1
|
Tsokkou S, Tzintros ST, Konstantinidis I, Keramas A, Georgaki MN, Stamoula E, Matsas A. Assessment of Environmental Risk Factors for Gestational Diabetes Mellitus: A Ten-Year Systematic Review and Meta-Analysis. J Clin Med 2025; 14:1646. [PMID: 40095587 PMCID: PMC11900157 DOI: 10.3390/jcm14051646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: It is estimated that gestational diabetes mellitus (GDM) affects approximately 14% of pregnant women. This is due to the inability of the body to produce enough insulin for gestation. With greater appearance during the second and third trimesters, GDM has a multifactorial cause including hypertension, cardiovascular issues (CVD), family history both or either type two diabetes mellitus (T2DM) or GDM, obesity, advanced maternal age, and polycystic ovarian syndrome (PCOS). However, it has been suggested that except for genetic predisposition, environmental factors can increase the risk of GDM development to a great extent. The aim of this systematic review and meta-analysis is the examination of different environmental contributors that play a significant role in the development of GDM. Methods: The databases used were PubMed and ScienceDirect. The inclusion criteria were a 10-year duration (2014-2024), English language, research articles, and only humans included. Afterwards, tables were created to summarize the most important information from each article. Forest and funnel plots were created to assess the possibility of a greatly significant difference between each environmental contributor. Results: Initially, 9361 articles were found. After the automation tools were applied, 706 were left. The total number of articles used in the study after the screening process was 26. Through the systematic review analysis, the following risk factors were stated to play a contributing role with GDM: extreme temperatures (both high and low), organophosphorus flame retardants (OFRs), bisphenol A (BPA), selenium (Se), metallic elements, urinary antimony (Sb), trace elements, thiamine and riboflavin, and fine particulate matter PM2.5. Conclusions: Through this meta-analysis, it can be concluded that there is statistical significance for fine particulate matter PM2.5, especially in the first (p < 0.001) and second (p < 0.001) trimesters, proving the acknowledged connection between PM2.5 and GDM pathogenesis during pregnancy. Apart from that, fetal sex can play an important role in the development of GDM, as there is the greatest risk in males (p < 0.001), whereas no correlation between maternal smoking habit and bisphenol A with GDM was found. In conclusion, it can be stated that environmental factors can have a great impact on the development of GDM during the gestational period, but more studies must be carried out to reinforce our outcomes.
Collapse
Affiliation(s)
- Sophia Tsokkou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.-T.T.); (I.K.); (A.K.)
| | - Stefanos-Timoleon Tzintros
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.-T.T.); (I.K.); (A.K.)
| | - Ioannis Konstantinidis
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.-T.T.); (I.K.); (A.K.)
| | - Antonios Keramas
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.-T.T.); (I.K.); (A.K.)
| | - Maria-Nefeli Georgaki
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alkis Matsas
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Peng MQ, Dabelea D, Adgate JL, Perng W, Calafat AM, Kannan K, Starling AP. Associations of urinary biomarkers of phthalates, phenols, parabens, and organophosphate esters with glycemic traits in pregnancy: The Healthy Start Study. ENVIRONMENTAL RESEARCH 2024; 262:119810. [PMID: 39155036 PMCID: PMC11568925 DOI: 10.1016/j.envres.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Certain endocrine-disrupting chemicals (EDCs) are widespread in consumer products and may alter glucose metabolism. However, the impact of EDC exposures on glucose and insulin regulation during pregnancy is incompletely understood, despite potential adverse consequences for maternal and infant health. We estimated associations between 37 urinary biomarkers of EDCs and glucose-insulin traits among pregnant women. METHODS Seventeen phthalate or phthalate substitute metabolites, six environmental phenols, four parabens, and ten organophosphate ester metabolites were quantified in mid-pregnancy urine from 298 participants in the Healthy Start Study. Fasting blood glucose, insulin, and hemoglobin A1c were assessed concurrently, and Homeostasis Model Assessment 2-Insulin Resistance (HOMA2-IR) was calculated. Gestational diabetes diagnoses and screening results were obtained from medical records for a subset of participants. We estimated associations between each EDC and outcome separately using linear and robust Poisson regression models and analyzed EDC mixture effects. RESULTS The EDC mixture was positively associated with glucose, insulin, and HOMA2-IR, although overall associations were attenuated after adjustment for maternal BMI. Two mixture approaches identified di(2-ethylhexyl) phthalate (DEHP) metabolites as top contributors to the mixture's positive associations. In single-pollutant models, DEHP metabolites were positively associated with fasting glucose, fasting insulin, and HOMA2-IR even after adjustment for maternal BMI. For example, each interquartile range increase in log2-transformed mono(2-ethyl-5-oxohexyl) phthalate was associated with 2.4 mg/dL (95% confidence interval (CI): 1.1, 3.6) higher fasting glucose, 11.8% (95%CI: 3.6, 20.5) higher fasting insulin, and 12.3% (95%CI: 4.2, 21.1) higher HOMA2-IR. Few EDCs were associated with hemoglobin A1c or with a combined outcome of impaired glucose tolerance or gestational diabetes. DISCUSSION Exposures to phthalates and particularly DEHP during pregnancy are associated with altered glucose-insulin regulation. Disruptions in maternal glucose metabolism during pregnancy may contribute to adverse pregnancy outcomes including gestational diabetes and fetal macrosomia, and associated long-term consequences for maternal and child health.
Collapse
Affiliation(s)
- Mia Q Peng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, State University of New York University at Albany, NY, USA
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Koushki M, Doustimotlagh AH, Amiri-Dashatan N, Farahani M, Chiti H, Vanda R, Aramesh S. Impact of bisphenol A exposure on the risk of gestational diabetes: a meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:2173-2182. [PMID: 39610499 PMCID: PMC11599497 DOI: 10.1007/s40200-024-01485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 11/30/2024]
Abstract
Purpose A growing number of evidence have assessed the association between bisphenol A (BPA) as an endocrine-disrupting agent and the risk of gestational diabetes (GDM). This meta-analysis aimed to reassess the data on the association of BPA levels in women with GDM compared to the control. Methods A comprehensive literature search was conducted in Medline, Embase, Scopus, and Web of Science to extract relevant published studies up to May 2024. 12 articles were included in the meta-analysis. DerSimonian and Liard random-effects model was used to estimate the pooled odds ratio (OR). Sensitivity analysis was conducted to assess the robustness of the pooled results by removing each study from the pooled effect size. Subgroup analyses were performed depending on the subgroups of gestational age, GDM trimester, BMI, study design and geographical area. Results The results showed that there was no significant association between circulating and urinary BPA concentrations with the risk of GDM (OR: 0.79; 95% CI 0.60-1.04; P = 0.095). No significant heterogeneity was found among the studies. Using Begg's correlation (P = 0.95) and Egger's linear regression (P = 0.86) tests, no publication bias was observed. The sensitivity analysis shows that our findings were completely robust and stable. Meta-regression indicated a significant association between BPA levels and study design and geometric mean as an index of the risk of GDM. Conclusion The present meta-analysis demonstrates exposure to BPA was associated with a reduced risk of GDM. Further studies are needed for obtain the reliable results. Graphical Abstract
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Razieh Vanda
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shahintaj Aramesh
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
4
|
Almeida-Toledano L, Navarro-Tapia E, Sebastiani G, Ferrero-Martínez S, Ferrer-Aguilar P, García-Algar Ó, Andreu-Fernández V, Gómez-Roig MD. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175080. [PMID: 39079634 DOI: 10.1016/j.scitotenv.2024.175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The ubiquitous presence of phthalate compounds in cosmetics, personal care products and plastics commonly used in toys, food packaging or household products, results in human exposure with adverse effects on reproductive health and fetal development. Following the PRISMA methodology, this systematic review analyzes the effect of prenatal phthalate exposure on major pregnancy complications, such as gestational diabetes, pregnancy-induced hypertension, fetal growth restriction and preterm birth, and its role in fetal neurodevelopment. This review includes >100 articles published in the last 10 years, showing an association between maternal exposure to phthalates and the risk of developing pregnancy complications. Phthalates are negatively associated with motor skills and memory, and also increase the risk of delayed language acquisition, autism spectrum disorder traits, and behavioral deficits, such as attention deficit hyperactivity disorder in children prenatally exposed to phthalates. Di (2-ethylhexyl) phthalate and its metabolites (mono(2-ethylhexyl) phthalate, mono(3-carboxypropyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate) are the main compounds associated with the above-mentioned pregnancy complications and fetal neurodevelopmental disorders. In addition, this review discusses the molecular mechanisms responsible for various pregnancy complications and neurodevelopmental disorders, and the critical window of exposure, in order to clarify these aspects. Globally, the most common molecular mechanisms involved in the effects of phthalates are endocrine disruption, oxidative stress induction, intrauterine inflammation, and DNA methylation disorders. In general, the critical window of exposure varies depending on the pathophysiology of the complication being studied, although the first trimester is considered an important period because some of the most vulnerable processes (embryogenesis and placentation) begin early in pregnancy. Future research should aim to understand the specific mechanism of the disruptive effect of each component and to establish the toxic dose of phthalates, as well as to elucidate the most critical period of pregnancy for exposure and the long-term consequences for human health.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain.
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Sílvia Ferrero-Martínez
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Patricia Ferrer-Aguilar
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Óscar García-Algar
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain; Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Biosanitary Research Institute, Valencian International University (VIU), 46002, Valencia, Spain.
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| |
Collapse
|
5
|
Lang Q, Qin X, Yu X, Wei S, Wei J, Zhang M, Zhao C, Zhang J, Zeng D, Zhang X, Huang B. Association of joint exposure to organophosphorus flame retardants and phthalate acid esters with gestational diabetes mellitus: a nested case-control study. BMC Pregnancy Childbirth 2024; 24:736. [PMID: 39516746 PMCID: PMC11549849 DOI: 10.1186/s12884-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Organic phosphate flame retardants (OPFRs) and phthalate acid esters (PAEs) are common endocrine-disrupting chemicals that cause metabolic disorders. This study aimed to assess the association between joint exposure to OPFRs and PAEs during early pregnancy in women with gestational diabetes mellitus (GDM). METHODS Seven OPFRs and five PAEs were detected in the urine of 65 GDM patients and 100 controls using gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS). The association of OPFRs and PAEs with GDM was assessed using logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models. RESULTS Levels of dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), diethyl phthalate (DEP), dimethyl phthalate (DMP), tris (2-butoxyethyl) phosphate (TBEP), tributyl phosphate (TBP), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tri-ortho-cresyl phosphate (TOCP), and triphenyl phosphate (TPHP) increased in the GDM group, and the OPFRs and PAEs, except for BBP and TMCP, were associated with GDM in the logistic regression analysis. In the WQS model, the mixture of OPFRs and PAEs was significantly positively associated with GDM (OR = 3.29, 95%CI = 1.27-8.51, P = 0.014), with TDCPP having the highest WQS index weight. BKMR analysis reinforced these results, showing that the overall association of joint exposure to the OPFRs and PAEs with GDM increased at exposure levels of the 55th to 75th percentiles. Independent exposure to TDCPP (OR = 1.42, 95%CI = 1.09-1.86, P = 0.011) and TBEP (OR = 1.29, 95%CI = 1.04-1.60, P = 0.023) were associated with an increased risk of GDM. CONCLUSIONS Environmental exposure to OPFRs and PAEs is significantly associated with GDM. These findings provide evidence for the adverse effects of exposure to OPFRs and PAEs on the health of pregnant women.
Collapse
Affiliation(s)
- Qi Lang
- Clinical Laboratory Center, the First Affiliated Hospital of Guilin Medical University, 109 Ring City North Second Road, Guilin, 541004, Guangxi, China
| | - Xianfeng Qin
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Shudan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jinyan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Min Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Chaochao Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China
| | - Jun Zhang
- Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Ministry of Education, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dingyuan Zeng
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women with Advanced Age, Liuzhou Maternity and Child Healthcare Hospital, 50 Yingshan Street, Liuzhou, 545001, Guangxi, China
| | - Xiaoying Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.
| |
Collapse
|
6
|
Crighton EJ, Phipps E, Smith GN, Ahmed R, Cook JL, Masuda JR, Osornio-Vargas AR, Sanborn M, Brennan LJ, Phillips KP. Environmental Health Attitudes, Practices, and Educational Preferences: A National Survey of Reproductive-Aged Women in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1397. [PMID: 39595664 PMCID: PMC11594049 DOI: 10.3390/ijerph21111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Prenatal exposures to environmental toxicants can adversely affect fetal and child development and lead to increased risk of chronic disease. While regulatory action is essential to reduce sources of environmental toxicants, prenatal care presents an opportunity to educate, mobilize, and support prospective parents to reduce exposures to such hazards. As the first phase of an interdisciplinary research collaboration to inform the development of prenatal environmental health education strategy in Canada, we surveyed reproductive-aged female individuals. The online survey (July-September 2021) yielded a nationally representative sample of 1914 reproductive-aged females living in Canada. The questionnaire topics addressed the respondents' knowledge and perceptions of environmental health risks, preventive actions and related facilitators and barriers, information sources and preferences, reproductive history, and demographics. The analysis included bivariate and multivariate techniques. Our results suggest broad awareness among reproductive-aged females that exposure to toxicants can be harmful, and that reducing prenatal exposures can benefit child health. However, fewer than half of respondents felt that they had enough knowledge to take protective measures. Despite high levels of preference for prenatal care as an ideal context for learning about environmental health risks and protective measures, fewer than one in four respondents had ever discussed environmental health concerns with a healthcare provider. Our findings reveal a knowledge-action gap and a corresponding opportunity to improve environmental health education and advocacy in prenatal care in the Canadian context.
Collapse
Affiliation(s)
- Eric J. Crighton
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Erica Phipps
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Canadian Partnership for Children’s Health and Environment, Ottawa, ON K1S 2Z1, Canada
| | - Graeme N. Smith
- Department of Obstetrics and Gynecology, Queen’s University, Kingston, ON K7L 2V7, Canada;
| | - Rukhsana Ahmed
- Department of Communication, University at Albany, State University of New York, Albany, NY 12222, USA;
| | - Jocelynn L. Cook
- Society of Obstetricians and Gynecologists of Canada, Ottawa, ON K1B 1A7, Canada;
| | - Jeffrey R. Masuda
- School of Public Health and Social Policy, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Alvaro R. Osornio-Vargas
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; (A.R.O.-V.); (L.J.B.)
| | - Margaret Sanborn
- Department of Family Medicine, McMaster University, Hamilton, ON L8P 1H6, Canada;
| | - Lesley J. Brennan
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; (A.R.O.-V.); (L.J.B.)
- WHO Collaborating Centre in Child Health and the Environment, University of Alberta, Edmonton, AB T5R 4H5, Canada
| | - Karen P. Phillips
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
7
|
Deng Y, Yi S, Liu W, Yang L, Zhu L, Zhang Q, Jin H, Yang R, Wang R, Tang NJ. Identification of Primary Organophosphate Esters Contributing to Enhanced Risk of Gestational Diabetes Mellitus Based on a Case-Control Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17532-17542. [PMID: 39315849 DOI: 10.1021/acs.est.4c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Epidemiological studies on associations of organophosphate ester (OPE) exposure and gestational diabetes mellitus (GDM) risk, which remain rare and inconclusive, were carried out with a case-control population comprising 287 GDM and 313 non-GDM pregnant women recruited from Tianjin. The GDM group suffered distinctly higher serum concentrations of tri-n-butyl phosphate (TNBP), tri(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), tri-iso-propyl phosphate (TIPP), and tri(1-chloro-2-propyl) phosphate (TCIPP) than the healthy control group (p < 0.001). Traditional analysis methods employed for either individual or mixture effects found positive correlations (p < 0.05) between the concentrations of five OPEs (i.e., TNBP, TBOEP, TPHP, TIPP, and TCIPP) and the incidence of GDM, while 2-ethylhexyl diphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and bis(2-ethylhexyl) phosphate exhibited opposite effects. Three machine learning methods considering the concurrence of OPE mixture exposure and population characteristics were applied to clarify their relative importance to GDM risk, among which random forest performed the best. Several OPEs, particularly TNBP and TBOEP ranking at the top, made greater contributions than some demographical characteristics, such as prepregnancy body mass index and family history of diabetes, to the occurrence of GDM. This was further validated by another independent case-control population obtained from Hangzhou.
Collapse
Affiliation(s)
- Yun Deng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenya Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, PR China
| |
Collapse
|
8
|
Soomro MH, England-Mason G, Reardon AJF, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod Toxicol 2024; 127:108612. [PMID: 38782143 DOI: 10.1016/j.reprotox.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Xiao T, Huang Z, Zheng C, Quach B, Zhu Y, Li F, Liang W, Baker J, Reichetzeder C, Hocher B, Yang Y. Associations of bisphenol A exposure with metabolic syndrome and its components: A systematic review and meta-analysis. Obes Rev 2024; 25:e13738. [PMID: 38491337 DOI: 10.1111/obr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1, pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1, pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.
Collapse
Affiliation(s)
- Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Zehua Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Binh Quach
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yulian Zhu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Julien Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- HMU - Health and Medical University, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Wu W, Ren J, Wang J, Wang J, Yu D, Zhang Y, Zeng F, Huang B. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118321. [PMID: 38307186 DOI: 10.1016/j.envres.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiamei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Deshui Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, 230092, Anhui, China.
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, Guangdong, China.
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Wu R, Duan M, Zong D, Li Z. Effect of arsenic on the risk of gestational diabetes mellitus: a systematic review and meta-analysis. BMC Public Health 2024; 24:1131. [PMID: 38654206 PMCID: PMC11041030 DOI: 10.1186/s12889-024-18596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a complication of pregnancy associated with numerous adverse outcomes. There may be a potential link between GDM and arsenic (As) exposure, but this hypothesis remains controversial. This meta-analysis summarizes the latest studies evaluating the association between As and GDM. METHODS A comprehensive search of the PubMed, Embase, and Scopus databases up to September 2023 was performed. The pooled estimates with 95% CIs were presented using forest plots. Estimates were calculated with random effects models, and subgroup and sensitivity analyses were conducted to address heterogeneity. RESULTS A total of 13 eligible studies involving 2575 patients with GDM were included in this meta-analysis. The results showed that women exposed to As had a significantly increased risk of GDM (OR 1.47, 95% CI: 1.11 to 1.95, P = 0.007). Subgroup analyses suggested that the heterogeneity might be attributed to the years of publication. In addition, sensitivity analysis confirmed the robust and reliable results. CONCLUSIONS This analysis suggested that women exposed to As have a greater risk of GDM. However, the significant heterogeneity across studies requires careful interpretation. REGISTRATION The PROSPERO registration ID is CRD42023461820.
Collapse
Affiliation(s)
- Rui Wu
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Duan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongsheng Zong
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China.
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
12
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
13
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
14
|
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023; 15:4657. [PMID: 37960310 PMCID: PMC10648368 DOI: 10.3390/nu15214657] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).
Collapse
Affiliation(s)
- Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Yolanda Gálvez-Ontiveros
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
15
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
16
|
Sun F, Pan XF, Hu Y, Xie J, Cui W, Ye YX, Wang Y, Yang X, Wu P, Yuan J, Yang Y, Pan A, Chen D. Metal Exposure during Early Pregnancy and Risk of Gestational Diabetes Mellitus: Mixture Effect and Mediation by Phospholipid Fatty Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13778-13792. [PMID: 37656932 DOI: 10.1021/acs.est.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Despite existing studies exploring the association between metal exposure and gestational diabetes mellitus (GDM), most of them have focused on a single metal or a small mixture of metals. Our prospective work investigated the joint and independent effects of early gestational exposure to 17 essential and nonessential metals on the GDM risk and potential mediation by plasma phospholipid fatty acids (PLFAs) based on a nested case-control study established with 335 GDM cases and 670 randomly matched healthy controls. The Bayesian kernel machine regression (BKMR) and quantile g-computation analyses demonstrated a joint effect from metal co-exposure on GDM risk. BKMR with hierarchical variable selection indicated that the group of essential metals was more strongly associated with GDM than the group of nonessential metals with group posterior inclusion probabilities (PIPs) of 0.979 and 0.672, respectively. Cu (0.988) and Ga (0.570) had the largest conditional PIPs within each group. We also observed significant mediation effects of selected unsaturated PLFAs on Cu-GDM and Ga-GDM associations. KEGG enrichment analysis further revealed significant enrichment in the biosynthesis of unsaturated PLFAs. C18:1 n-7 exhibited the largest proportion of mediation in both associations (23.8 and 22.9%). Collectively, our work demonstrated the joint effect of early gestational metal exposure on GDM risk and identified Cu and Ga as the key species to the joint effect. The findings lay a solid ground for further validation through multicenter investigations and mechanism exploration via laboratory studies.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, and National Medical Product Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University and Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China
| | - Yongxia Hu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinxin Xie
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Wenxuan Cui
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xue Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, and National Medical Product Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University and Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, Sichuan, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu 610200, Sichuan, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
- Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
17
|
Huang W, Pan XF, Tang S, Sun F, Wu P, Yuan J, Sun W, Pan A, Chen D. Target Exposome for Characterizing Early Gestational Exposure to Contaminants of Emerging Concern and Association with Gestational Diabetes Mellitus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13408-13418. [PMID: 37651547 DOI: 10.1021/acs.est.3c04492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterization of gestational exposure to complex contaminants of emerging concern (CECs) is critical to the identification of environmental risk factors for pregnancy complications. However, determination of various CECs with diverse physicochemical properties in biological fluids is technically challenging. In the present study, we developed a target exposome protocol, consisting of simple liquid-liquid extraction-based sample preparation and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, to determine 325 CECs covering 11 subclasses, including poly- and perfluoroalkyl substances, organophosphate esters, ultraviolet (UV) stabilizers, synthetic antioxidants, phthalate esters, and several others. The protocol exhibits exceptional advantages over traditional approaches in the coverage of chemicals, sample volume demand, and time and financial cost. The protocol was applied in a prospective nested gestational diabetes mellitus (GDM) study including 120 cases and 240 matched healthy controls. Thirty-three CECs were detected in >70% of the samples, with a combined concentration of 17.0-484.7 ng/mL. Bayesian kernel machine regression analysis showed that exposure to the CEC mixture was significantly associated with a higher GDM risk. For example, when increasing all CECs in the mixture from 50th percentile to 75th percentile, the estimated probit of GDM incidence had an increase of 92% (95% CI: 56%, 127%). Meanwhile, perfluorohexanesulfonic acid, 1,3-diphenylguanidine, and dibutyl fumarate were identified as the key CECs driving the joint effect. This work demonstrates great potential of our target exposome protocol for environmental risk factor identification in large-scale epidemiology or biomonitoring studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610041, China
| | - Shuqin Tang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610200, China
| | - Wenwen Sun
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
18
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
19
|
Gao Y, Wang H, Fu G, Feng Y, Wu W, Yang H, Zhang Y, Wang S. DNA methylation analysis reveals the effect of arsenic on gestational diabetes mellitus. Genomics 2023; 115:110674. [PMID: 37392895 DOI: 10.1016/j.ygeno.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Arsenic (As) exposure is one of the risk factors for gestational diabetes mellitus (GDM). This study aimed to explore the effect of As-exposure on DNA methylation in GDM and to establish a risk assessment model of GDM in As exposed pregnant women. METHOD We collected elbow vein blood of pregnant women before delivery to measure As concentration and DNA methylation data. Then compared the DNA methylation data and established a nomogram. RESULT We identified a total of 10 key differentially methylated CpGs (DMCs) and found 6 corresponding genes. Functions were enriched in Hippo signaling pathway, cell tight junction, prophetic acid metabolism, ketone body metabolic process, and antigen processing and presentation. A nomogram was established that can predict GDM risks (c-index = 0.595, s:p = 0.973). CONCLUSION We found 6 genes associated with GDM with high As exposure. The prediction of the nomograms has been proven to be effective.
Collapse
Affiliation(s)
- Ying Gao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China; Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hu Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Gan Fu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Hailan Yang
- Department of Obstetrics, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yawei Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
20
|
Palaniyandi J, Bruin JE, Kumarathasan P, MacPherson S, Borghese MM, Ashley-Martin J. Prenatal exposure to perfluoroalkyl substances and inflammatory biomarker concentrations. Environ Epidemiol 2023; 7:e262. [PMID: 37545803 PMCID: PMC10403040 DOI: 10.1097/ee9.0000000000000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that induce immunotoxicity in experimental studies; however, epidemiological evidence-particularly during pregnancy-is scarce. We quantified associations between first trimester plasma perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonate (PFHxS) concentrations and third trimester concentrations of inflammatory biomarkers and determined if these associations were modified by fetal sex. Methods We analyzed data from 1411 participants, recruited between 2008 and 2011, in the Maternal-Infant Research on Environmental Chemicals study. Our primary outcome was a composite inflammatory index derived by summing the z-scores of eight proinflammatory biomarkers. Using multivariable linear regression models, we quantified associations between each PFAS and the inflammatory index and individual biomarkers. We quantified the effects of the PFAS mixture using weighted quantile sum regression, and evaluated effect modification using product terms and sex-stratified models. Results Each doubling of PFOA and PFHxS was associated with a 0.38 (95% CI, 0.09, 0.67) and 0.21 (95% CI, 0.01, 0.41) SD increase in the proinflammatory index, respectively. A one-quartile increase in the PFAS mixture was associated with a 0.40 (95% CI, 0.09, 0.71) SD increase in the proinflammatory index. In individual models, we observed positive associations between PFAS and concentrations of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and matrix metalloproteinases-9; however, the magnitude and precision varied according to the specific PFAS. Sex-specific findings were identified in few PFAS-biomarker associations. Conclusions PFOA, PFOS, and PFHxS, individually and as a mixture, were positively associated with proinflammatory biomarkers during pregnancy.
Collapse
Affiliation(s)
- Jana Palaniyandi
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario
| | | | - Susan MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario
| | - Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario
| | | |
Collapse
|
21
|
Roverso M, Dogra R, Visentin S, Pettenuzzo S, Cappellin L, Pastore P, Bogialli S. Mass spectrometry-based "omics" technologies for the study of gestational diabetes and the discovery of new biomarkers. MASS SPECTROMETRY REVIEWS 2023; 42:1424-1461. [PMID: 35474466 DOI: 10.1002/mas.21777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/07/2023]
Abstract
Gestational diabetes (GDM) is one of the most common complications occurring during pregnancy. Diagnosis is performed by oral glucose tolerance test, but harmonized testing methods and thresholds are still lacking worldwide. Short-term and long-term effects include obesity, type 2 diabetes, and increased risk of cardiovascular disease. The identification and validation of sensitidve, selective, and robust biomarkers for early diagnosis during the first trimester of pregnancy are required, as well as for the prediction of possible adverse outcomes after birth. Mass spectrometry (MS)-based omics technologies are nowadays the method of choice to characterize various pathologies at a molecular level. Proteomics and metabolomics of GDM were widely investigated in the last 10 years, and various proteins and metabolites were proposed as possible biomarkers. Metallomics of GDM was also reported, but studies are limited in number. The present review focuses on the description of the different analytical methods and MS-based instrumental platforms applied to GDM-related omics studies. Preparation procedures for various biological specimens are described and results are briefly summarized. Generally, only preliminary findings are reported by current studies and further efforts are required to determine definitive GDM biomarkers.
Collapse
Affiliation(s)
- Marco Roverso
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Raghav Dogra
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Silvia Visentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Pettenuzzo
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council-CNR, Padova, Italy
| |
Collapse
|
22
|
Mariana M, Cairrao E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023; 13:746. [PMID: 37367903 DOI: 10.3390/metabo13060746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
23
|
Javan Mahjoub Doust F, Sharafi K, Jaafari J. Novel fabrication of the recyclable Bi 7O 9I 3/chitosan and BiOI/chitosan heterostructure with improved photocatalytic activity for degradation of dimethyl phthalate under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27935-w. [PMID: 37280488 DOI: 10.1007/s11356-023-27935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
Among the bismuth oxyhalides, bismuth oxide has the shortest band gap and high absorption power in the visible light region. Dimethyl phthalate (DMP) has been identified as endocrine-disrupting plasticizer and emerging pollutant, which was selected as the target pollutant to evaluate the efficacy of the studied catalytic process. In this work, Bi7O9I3/chitosan and BiOI/chitosan were efficaciously synthesized by the hydrothermal process method. Characterizing prepared photocatalysts was done by employing transmission electron microscopy, X-ray diffraction, scanning electron microscopy energy-dispersive spectroscopy, and diffuse reflectance spectroscopy. For this study, the test design was performed using the Box-Behnken Design (BBD) method in which the variables of pH, Bi7O9I3/chitosan dose, and dimethyl phthalate concentration were examined for the catalytic removal of dimethyl phthalate in the presence of visible light. Our detected results disclosed that the order of efficiency in DMP removal was as follows: Bi7O9I3/chitosan > BiOI/chitosan > Bi7O9I3 > BiOI. Also, the maximum pseudo-first-order kinetic coefficient for Bi7O9I3/chitosan was 0.021 (min)-1. When the synthesized catalysts were exposed to visible light irradiation, the predominant active species were O2- and h+ for degradation of DMP. The study on the reuse of Bi7O9I3/chitosan showed that this catalyst could be reused 5 times without significant reduction in efficiency, which indicates the cost-effectiveness and environmental friendliness of using this catalyst.
Collapse
Affiliation(s)
- Fatemeh Javan Mahjoub Doust
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jalil Jaafari
- Department of Environmental Health Engineering, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
24
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
25
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
26
|
Borghese MM, Fisher M, Ashley-Martin J, Fraser WD, Trottier H, Lanphear B, Johnson M, Helewa M, Foster W, Walker M, Arbuckle TE. Individual, Independent, and Joint Associations of Toxic Metals and Manganese on Hypertensive Disorders of Pregnancy: Results from the MIREC Canadian Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47014. [PMID: 37079392 PMCID: PMC10117658 DOI: 10.1289/ehp10825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Toxic metals, such as lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg), may be associated with a higher risk of gestational hypertension and preeclampsia, whereas manganese (Mn) is an essential metal that may be protective. OBJECTIVES We estimated the individual, independent, and joint associations of Pb, Cd, As, Hg, and Mn on the risk of developing gestational hypertension and preeclampsia in a cohort of Canadian women. METHODS Metal concentrations were analyzed in first and third trimester maternal blood (n = 1,560 ). We measured blood pressure after 20 wk gestation to diagnose gestational hypertension, whereas proteinuria and other complications defined preeclampsia. We estimated individual and independent (adjusted for coexposure) relative risks (RRs) for each doubling of metal concentrations and examined interactions between toxic metals and Mn. We used quantile g-computation to estimate the joint effect of trimester-specific exposures. RESULTS Each doubling of third trimester Pb (RR = 1.54 ; 95% CI: 1.06, 2.22) and first trimester blood As (RR = 1.25 ; 95% CI: 1.01, 1.58) was independently associated with a higher risk of developing preeclampsia. First trimester blood As (RR = 3.40 ; 95% CI: 1.40, 8.28) and Mn (RR = 0.63 ; 95% CI: 0.42, 0.94) concentrations were associated with a higher and lower risk, respectively, of developing gestational hypertension. Mn modified the association with As such that the deleterious association with As was stronger at lower concentrations of Mn. First trimester urinary dimethylarsinic acid concentrations were not associated with gestational hypertension (RR = 1.31 ; 95% CI: 0.60, 2.85) or preeclampsia (RR = 0.92 ; 95% CI: 0.68, 1.24). We did not observe overall joint effects for blood metals. DISCUSSION Our results confirm that even low blood Pb concentrations are a risk factor for preeclampsia. Women with higher blood As concentrations combined with lower Mn in early pregnancy were more likely to develop gestational hypertension. These pregnancy complications impact maternal and neonatal health. Understanding the contribution of toxic metals and Mn is of public health importance. https://doi.org/10.1289/EHP10825.
Collapse
Affiliation(s)
- Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Helen Trottier
- Department of Social and Preventive Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Warren Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Mark Walker
- Department of Obstetrics, Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
28
|
Liang X, Guo G, Wang Y, Wang M, Chen X, Zhang J, Li S, Liu L, Huang Q, Cui B, Zhang M, Sun G, Tang N, Zhang X, Zhang Q. Arsenic metabolism, N6AMT1 and AS3MT single nucleotide polymorphisms, and their interaction on gestational diabetes mellitus in Chinese pregnant women. ENVIRONMENTAL RESEARCH 2023; 221:115331. [PMID: 36681142 DOI: 10.1016/j.envres.2023.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in N6AMT1 and AS3MT are associated with arsenic (As) metabolism, and efficient As methylation capacity has been associated with diabetes. However, little is known about the gene-As interaction on gestational diabetes mellitus (GDM). OBJECTIVE This study aimed to explore the individual and combined effects of N6AMT1 and AS3MT SNPs with As metabolism on GDM. METHODS A cross-sectional study was performed among 385 Chinese pregnant women (86 GDM and 299 Non-GDM). Four SNPs in N6AMT1 (rs1997605 and rs1003671) and AS3MT (rs1046778 and rs11191453) were genotyped. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were determined, and the percentages of As species (iAs%, MMA%, and DMA%) were calculated to assess the efficiency of As metabolism. RESULTS Pregnant women with N6AMT1 rs1997605 AA genotype had lower iAs% (B: 2.11; 95% CI: 4.08, -0.13) and MMA% (B: 0.21; 95% CI: 0.39, -0.04) than pregnant women with GG genotype. The AS3MT rs1046778 and rs11191453 C alleles were negatively associated with iAs% and MMA% but positively associated with DMA%. Higher urinary MMA% was significantly associated with a lower risk of GDM (OR: 0.54; 95% CI: 0.30, 0.97). The A allele in N6AMT1 rs1997605 (OR: 0.46; 95% CI: 0.26, 0.79) was associated with a decreased risk of GDM. The additive interactions between N6AMT1 rs1997605 GG genotypes and lower iAs% (AP: 0.50; 95% CI: 0.01, 0.99) or higher DMA% (AP: 0.52; 95% CI: 0.04, 0.99) were statistically significant. Similar additive interactions were also found between N6AMT1 rs1003671 GG genotypes and lower iAs% or higher DMA%. CONCLUSIONS Genetic variants in N6AMT1 and efficient As metabolism (indicated by lower iAs% and higher DMA%) can interact to influence GDM occurrence synergistically in Chinese pregnant women.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guanshuai Guo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyun Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jingran Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, 300380, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin, 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
29
|
Jin H, Gao Y, Chen R, Zhang Y, Qu J, Bai X, Zhao M. A preliminary report on the association between maternal serum organophosphate ester concentrations and gestational diabetes mellitus. Heliyon 2023; 9:e14302. [PMID: 36967953 PMCID: PMC10031351 DOI: 10.1016/j.heliyon.2023.e14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Organophosphate esters (OPEs) are extensively manufactured and used in China. Whether exposure to OPEs during pregnancy increases the risk of gestational diabetes mellitus (GDM) is unknown. Between 2011 and 2012, a case-control study including 130 and 67 women with and without GDM, respectively, was conducted in Hangzhou, China. The levels of 10 OPEs in maternal serum samples at delivery were quantified, and the relationships between the OPE concentrations and GDM risk were investigated. The results show that in all participants, tri-n-butyl phosphate (TNBP, median: 2.02 ng/mL) was the most common OPE present in the serum, followed by tri-phenyl phosphate (TPHP, median: 1.74 ng/mL) and tri-iso-butyl phosphate (median: 1.68 ng/mL). With one-unit elevation in the tris (2-chloroethyl) phosphate, TNBP, TPHP, and tris (2-butoxy ethyl) phosphate (TBOEP) concentrations in maternal serum, 1-h glucose levels increased by 0.19 (95% confidence interval (CI): -0.01, 0.29), 0.11 (95% CI: -0.18, 0.62), 0.29 (95% CI: 0.12, 0.58), and 0.20 units (95% CI: 0.01, 0.44), respectively. In addition, a unit increase in TBOEP levels in maternal serum was associated with an increase of 0.26 units (95% CI: 0.09, 0.61) in 2-h glucose levels. After adjusting for covariate factors, serum TNBP (odds ratio (OR) = 2.07; 95% CI: 1.27, 3.41), TBOEP (OR = 2.63; 95% CI: 1.68, 4.11), and TPHP (OR = 1.03; 95% CI: 1.05, 1.51) concentrations were associated with GDM incidence in pregnant women. Overall, TNBP, TBOEP, and TPHP exposure during pregnancy is associated with GDM risk and increased glucose levels.
Collapse
|
30
|
Chen W, He C, Liu X, An S, Wang X, Tao L, Zhang H, Tian Y, Wu N, Xu P, Liao D, Liao J, Wang L, Fang D, Xiong S, Liu Y, Tian K, Li Q, Huang J, Yuan H, Chen X, Zhang L, Shen X, Zhou Y. Effects of exposure to phthalate during early pregnancy on gestational diabetes mellitus: a nested case-control study with propensity score matching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33555-33566. [PMID: 36480145 DOI: 10.1007/s11356-022-24454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Owing to the complexity of phthalates (PAEs) components and the diversity of their sources, the health hazards of their metabolites to pregnant women remain unclear. This study aimed to explore the relationship between exposure to PAEs during early pregnancy and gestational diabetes mellitus (GDM) in rural pregnant women. We assessed pregnant women with (n = 338) or without (n = 3082) GDM from the ongoing Zunyi Birth Cohort. Participants' urine samples were collected to measure the levels of 10 metabolites of PAEs. GDM was diagnosed using the 75-g oral glucose tolerance test at 24-28 weeks of gestation. We adopted propensity score matching based on GDM-related factors and pregnant women's backgrounds to establish two groups of 338 patients: those with or without GDM. In the cohort, we included 5734 pregnant women; 519 of them developed GDM, yielding a GDM incidence rate of 9.05%. Urinary concentrations of monooctyl phthalate (MOP), mono-benzyl phthalate (MBzP), mono(2-ethyl-5-oxyhexyl) phthalate (MEOHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) during early pregnancy were significantly associated with GDM (P < 0.05). Logistic regression models revealed that MEOHP in the urine was positively associated with GDM (odds ratio [OR] = 1.55; 95% confidence interval [CI]: 1.00-2.39). Furthermore, restricted cubic spline models revealed that urine MEOHP concentrations greater than 15.6 μg/L were positively associated with GDM, and approximately 23.5% pregnant women had urine MEOHP concentrations greater than 15.6 μg/L. Thus, approximately 23.5% of pregnant women were at the risk of developing GDM due to MEOHP, which suggested that pregnant women should reduce the use of packaged food and cosmetics to reduce the risk of GDM. However, further molecular biology experiments are required to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Juan Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linglu Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Derong Fang
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Quan Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | | | - Hongyu Yuan
- Xishui County People's Hospital, Zunyi, China
| | | | - Li Zhang
- Meitan County People's Hospital, Zunyi, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
31
|
Yang Z, Shan D, Zhang T, Li L, Wang S, Du R, Li Y, Wu S, Jin L, Zhao Y, Shang X, Wang Q. Associations between exposure to phthalates and subclinical hypothyroidism in pregnant women during early pregnancy: A pilot case-control study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121051. [PMID: 36642176 DOI: 10.1016/j.envpol.2023.121051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors with thyroid-disrupting properties; however, the association between phthalate exposure and subclinical hypothyroidism (SCH) during pregnancy is unknown. We recruited a study population from a cohort of pregnant women in Beijing, China, and conducted the present pilot case-control study of 42 SCH cases and 84 non-SCH controls matched with age and body mass index (BMI). Serum levels of thyroid peroxidase antibody, free thyroxine (FT4), thyroid-stimulating hormone (TSH), and urinary levels of ten phthalate metabolites during early pregnancy were measured. Urinary monoethyl phthalate (MEP) levels in SCH cases were observably higher than those in controls (p = 0.01). Conditional logistic regression analysis revealed that mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), MEP, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and di-(2-ethylhexyl) phthalate (ΣDEHP) were significantly associated with a higher risk of SCH during early pregnancy (adjusted odds ratios = 1.89, 1.42, 1.81, and 1.92, respectively). Concomitantly, multiple linear regression analysis showed that MECPP, MEOHP, and ΣDEHP were positively associated with TSH and FT4 × TSH in the entire study population. Bayesian kernel machine regression analysis and stratified analysis by BMI revealed upward tendencies in the serum levels of TSH and FT4 × TSH. In summary, exposure to phthalates, especially DEHP, may be associated with a higher risk of SCH during early pregnancy, and a possible mechanism is the disruption of the hypothalamus-pituitary-thyroid axis.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Yi Zhao
- Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
32
|
Sakali AK, Papagianni M, Bargiota A, Rasic-Markovic A, Macut D, Mastorakos G. Environmental factors affecting pregnancy outcomes. Endocrine 2023; 80:459-469. [PMID: 36729371 DOI: 10.1007/s12020-023-03307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Pregnancy represents a fragile period in the life of a woman, vulnerable to hazardous environmental substances which might affect maternal and fetal metabolism. The possible influence of environmental factors, including endocrine disrupting chemicals (EDCs), upon the mother and the fetus before and/or during pregnancy might be associated directly and/or indirectly to deleterious pregnancy outcomes. Because the existence of such associations would be, to our view, of major importance to the scientific community, their investigation is the scope of this critical review. METHODS This critical review includes in vivo animal and human studies regarding the role of environmental factors, including EDCs, on pregnancy outcomes complying with the SANRA (a scale for the quality assessment of narrative review articles) questions for narrative reviews. Studies were identified by searching the MEDLINE (PubMed and PubMed Central), the Cochrane library and the Google Scholar databases till October 2022 with the combinations of the appropriate key words (detailed environmental factors including EDCs AND detailed negative pregnancy outcomes) as well as by scanning references from already included articles and relevant reviews manually. Because environmental factors and EDCs have been associated to epigenetic alterations, special care has been given to EDC-induced transgenerational effects on pregnancy outcomes. RESULTS The existing evidence suggests positive associations between specific environmental factors and negative pregnancy outcomes such as ectopic pregnancies, pregnancy losses, gestational diabetes, hypertensive disorders of pregnancy, preterm births, birth defects, intrauterine growth restriction, and small or large for gestational age babies. CONCLUSION Environmental factors and EDCs may have a catalytic effect on the course and the outcomes of pregnancy.
Collapse
Affiliation(s)
- Anastasia-Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, University of Thessaly, Larissa, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education and Sport Science and Dietetics, University of Thessaly, Trikala, Greece
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, University of Thessaly, Larissa, Greece
| | - Aleksandra Rasic-Markovic
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Tang P, Liang J, Liao Q, Huang H, Guo X, Lin M, Liu B, Wei B, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with the risk of gestational diabetes mellitus: a nested case-control study in Guangxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25170-25180. [PMID: 34837624 DOI: 10.1007/s11356-021-17794-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A growing number of epidemiologic studies have estimated the associations between endocrine-disrupting chemicals and gestational diabetes mellitus (GDM). However, reports on the association between bisphenol A (BPA) substitutes and GDM are limited. This investigation aimed to explore the associations of maternal serum BPA, bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) with the risk of GDM. A nested case-control study was performed among 500 pregnant women. In conditional logistic regression models, the OR for BPS was significantly increased in the medium exposure groups (OR = 1.77; 95% CI: 1.01, 3.13) compared with the reference group, while BPA (OR: 0.38, 95%CI: 0.29, 0.50) and TBBPA (OR: 0.67, 95%CI: 0.54, 0.85) were negatively associated with the risk of GDM. In the Bayesian kernel machine regression (BKMR) analysis, the joint effect of bisphenols was positively associated with the risk of GDM. BPS showed positively relationship, while BPA and TBBPA showed negatively relationship, respectively. The quantile g-computation revealed a statistically significant and negative joint effect of the five bisphenols on the risk of GDM (OR: 0.57; 95% CI: 0.46, 0.72) with BPA (70.2%), TBBPA (21.3%), and BPB (8.5%) had positive contribution to the overall effect. These findings suggested that BPS had a positive effect on the risk of GDM, while BPA and TBBPA had negative effect on the risk of GDM. Moreover, exposure to the mixture of the five bisphenols was negatively associated with the risk of GDM.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
34
|
Wang H, Chen R, Gao Y, Qu J, Zhang Y, Jin H, Zhao M, Bai X. Serum concentrations of phthalate metabolites in pregnant women and their association with gestational diabetes mellitus and blood glucose levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159570. [PMID: 36283523 DOI: 10.1016/j.scitotenv.2022.159570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Phthalate metabolites are widely present in humans and can have many adverse effects on pregnant women. To date, many studies on the effects of phthalate metabolites on the risk of gestational diabetes mellitus (GDM) have been published, but the findings of these studies are controversial. We conducted a case-control study to quantify the concentrations of seven phthalate metabolites in the serum of pregnant women and to investigate their association with the risk of GDM and blood glucose levels in pregnant women. Therefore, 201 serum samples (139 pregnant women with GDM and 62 control serum samples) were collected from Hangzhou, China, between 2011 and 2012. The results showed that mono butyl phthalate (MBP; mean = 4.08 ng/mL) was the most abundant phthalate metabolites in human serum, followed by mono (2-ethylhexyl) phthalate (MEHP; mean = 1.28 ng/mL) and mono isobutyl phthalate (MiBP; mean = 1.20 ng/mL). The other results indicated significant associations between MBP (β = 2.24, 95 % confidence interval (CI): 1.02, 5.07, P = 0.050) and MiBP (β = 1.84, 95 % CI: 1.03, 3.31, P = 0.041) concentrations in human serum and the incidence of GDM. Moreover, serum MBP (β = 0.40, 95 % CI: 0.10, 0.70, P = 0.010) and MiBP levels (β = 0.18, 95 % CI: 0.010, 0.35, P = 0.047) in humans were positively associated with 2-hour blood glucose levels. Our study provides affirmative evidence on previously inconsistent findings that MBP and MiBP exposure may increase the risk of GDM in pregnant women.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, PR China
| | - Rongrong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yu Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Xiaoxia Bai
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, PR China.
| |
Collapse
|
35
|
Zhu Y, Hedderson MM, Calafat AM, Alexeeff SE, Feng J, Quesenberry CP, Ferrara A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022; 71:2539-2551. [PMID: 36227336 PMCID: PMC9750951 DOI: 10.2337/db22-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Environmental phenols are ubiquitous endocrine disruptors and putatively diabetogenic. However, data during pregnancy are scant. We investigated the prospective associations between pregnancy phenol concentrations and gestational diabetes mellitus (GDM) risk. In a nested matched case-control study of 111 individuals with GDM and 222 individuals without GDM within the prospective PETALS cohort, urinary bisphenol A (BPA), BPA substitutes (bisphenol F and bisphenol S [BPS]), benzophenone-3, and triclosan were quantified during the first and second trimesters. Cumulative concentrations across the two times were calculated using the area under the curve (AUC). Multivariable conditional logistic regression examined the association of individual phenols with GDM risk. We conducted mixture analysis using Bayesian kernel machine regression. We a priori examined effect modification by Asian/Pacific Islander (A/PI) race/ethnicity resulting from the case-control matching and highest GDM prevalence among A/PIs. Overall, first-trimester urinary BPS was positively associated with increased risk of GDM (adjusted odds ratio comparing highest vs. lowest tertile [aORT3 vs. T1] 2.12 [95% CI 1.00-4.50]). We identified associations among non-A/Ps, who had higher phenol concentrations than A/PIs. Among non-A/PIs, first-trimester BPA, BPS, and triclosan were positively associated with GDM risk (aORT3 vs. T1 2.91 [95% CI 1.05-8.02], 4.60 [1.55-13.70], and 2.88 [1.11-7.45], respectively). Triclosan in the second trimester and AUC were positively associated with GDM risk among non-A/PIs (P < 0.05). In mixture analysis, triclosan was significantly associated with GDM risk. Urinary BPS among all and BPA, BPS, and triclosan among non-A/PIs were associated with GDM risk. Pregnant individuals should be aware of these phenols' potential adverse health effects.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Stacey E. Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
36
|
Chen WJ, Robledo C, Davis EM, Goodman JR, Xu C, Hwang J, Janitz AE, Garwe T, Calafat AM, Peck JD. Assessing urinary phenol and paraben mixtures in pregnant women with and without gestational diabetes mellitus: A case-control study. ENVIRONMENTAL RESEARCH 2022; 214:113897. [PMID: 35839910 PMCID: PMC9514543 DOI: 10.1016/j.envres.2022.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 05/11/2023]
Abstract
Prior studies have identified the associations between environmental phenol and paraben exposures and increased risk of gestational diabetes mellitus (GDM), but no study addressed these exposures as mixtures. As methods have emerged to better assess exposures to multiple chemicals, our study aimed to apply Bayesian kernel machine regression (BKMR) to evaluate the association between phenol and paraben mixtures and GDM. This study included 64 GDM cases and 237 obstetric patient controls from the University of Oklahoma Medical Center. Mid-pregnancy spot urine samples were collected to quantify concentrations of bisphenol A (BPA), benzophenone-3, triclosan, 2,4-dichlorophenol, 2,5-dichlorophenol, butylparaben, methylparaben, and propylparaben. Multivariable logistic regression was used to evaluate the associations between individual chemical biomarkers and GDM while controlling for confounding. We used probit implementation of BKMR with hierarchical variable selection to estimate the mean difference in GDM probability for each component of the phenol and paraben mixtures while controlling for the correlation among the chemical biomarkers. When analyzing individual chemicals using logistic regression, benzophenone-3 was positively associated with GDM [adjusted odds ratio (aOR) per interquartile range (IQR) = 1.54, 95% confidence interval (CI) 1.15, 2.08], while BPA was negatively associated with GDM (aOR 0.61, 95% CI 0.37, 0.99). In probit-BKMR analysis, an increase in z-score transformed log urinary concentrations of benzophenone-3 from the 10th to 90th percentile was associated with an increase in the estimated difference in the probability of GDM (0.67, 95% Credible Interval 0.04, 1.30), holding other chemicals fixed at their medians. No associations were identified between other chemical biomarkers and GDM in the BKMR analyses. We observed that the association of BPA and GDM was attenuated when accounting for correlated phenols and parabens, suggesting the importance of addressing chemical mixtures in perinatal environmental exposure studies. Additional prospective investigations will increase the understanding of the relationship between benzophenone-3 exposure and GDM development.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Candace Robledo
- Department of Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Erin M Davis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jean R Goodman
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Missouri, Columbia, MO, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda E Janitz
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tabitha Garwe
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
37
|
Zhou M, Peng L, Wang J, Cao R, Ou Z, Fang Y. Cadmium exposure and the risk of GDM: evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77253-77274. [PMID: 35672642 DOI: 10.1007/s11356-022-21171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gestational diabetes mellitus (GDM) has become a global concern for its severe adverse effects on both mother and fetus. Recent epidemiological studies reported inconsistent results of the association between cadmium (Cd) exposure and GDM. Therefore, a systematic review and meta- analysis were performed. PubMed, Web of Science, Scopus, Embase, and SpringerLink were searched up to July 2021. Observational studies containing the adjusted relative risks between Cd exposure and GDM were included in the quantitative synthesis. The retrieval comprised 218 articles out of which 11 met our criteria and 9 were included in the meta-analysis, representing a total of 32,392 subjects (2881 GDM). In total, Cd exposure might increase the risk of GDM in some extent (OR = 1.21, 95% CI [0.89, 1.64]), even without statistical significance in high heterogeneity (Q = 28.45, p < 0.05, I2 = 71.9%). Filtering two outliers indicated by Galbraith plot yielded a similar risk (OR = 1.19, 95% CI [1.02, 1.39]) with statistical significance. However, the heterogeneity among studies was obviously reduced (Q = 11.75, p = 0.068, I2 = 48.9%). Additionally, biological specimen, study design, and diagnostic criteria contributed to the high heterogeneity according to the subgroup analysis. Since some important results do not deny that Cd exposure increases the risk of GDM, high-quality multi-centered large cohort studies are required in the future.
Collapse
Affiliation(s)
- Minqi Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lianqi Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zixuan Ou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Yang Z, Zhang T, Shan D, Li L, Wang S, Li Y, Du R, Wu S, Jin L, Lu X, Shang X, Wang Q. Associations between phthalate exposure and thyroid function in pregnant women during the first trimester. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113884. [PMID: 35853363 DOI: 10.1016/j.ecoenv.2022.113884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a class of environmental endocrine disruptors. Previous studies have demonstrated that phthalate exposure can affect thyroid function; however, limited studies have assessed the associations between phthalate exposure and thyroid function, especially thyroid autoimmunity in pregnant women during the first trimester. We recruited participants from a cohort of pregnant women in Beijing, China, and collected urine samples to measure ten phthalate metabolites, serum samples to measure free thyroxine (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) during the first trimester. We included 325 pregnant women without thyroid diseases or dysfunction in this study. Associations between phthalate metabolites and thyroid function parameters were assessed with the Bayesian kernel machine regression (BKMR) model, multiple linear regression model, and restricted cubic spline. In the BKMR model analysis, compared to the 50th percentile, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels when phthalate metabolites were at or below the 40th percentile. Stratifying by body mass index, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels in normal weight women when phthalate metabolites were at or below the 45th percentile. However, total urinary phthalate metabolites levels were positively associated with serum TPOAb levels in underweight women when phthalate metabolites were at or below the 30th percentile. In restricted cubic spline analysis, L-shaped nonlinear associations of mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), di-(2-ethylhexyl) phthalate (ΣDEHP), and inverted S-shaped nonlinear association of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with TPOAb were observed. In conclusion, our findings suggest that phthalate exposure may affect thyroid autoimmunity in underweight pregnant women during early pregnancy, and the potential effects of phthalate exposure on thyroid autoimmunity may be nonlinear.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Lu
- Maternal and Child Health Care Hospital of Haidian District, Beijing 100080, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
39
|
Tatsuta N, Iwai-Shimada M, Nakayama SF, Iwama N, Metoki H, Arima T, Sakurai K, Anai A, Asato K, Kuriyama S, Sugawara J, Suzuki K, Yaegashi N, Kamijima M, Nakai K. Association between whole blood metallic elements concentrations and gestational diabetes mellitus in Japanese women: The Japan environment and Children's study. ENVIRONMENTAL RESEARCH 2022; 212:113231. [PMID: 35405127 DOI: 10.1016/j.envres.2022.113231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to several metallic elements has been suggested as a risk factor for gestational diabetes mellitus (GDM), but inconsistent findings have been reported. This study aimed to examine the association between the maternal whole blood concentration of metallic elements (Hg, Pb, Cd, Mn, and Se) and GDM using the dataset of the Japan Environment and Children's Study (JECS), a nationwide birth cohort study, which was designed to examine the adverse effects of pre/post-natal exposure to hazardous environment. METHODS The data of 78,964 pregnant women who were participants of JECS were used. Blood samples were collected from the pregnant women at second/third trimester of gestation. We employed logistic regression analysis, quantile g-computation (QGC) and a distributed lag nonlinear model (DLNM) to examine the association between the blood concentration of metallic elements and the risk of GDM. RESULTS The prevalence of GDM was 2.1%. In the logistic regression analyses, maternal blood Hg was associated with an increased risk of GDM. In QGC analysis, although metallic elements mixtures were not related to an increased risk of GDM, Hg (52.6%) may be the main contributor. According to the results of DLNM, for maternal exposure to Hg, 4.99 ng/g was identified as its susceptible minimum window for elevated risk of GDM. CONCLUSIONS Our findings highlighted an association between Hg exposure and an increased risk of GDM. Studies of the underlying mechanisms and potential contributing factors, including fish intake, of this association are warranted.
Collapse
Affiliation(s)
- Nozomi Tatsuta
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Miyuki Iwai-Shimada
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Noriyuki Iwama
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hirohito Metoki
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takahiro Arima
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kasumi Sakurai
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Akane Anai
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kaname Asato
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinichi Kuriyama
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Junichi Sugawara
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kichiya Suzuki
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Yaegashi
- Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.
| | - Kunihiko Nakai
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; Environmental and Genome Research Center Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan; School of Sport and Health Science, Tokai Gakuen University, 21-233 Nishinodo, Ukigai-cho, Miyoshi, Aichi, 470-233, Japan.
| |
Collapse
|
40
|
Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health 2022; 22:1572. [PMID: 35982427 PMCID: PMC9389831 DOI: 10.1186/s12889-022-13965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications globally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of GDM. We conducted a systematic review analyzing the association between several environmental health risk factors in pregnancy, including climate factors, chemicals and metals, and GDM. Methods We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environmental risk factor for GDM were included. Results Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambient temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogeneous (n = 2 publications in each case). Conclusions Environmental risk factors are important to consider in the management and prevention of GDM. In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of mother and offspring in the short and long term. Further research is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13965-5.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany.
| | - Stefanie Stichling
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany
| |
Collapse
|
41
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
42
|
Zhang T, Wang S, Li L, Zhu A, Wang Q. Associating diethylhexyl phthalate to gestational diabetes mellitus via adverse outcome pathways using a network-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153932. [PMID: 35182638 DOI: 10.1016/j.scitotenv.2022.153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication that is harmful to both the woman and fetus. Several epidemiological studies have found that exposure to diethylhexyl phthalate (DEHP), an endocrine disruptor ubiquitous in the environment, may be associated with GDM. This study aims to investigate the mechanism between DEHP and GDM using the adverse outcome pathway (AOP) framework, which can integrate information from different sources to elucidate the causal pathways between chemicals and adverse outcomes. We applied a network-based workflow to integrate diverse information to generate computational AOPs and accelerate the AOP development. The interactions among DEHP, genes, phenotypes, and GDM were retrieved from several publicly available databases, including the Comparative Toxicogenomics Database (CTD), Computational Toxicology (CompTox) Chemicals Dashboard, DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on the above interactions, a DEHP-Gene-Phenotype-GDM network consisting of 52 nodes and 227 edges was formed to support AOP construction. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a computational AOP (cAOP) network. Based on the Organization for Economic Co-operation and Development handbook of AOPs, a cAOP was assessed and applied to determine the effects of DEHP on GDM. DEHP could increase TNF-α, downregulate the glucose uptake process, and lead to GDM. Overall, this study revealed the utility of computational methods in integrating a variety of datasets, supporting AOP development, and facilitating a better understanding of the underlying mechanism of exposure to chemicals on human health.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
43
|
Yan D, Jiao Y, Yan H, Liu T, Yan H, Yuan J. Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Environ Health 2022; 21:53. [PMID: 35578291 PMCID: PMC9109392 DOI: 10.1186/s12940-022-00858-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/26/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the relationship between endocrine-disrupting chemicals (EDCs), including polychlorinated biphenyls (PCBs), poly-brominated diphenyl ethers (PBDEs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFAS) exposure and risk of gestational diabetes mellitus (GDM). METHODS Relevant studies from their inception to November 2021 were identified by searching EMBASE, PubMed, and Web of Science. The cohort and case-control studies that reported effect size with 95% confidence intervals (CIs) of EDC exposure and GDM were selected. The heterogeneity among the included studies was quantified by I2 statistic. Publication bias was evaluated through the Begg and Egger tests. RESULTS Twenty-five articles with a total of 23,796 participants were found. Results indicated that exposure to PCBs has a significant influence on the incidence of GDM (OR = 1.14; 95% CI = 1.00--1.31; n = 8). The risk of GDM was found to be associated with PBDE exposure (OR = 1.32; 95% CI = 1.15-1.53; n = 4). PAEs and PFASs exposure were also positively associated with the risk of GDM, with summary ORs of 1.10 (95% CI = 1.03-1.16; n = 7 for PAEs) and 1.09 (95% CI = 1.02-1.16; n = 11 for PFASs), respectively. When only cohort studies were considered, the summary OR between PCBs exposure and the risk of GDM was 0.99 (95% CI = 0.91-1.09; n = 5). Meanwhile, the summary ORs from cohort studies for PBDEs, PAEs, and PFASs exposure were 1.12 (95% CI = 1.00-1.26; n = 2), 1.08 (95% CI = 1.02-1.15; n = 5), and 1.06 (95% CI = 1.00-1.12; n = 8), respectively. The Beggs and Egger tests did not show publication bias, and the sensitivity analyses did not change the results in this meta-analysis. CONCLUSION These results support that exposure to certain EDCs, including PCBs, PBDEs, PAEs, and PFAS, increase the risk of GDM. Further large-sample epidemiologic researches and mechanistic studies are needed to verify the potential relationship and biological mechanisms. These results are of public health significance because the daily EDC exposure is expected to increase the risk of GDM development.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Tian Liu
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
44
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
45
|
James-Todd T, Ponzano M, Bellavia A, Williams PL, Cantonwine DE, Calafat AM, Hauser R, Quinn MR, Seely EW, McElrath TF. Urinary phthalate and DINCH metabolite concentrations and gradations of maternal glucose intolerance. ENVIRONMENT INTERNATIONAL 2022; 161:107099. [PMID: 35085932 PMCID: PMC10723583 DOI: 10.1016/j.envint.2022.107099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Studies suggest a link between pregnancy phthalate exposures and gestational diabetes mellitus (GDM). Few studies have evaluated associations between phthalate biomarkers (individual or mixtures) with gradations of maternal glucose intolerance. METHODS In a subset of 606 women participating in LIFECODES pregnancy cohort, a combination of 50-gram 1-h non-fasting glucose load test (GLT) and 100-gram 3-h fasting oral glucose tolerance test was used to determine pregnancy glycemic status (median: 27 weeks gestation): normoglycemia (n = 136), impaired glucose tolerance (IGT) (n = 296), and GDM (n = 174). Nineteen metabolites of phthalates and their replacements were measured during each trimester. We used multivariable logistic regression models to evaluate associations between biomarkers (in quartiles) and maternal glycemic status (GDM v. normoglycemia and IGT v. normoglycemia), adjusting for potential confounders. We also used principal component analysis to evaluate associations jointly accounting for metabolites as chemical mixtures. RESULTS Higher 1st trimester mono-3-carboxypropyl phthalate (MCPP) was associated with decreased odds of GDM (Q4 v. Q1: 0.30; 95% CI: 0.13, 0.67) and IGT (Q4 v. Q1 OR: 0.37; 95% CI: 0.17, 0.79). Higher 2nd trimester mono-isobutyl phthalate (MiBP) was associated with increased IGT (Q4 v. Q1 OR: 2.07; 95% CI: 1.06, 4.07), and 2nd trimester mono-3-hydroxybutyl phthalate (MHBP) was non-monotonically associated with increased GDM (Q2 v. Q1 OR: 3.21; 95% CI: 1.54, 6.87). Mixture analyses showed similar associations (Q4 v. Q1 for 2nd trimester dibutyl phthalates metabotlites mixtures OR: 2.08; 95% CI: 1.04, 4.22). CONCLUSION Some phthalate biomarkershad trimester-specific associations with glycemic outcomes, with long and short term health implications.
Collapse
Affiliation(s)
- Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, USA.
| | - Marta Ponzano
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David E Cantonwine
- Division of Maternal Fetal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marlee R Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ellen W Seely
- Division of Endocrine, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thomas F McElrath
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Maternal Fetal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Chen M, Guan Y, Huang R, Duan J, Zhou J, Chen T, Wang X, Xia Y, London SJ. Associations between the Maternal Exposome and Metabolome during Pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37003. [PMID: 35254863 PMCID: PMC8901044 DOI: 10.1289/ehp9745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Maternal exposure to environmental chemicals during pregnancy can influence various maternal and offspring health parameters. Modification of maternal metabolism by environmental exposure may be an important pathway for these impacts. However, there is limited evidence regarding exposure to a wide array of chemicals and the metabolome during pregnancy. OBJECTIVES We investigated the relationship between the urinary exposome and metabolome during pregnancy. METHODS Urine samples were collected in the first and third trimesters from 1,024 pregnant women recruited in prenatal clinics in Jiangsu Province, China. The exposome was analyzed using the first trimester sample with ultra-high performance liquid chromatography-high resolution accurate mass spectrometry (UHPLC-HRMS) and inductively coupled plasma mass spectrometry. The metabolome was analyzed using the third trimester sample with UHPLC-HRMS. We evaluated associations between each of 106 exposures in the first trimester with 139 metabolites in the third trimester. RESULTS We identified 1,245 significant associations (p<3.39×10-6, Bonferroni correction) between chemical exposures and maternal metabolism during pregnancy. Among elements, the largest number of the significant metabolic associations were observed for magnesium, and among organic compounds, for 4-tert-octylphenol. We used exposome-metabolome associations to explore mechanisms underlying published associations between prenatal chemical exposures and offspring health outcomes. This integration of the literature with our results suggests that reported associations between 10 analytes and birth weight, gestational age, fat deposition, neurobehavioral development, immunological disorders, and hypertension may be partially mediated by metabolites associated with these exposures. DISCUSSION This high-dimensional analysis of the urinary exposome and metabolome identified many associations between chemical exposures and maternal metabolism during pregnancy. Integration of these associations with the literature on health outcomes of exposure suggests that environmental modulation of the maternal metabolome may play a role in the association between prenatal exposure on pregnancy and child health outcomes. https://doi.org/10.1289/EHP9745.
Collapse
Affiliation(s)
- Minjian Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Huang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
47
|
Liu WY, Lu JH, He JR, Zhang LF, Wei DM, Wang CR, Xiao X, Xia HM, Qiu X. Combined effects of air pollutants on gestational diabetes mellitus: A prospective cohort study. ENVIRONMENTAL RESEARCH 2022; 204:112393. [PMID: 34798119 DOI: 10.1016/j.envres.2021.112393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Exposures to multiple air pollutants during pregnancy have been associated with the risk of gestational diabetes mellitus (GDM). However, their combined effects are unclear. We aimed to evaluate the combined associations of five air pollutants from pre-pregnancy to the 2nd trimester with GDM. This study included 20,113 participants from the Born in Guangzhou Cohort Study (BIGCS). The inverse distance-weighted models were used to estimate individual air pollutant exposure, namely ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter less than 10 μm in diameter (PM10), and less than 2.5 μm in diameter (PM2.5). We estimated stage-specific associations of air pollutants with GDM using generalized estimating equation, and departures from additive joint effects were assessed using the relative excess risk (RERI) and the joint relative risk (JRR). Of the 20,113 participants, 3440 women (17.1%) were diagnosed with GDM. In the adjusted model, increased concentrations of O3 and SO2 3-6 months before pregnancy were associated with GDM occurrence, as well as O3 and PM10 in the 1st trimester, the adjusted relative risk (95% confident intervals) [RRs (95%CI)] ranged from 1.05 (1.00, 1.09) to 1.21 (1.04, 1.40). The largest JRR for GDM was the combination of SO2, NO2, and PM10 in the 1st trimester (JRR = 1.32, 95% CI: 1.10, 1.59). The JRR for O3 and SO2 was less than their additive joint effects [RERI = -0.25 (-0.47, -0.04), P for interaction = 0.048]. Associations of air pollutants with GDM differed somewhat by pre-pregnancy BMI and season. This study added new evidence to the current understanding of the combined effects of multiple air pollutants on GDM. Public health strategies were needed to reduce the adverse effects of air pollution exposure on pregnant women.
Collapse
Affiliation(s)
- Wen-Yu Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Hua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Fang Zhang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Mei Wei
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng-Rui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiong Xiao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui-Min Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Provincial Clinical Research Center for Child Health, Guangdong, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Women's Health, Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Provincial Clinical Research Center for Child Health, Guangdong, China.
| |
Collapse
|
48
|
Lin Y, Li T, Xiao J, Xie K, Shi Z. The Association Between Cadmium Exposure and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Public Health 2022; 9:555539. [PMID: 35223753 PMCID: PMC8866184 DOI: 10.3389/fpubh.2021.555539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
Objective Several studies have evaluated the association of cadmium exposure with the risk of gestational diabetes mellitus (GDM). However, the findings among these studies have been inconsistent. To further investigate the relationship, we carried out a meta-analysis to clarify the relationship between cadmium exposure and GDM risk. Methods Five databases (Scopus, PubMed, Web of Science, Cochrane, and CNKI) were searched for eligible studies until September 09, 2021. The quality of eligible studies was evaluated using the Newcastle–Ottawa quality assessment scale (NOS). The summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by random-effects models due to high heterogeneity. Sensitivity analysis was performed to explore the robustness of the results. Publication bias was evaluated by Egger's test and Begg's test. We also conducted meta-regression analysis and subgroup analysis to assess the potential sources of heterogeneity. Results A total of 10 studies with 32,000 participants related to our issue were included. Comparing the highest vs. lowest categories of cadmium exposure, no significant association was observed between cadmium exposure and the risk of GDM (OR = 1.16, 95% CI = 0.92–1.46, and P = 0.206). No publication bias was found in Begg's and Egger's tests (all P > 0.05). Meta-regression suggested that publication year was the potentially heterogeneous source (P = 0.034). Subgroup analysis of publication year showed that the OR of studies before the year of 2016 was 4.05 (95% CI = 1.87–8.76, P < 0.001), and prospective cohort studies showed a borderline increased GDM risk (OR = 1.15, 95% CI = 0.99–1.33, and P = 0.061). Conclusion Our results indicated no significant association between cadmium exposure and GDM risk. Further high-quality prospective studies, especially those using standard analytic methods for cadmium exposure, are warranted to confirm the results.
Collapse
Affiliation(s)
- Yu Lin
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangbo Xiao
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Kaipeng Xie
- Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kaipeng Xie
| | - Zhonghua Shi
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
- Zhonghua Shi
| |
Collapse
|
49
|
Liang QX, Lin Y, Fang XM, Gao YH, Li F. Association Between Phthalate Exposure in Pregnancy and Gestational Diabetes: A Chinese Cross-Sectional Study. Int J Gen Med 2022; 15:179-189. [PMID: 35023956 PMCID: PMC8747708 DOI: 10.2147/ijgm.s335895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objective The present study aims to explore the association between phthalate exposure and the risk of gestational diabetes mellitus (GDM). Materials and Methods A total of 11 plasticizer metabolites were measured in patient morning urine using high-performance liquid chromatography. Furthermore, fasting blood glucose and fasting insulin were detected in first-trimester blood samples. The chemical concentration was described using the median, the metabolite concentration difference between the GDM and control groups was compared using the bootstrap method, and the correlations of the fasting blood glucose, fasting insulin, insulin resistance index, and phthalic acid ester (PAE) metabolites were analyzed using Spearman correlation analysis. The multivariate logistic regression model and predictive probability map were performed to help assess the linearity and nature of any dose–response relationship. Results Of the 224 women recruited for the present study, 200 met the inclusion criteria. Their measured outcomes and biomonitoring data were examined for the presence of chemicals. The results showed that the patients in the GDM group had higher mono-(2-ethylhexyl) phthalate (MEHP) and methylerythritol cyclophosphane concentrations in their bodies than the patients in the control group. Statistically significant MEHP–GDM associations were also observed (P < 0.001). The GDM and MEHP dose–response relationships were different among pregnant women aged <35 years and those aged >35 years (P < 0.001). Furthermore, gestational age >28 weeks exhibited similar changes to those aged ≤28 weeks (P = 0.059). Conclusion The findings of the present study add to the growing body of evidence supporting phthalate exposure as a GDM risk factor.
Collapse
Affiliation(s)
- Qiu-Xia Liang
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Yan Lin
- Department of Delivery Room, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Xiao-Min Fang
- Fundus Surgery Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Yun-He Gao
- Department of Obstetrics Clinic, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| | - Fei Li
- Department of Laboratory Medicine, Guangzhou Women and Children Medical Center, Guangzhou, 510623, People's Republic of China
| |
Collapse
|
50
|
Fleisch AF, Mukherjee SK, Biswas SK, Obrycki JF, Ekramullah SM, Arman DM, Islam J, Christiani DC, Mazumdar M. Arsenic exposure during pregnancy and postpartum maternal glucose tolerance: evidence from Bangladesh. Environ Health 2022; 21:13. [PMID: 35031057 PMCID: PMC8759206 DOI: 10.1186/s12940-021-00811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/25/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Arsenic exposure has been associated with gestational diabetes mellitus. However, the extent to which arsenic exposure during pregnancy is associated with postpartum glucose intolerance is unknown. METHODS We studied 323 women in Bangladesh. We assessed arsenic exposure in early pregnancy via toenail and water samples. We measured fasting glucose and insulin in serum at a mean (SD) of 4.0 (3.5) weeks post-delivery. We ran covariate-adjusted, linear regression models to examine associations of arsenic concentrations with HOMA-IR, a marker of insulin resistance, and HOMA-β, a marker of beta cell function. RESULTS Median (IQR) arsenic concentration was 0.45 (0.67) μg/g in toenails and 2.0 (6.5) μg/L in drinking water. Arsenic concentrations during pregnancy were not associated with insulin resistance or beta cell function postpartum. HOMA-IR was 0.07% (- 3.13, 3.37) higher and HOMA-β was 0.96% (- 3.83, 1.99) lower per IQR increment in toenail arsenic, but effect estimates were small and confidence intervals crossed the null. CONCLUSIONS Although arsenic exposure during pregnancy has been consistently associated with gestational diabetes mellitus, we found no clear evidence for an adverse effect on postpartum insulin resistance or beta cell function.
Collapse
Affiliation(s)
- Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Joynul Islam
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|