardant, hydroquinone bis(di-2-methylphenyl phosphate). Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1527-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Feng Y, Hu Q, Meng G, Wu X, Zeng W, Zhang X, Yu Y, Wang Y. Simulating long-term occupational exposure to decabrominated diphenyl ether using C57BL/6 mice: biodistribution and pathology. CHEMOSPHERE 2015; 128:118-124. [PMID: 25687576 DOI: 10.1016/j.chemosphere.2015.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Decabrominated biphenyl ether (BDE-209) is a fully brominated diphenyl ether compound used widely as an additive brominated flame retardant in a variety of consumer products. In recent years, BDE-209 has been reported to be abundant and persistent in the environment, and comparatively high burdens have been found in occupational environmental compartments and exposed individuals. In the present study, an animal model for simulating long-term occupational exposure to BDE-209 was set up. Female C57BL/6 mice (n=10) were intragastrically administered BDE-209 at a dose of 800 mg kg(-1) bw at 2-d intervals for 2 years with an internal blood level of approximately 200 ng mL(-1), which was comparable to the high level of BDE-209 detected in the occupational population, and the biodistribution and biological effects were evaluated systematically. The results showed that large amounts of the chemical accumulated in most tissues, and the preferential organs were the ovary and uterus, liver and lung. Decreased survival was observed in the exposed mice. The subsequent pathological analysis revealed hepatomegaly in the exposed mice, accompanied by obvious histopathological changes in the liver, lung, brain, spleen, kidney and ovary. No neoplastic lesions were observed in this lifetime exposure study. Although the number of experimental mice was limited, our observations offer a comprehensive understanding of the chronic toxicology of BDE-209 after continuous high-dose exposure.
Collapse
Affiliation(s)
- Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Qingliang Hu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Ge Meng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaomeng Wu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Weihong Zeng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xing Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
38
|
Shi J, Qu R, Feng M, Wang X, Wang L, Yang S, Wang Z. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4209-4217. [PMID: 25751737 DOI: 10.1021/es505111r] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study found that decabromodiphenyl ether (BDE 209) could be oxidized effectively by potassium permanganate (KMnO4) in sulfuric acid medium. A total of 15 intermediate oxidative products were detected. The reaction pathways were proposed, which primarily included cleavage of the ether bond to form pentabromophenol. Direct oxidation on the benzene ring also played an important role because hydroxylated polybrominated diphenyl ethers (PBDEs) were produced during the oxidation process. The degradation occurred dramatically in the first few minutes and fitted pseudo-first-order kinetics. Increasing the water content decelerated the reaction rate, whereas increasing the temperature facilitated the reaction. In addition, density functional theory (DFT) was employed to determine the frontier molecular orbital (FMO) and frontier electron density (FED) of BDE 209 and the oxidative products. The theoretical calculation results confirmed the proposed reaction pathways.
Collapse
Affiliation(s)
- Jiaqi Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xinghao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
39
|
Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de Knecht J, Crofton K, Garcia-Reyero N, Hartung T, Worth A, Patlewicz G. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul Toxicol Pharmacol 2014; 70:629-40. [PMID: 25261300 DOI: 10.1016/j.yrtph.2014.09.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/13/2023]
Abstract
Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Stefan Scholz
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Mark T Cronin
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, UK.
| | - Stephen W Edwards
- U.S. Environmental Protection Agency, Office of Research and Development (ORD), Research Triangle Park (RTP), NC 2771, USA.
| | - Joop de Knecht
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), 2 rue André Pascal, 75775 Paris Cedex 16, France.
| | - Kevin Crofton
- U.S. Environmental Protection Agency, Office of Research and Development (ORD), Research Triangle Park (RTP), NC 2771, USA.
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA.
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Andrew Worth
- European Commission-Joint Research Centre, Institute for Health & Consumer Protection, Systems Toxicology Unit, Via E. Fermi, Ispra, Varese, Italy.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Stine-Haskell 320/212, 1090 Elkton Road, Newark, DE 19711, USA.
| |
Collapse
|
40
|
Zhang W, Liu K, Chen L, Chen L, Lin K, Fu R. A multi-biomarker risk assessment of the impact of brominated flame retardant-decabromodiphenyl ether (BDE209) on the antioxidant system of earthworm Eisenia fetida. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:297-304. [PMID: 25016100 DOI: 10.1016/j.etap.2014.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Decabromodiphenyl ether (BDE209) is the major contaminant at e-waste recycling sites (EWRSs), and its potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts of BDE209 on the antioxidant defense system in terrestrial organisms remain vague. Therefore, indoor incubation tests were performed systematically on control and contaminated soil samples to determine the effects of BDE209 on the antioxidant system of earthworm Eisenia fetida. The results showed that compared to the controls, superoxide dismutase (SOD) activities in all treated groups were elevated significantly after 21 and 28 days exposure; catalase (CAT) activities were much higher in all tests during the entire exposure period; peroxidase (POD) and glutathione-s-transferase (GST) activities generally decreased and indicated contrary response trend; the total antioxidant capacity (T-AOC) after exposure to low level of BDE209 (1 mg kg(-1)) was induced, whereas at 10 and 100 mg kg(-1) concentrations it showed suppression status; electron paramagnetic resonance (EPR) spectra suggested that hydroxyl radicals (OH) in earthworms were significantly induced by BDE209; the changes in malondialdehyde (MDA) contents suggested that reactive oxygen species (ROS) might lead to cellular lipid peroxidation in earthworms. The results of these observations suggested that severe oxidative stress occurred in E. fetida, and it may play an important role in inducing the BDE209 toxicity to earthworms.
Collapse
Affiliation(s)
- Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kou Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lin Chen
- Shanghai Fisheries Research Institute, Shanghai 200433, China
| | - Lei Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rongbing Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
41
|
|
42
|
|
43
|
Garcia-Reyero N, Kennedy AJ, Escalon BL, Habib T, Laird JG, Rawat A, Wiseman S, Hecker M, Denslow N, Steevens JA, Perkins EJ. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4546-4555. [PMID: 24684273 DOI: 10.1021/es4042258] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticles are of concern because of widespread use, but it is unclear if metal nanoparticles cause effects directly or indirectly. We explored whether polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) cause effects through intact nanoparticles or dissolved silver. Females of the model species fathead minnow (Pimephales promelas) were exposed to either 4.8 μg/L of AgNO3 or 61.4 μg/L of PVP-AgNPs for 96h. Microarray analyses were used to identify impacted receptors and toxicity pathways in liver and brain tissues that were confirmed using in vitro mammalian assays. AgNO3 and PVP-AgNP exposed fish had common and distinct effects consistent with both intact nanoparticles and dissolved silver causing effects. PVP-AgNPs and AgNO3 both affected pathways involved in Na(+), K(+), and H(+) homeostasis and oxidative stress but different neurotoxicity pathways. In vivo effects were supported by PVP-AgNP activation of five in vitro nuclear receptor assays and inhibition of ligand binding to the dopamine receptor. AgNO3 inhibited ligand binding to adrenergic receptors α1 and α2 and cannabinoid receptor CB1, but had no effect in nuclear receptor assays. PVP-AgNPs have the potential to cause effects both through intact nanoparticles and metal ions, each interacting with different initiating events. Since the in vitro and in vivo assays examined here are commonly used in human and ecological hazard screening, this work suggests that environmental health assessments should consider effects of intact nanoparticles in addition to dissolved metals.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics Biocomputing and Biotechnology, Mississippi State University , Starkville, Mississippi 39759, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|