1
|
Liu S, Wang W, Zhao Y, Li L, Zhang W, Ji X, Yang D, Chen Y, Guo X, Deng F. Indoor Environment and Health Effects: Protocol of an Exploratory Panel Study among Young Adults in China (China IEHE Study). ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:26-39. [PMID: 39839245 PMCID: PMC11744389 DOI: 10.1021/envhealth.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 01/23/2025]
Abstract
Indoor environment and health have drawn public attention worldwide. However, the joint health effects and mechanisms of exposure to different types of indoor environmental factors remain unclear. We established an exploratory panel study on indoor environment and health effects among young adults in China (the China IEHE Study) to comprehensively investigate 3M issues, including multiple indoor environmental factors, multiple health effects, and multiple omics methods for mechanism exploration. This protocol aims to systematically introduce the entire China IEHE Study. Eighty-one young adults aged 18-28 years from a university adjacent to traffic arteries in Beijing were recruited and followed up four times. Sham/real air purification intervention was simultaneously applied in a randomized crossover order. A broad range of indoor physical, chemical, and biological factors were characterized through real-time monitoring and external and internal exposure analyses. Subclinical health indices reflecting cardiopulmonary, sleep, and cognitive health were repeatedly measured in a prospective order. Various biosamples including fasting venous blood, morning urine, nasal mucosal lining fluid, and exhaled breath condensate were collected to explore the underlying biological mechanisms. The China IEHE Study comes up with an enlightening framework for future prospective studies associated with the exploration of multisystem health effects and underlying biological mechanisms of indoor exposure.
Collapse
Affiliation(s)
- Shan Liu
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Yetong Zhao
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Di Yang
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department
of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xinbiao Guo
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
- Center
for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Ma M, Zhu X, Li F, Guan G, Hui R, Zhu L, Pang H, Zhang Y. Associations of urinary volatile organic compounds with cardiovascular disease among the general adult population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3876-3890. [PMID: 38523395 DOI: 10.1080/09603123.2024.2331732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
This study was to estimate the associations of volatile organic compounds (VOCs) exposure with the prevalence of total and specific cardiovascular disease (CVD) among the general adult population. This cross-sectional study analyzed 15 urinary VOC metabolites in the general population using the 2011-2016 National Health and Nutrition Examination Survey (n = 5,213). The weighted study population with 47.0 years median age, was primarily female (51.2%). The prevalence of total CVD in the overall population was 7.9%. The single-exposure analyzes of AAMA, ATCA, CEMA, CYMA, DHBMA, 3HPMA, and 3MHA +4MHA were significantly associated with increased prevalence of total CVD. Qgcomp regression consistently showed that urinary VOCs-mixed exposure was positively correlated with the prevalence of total and specific CVDs (chronic heart failure, angina, and stroke), and highlighted each VOCs metabolite weights and direction. The similar results were observed for the WQS regression using mixed analysis methods. In conclusion, exposure to VOCs increases CVD prevalence and advances the identification of risk factors for CVD for environmental study.
Collapse
Affiliation(s)
- Meijuan Ma
- Department of Cadre Physical Examination Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feipeng Li
- Department of Cardiology, Huayin People's Hospital, Weinan, Shaanxi, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Pang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Li Q, Zhang Y, Fang J, Sun Q, Du Y, Wang Y, Lei J, Zhu Y, Xue X, Chen R, Kan H, Li T. Effect of air purification on blood pressure and heart rate among school children: A cluster, randomized, double-blind crossover trial. CHINESE SCIENCE BULLETIN 2024; 69:2454-2462. [DOI: 10.1360/tb-2023-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Noonan CW, Walker ES, Semmens EO, Belcourt A, Boulafentis J, Garcia C, Graham J, Hoskie N, Quintana E, Simpson J, Smith P, Teasley HL, Ware D, Weiler E, Ward TJ. Randomized trial in rural Native American homes heated with wood stoves: results from the EldersAIR study. AIR QUALITY, ATMOSPHERE, & HEALTH 2024; 17:967-978. [PMID: 39363883 PMCID: PMC11446504 DOI: 10.1007/s11869-023-01492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/19/2023] [Indexed: 10/05/2024]
Abstract
Residential wood burning has both practical and traditional value among many indigenous communities of the United States Mountain West, although household biomass burning also results in emissions that are harmful to health. In a household-level three-arm placebo-controlled randomized trial we tested the efficacy of portable filtration units and education interventions on improving pulmonary function and blood pressure measures among elder participants that use wood stoves for residential heating. A total of 143 participants were assigned to the Education (n=49), Filter (n=47), and Control (n=47) arms. Blood pressure and spirometry measures were collected multiple times during a per-intervention winter period and during a follow-up post-intervention winter period. Despite strong PM2.5 exposure reduction results with the Filter arm (50% lower compared to Control arm), neither this intervention nor the Education intervention translated to improvements in the selected health measures among this population with a mixture of chronic conditions. Intention to treat analysis failed to demonstrate evidence that either of the intervention arms had beneficial effects on the blood pressure or the spirometry measures. Post-hoc evaluation of effect modification for blood pressure and spirometry outcomes did not reveal any interaction influence on the outcomes according to sex, residential smoking, chronic disease history and study area.
Collapse
Affiliation(s)
- Curtis W Noonan
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Ethan S Walker
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Erin O Semmens
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Annie Belcourt
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Jon Graham
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| | - Nolan Hoskie
- Navajo Nation Environmental Protection Agency, Window Rock, AZ, USA
| | - Eugenia Quintana
- Navajo Nation Environmental Protection Agency, Window Rock, AZ, USA
| | - Julie Simpson
- Nez Perce Tribe Air Quality Program, Lapwai, ID, USA
| | - Paul Smith
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Howard L Teasley
- Nez Perce Tribe Forestry and Fire Management Division, Lapwai, ID, USA
| | - Desirae Ware
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Emily Weiler
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Tony J Ward
- Center for Population Health Research, University of Montana, Missoula, MT, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
6
|
Ren J, Zhang Z, Cui Q, Tian H, Guo Z, Zhang Y, Chen F, Deng Y, Ma Y. The effect of indoor air filtration on biomarkers of inflammation and oxidative stress: a review and meta-analysis of randomized controlled trials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33212-33222. [PMID: 38687452 DOI: 10.1007/s11356-024-33414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Fengge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050017, China
| | - Yandong Deng
- Department of Ultrasonic, the First Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Xia X, Chan KH, Kwok T, Wu S, Man CL, Ho KF. Effects of long-term indoor air purification intervention on cardiovascular health in elderly: a parallel, double-blinded randomized controlled trial in Hong Kong. ENVIRONMENTAL RESEARCH 2024; 247:118284. [PMID: 38253196 DOI: 10.1016/j.envres.2024.118284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a leading environmental risk factor globally, and over half of the associated disease burden are caused by cardiovascular disease. Numerous randomized controlled trials (RCT) have investigated the short-term cardiovascular benefits of indoor air purifiers (IAPs), but major knowledge gaps remain on their longer-term benefits. In this 1-year, randomized, double-blinded, parallel controlled trial of 47 elderly (ntrue-purification = 24; nsham-purification = 23) aged ≥70 years, true-purification reduced household PM2.5 levels by 28% and maintained lower exposure throughout the year compared to the sham-purification group. After 12 months of intervention, a significant reduction of diastolic blood pressure was found in the true-purification versus sham-purification group (-4.62 [95% CI: -7.28, -1.96] mmHg) compared to baseline measurement prior to the intervention, whereas systolic blood pressure showed directionally consistent but statistically non-significant effect (-2.49 [95% CI: -9.25, 4.28] mmHg). Qualitatively similar patterns of associations were observed for pulse pressure (-2.30 [95% CI: -6.57, 1.96] mmHg) and carotid intima-media thickness (-10.0% [95% CI: -24.8%, 4.7%]), but these were not statistically significant. Overall, we found suggestive evidence of cardiovascular benefits of long-term IAPs use, particularly on diastolic blood pressure. Evidence on other longer-term cardiovascular traits is less clear. Further trials with larger sample sizes and long-term follow-up are needed across diverse populations to evaluate the cardiovascular benefits of IAPs.
Collapse
Affiliation(s)
- Xi Xia
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China; School of Public Health, Shaanxi University of Chinese Medicine, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka Hung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK; Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, UK.
| | - Timothy Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; The Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - ShaoWei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Jing L, Chen T, Yang Z, Dong W. Association of the blood levels of specific volatile organic compounds with nonfatal cardio-cerebrovascular events in US adults. BMC Public Health 2024; 24:616. [PMID: 38408965 PMCID: PMC10898104 DOI: 10.1186/s12889-024-18115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Cardio-cerebrovascular diseases constitute a major global public health burden. Volatile organic compounds (VOCs) exposure has become progressively severe, endangering human health and becoming one of the main concerns in environmental pollution. The associations of VOCs exposure with nonfatal cardio-cerebrovascular events have not been identified in observational study with a large sample size, so we aim to examine the association in US adult population. METHODS Adults aged > 18 years with complete data regarding selected blood levels of VOCs (including benzene, ethylbenzene, o-xylene, and m-/p-xylene) and nonfatal cardio-cerebrovascular events were included in the analysis (n = 3,968, National Health and Nutrition Examination Survey, NHANES, 2013-2018 survey cycle). Participants were classified into low- and high-exposure based on whether above selected VOCs low limit detect concentration or median value. Weighted multivariate logistic analyses and subgroup analyses were used to detect the association between selected VOCs exposure and nonfatal cardio-cerebrovascular events in US adults. RESULTS Weighted multivariate logistic analyses showed that the high-VOCs exposure group had an increased risk of nonfatal cardio-cerebrovascular events compared with the low-VOCs exposure group; the adjusted odds ratios (OR) and 95% confidence intervals (CI) of nonfatal cardio-cerebrovascular events for the high-VOCs exposure group were 1.41 (0.91, 2.19), 1.37 (0.96, 1.95), 1.32 (0.96, 1.82), and 1.17 (0.82, 1.67) for benzene, ethylbenzene, o-xylene, and m-/p-xylene, respectively, which was not significant assuming statistical significance at a 0.05 significance level (95% CI) for a two-tailed test. Lastly, we found high-VOCs exposure was associated with increased incidence of nonfatal cardio-cerebrovascular events in both daily smokers an non-daily smokers (p-interaction > 0.01), but the association was not statistically significant in non-daily smokers. CONCLUSIONS This study found that VOCs (benzene, ethylbenzene, o-xylene, and m-/p-xylene) exposure was associated with increased incidence of nonfatal cardio-cerebrovascular events in US adults, and the results need to be confirmed by larger cohort studies.
Collapse
Affiliation(s)
- Li Jing
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiancong Chen
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyong Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Faridi S, Allen RW, Brook RD, Yousefian F, Hassanvand MS, Carlsten C. An updated systematic review and meta-analysis on portable air cleaners and blood pressure: Recommendations for users and manufacturers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115227. [PMID: 37421892 DOI: 10.1016/j.ecoenv.2023.115227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution is a leading contributor to the global burden of cardiovascular disease (CVD). One important underlying mechanism is an increase in blood pressure (BP). A growing number of studies have reported a beneficial effect of portable air cleaners (PACs) on systolic and diastolic BP; SBP and DBP. We conducted an updated systematic review and meta-analysis of studies using true versus sham mode filtration reporting the effects on BP. Of 214 articles identified up to February 5, 2023, seventeen (from China, USA, Canada, South Korea and Denmark) enrolling approximately 880 participants (484 female) met the inclusion criteria for meta-analyses. Aside from studies conducted in China, research on PACs and BP has been conducted in relatively low pollution settings. Mean indoor PM2.5 concentrations during the active and sham mode purification were 15.9 and 41.2 µg/m3, respectively. The mean efficiency of PACs against indoor PM2.5 was 59.8 % (ranging from 23 % to 82 %). True mode filtration was associated with a pooled mean difference of - 2.35 mmHg (95 % confidence interval [CI]: - 4.5, - 0.2) and - 0.81 mmHg (95 % CI: - 1.86, 0.24) in SBP and DBP, respectively. After removing the studies with high risk of bias, the magnitude of the pooled benefits on SBP and DBP increased to - 3.62 mmHg (95 % CI: - 6.69, - 0.56) and - 1.35 mmHg (95 % CI: - 2.29, - 0.41), respectively. However, there are several barriers to the use of PACs, specifically in low- and middle-income countries (LMICs), such as the initial purchase cost and filter replacements. There may be several avenues to help overcome these economic burdens and improve cost effectiveness, such as implementing government or other subsidized programs to distribute PACs targeting vulnerable and higher-risk individuals. We propose that environmental health researchers and healthcare providers should be better trained to educate the public regarding the use of PACs to reduce the impacts of PM2.5 on cardiometabolic diseases globally.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ryan W Allen
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Christopher Carlsten
- Air Pollution Exposure Lab and Legacy for Airway Health, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Laursen KR, Christensen NV, Mulder FA, Schullehner J, Hoffmann HJ, Jensen A, Møller P, Loft S, Olin AC, Rasmussen BB, Rosati B, Strandberg B, Glasius M, Bilde M, Sigsgaard T. Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects. Part Fibre Toxicol 2023; 20:26. [PMID: 37430267 DOI: 10.1186/s12989-023-00537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning. RESULTS SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs. CONCLUSIONS Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.
Collapse
Affiliation(s)
- Karin Rosenkilde Laursen
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Frans Aa Mulder
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jörg Schullehner
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Annie Jensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Anna-Carin Olin
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Bernadette Rosati
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Jung CC, Syu ZH, Chou CCK, Huang YT. A study to characterize the lead isotopic fingerprint in PM 2.5 emitted from incense stick and cigarette burning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56893-56903. [PMID: 36929257 DOI: 10.1007/s11356-023-26383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The incense sticks and cigarettes burning are key sources of particulate matter with a diameter of ≤ 2.5 μm (PM2.5) in indoor and outdoor air. While lead (Pb) isotope ratios provide valuable insights into the origin of particle pollution, their applicability for investigating these source remains unclear. The Pb isotope ratios in the PM2.5 emitted from these two sources were analyzed, and effects of brands or nicotine contents on the ratios were assessed. In addition, As, Cr, and Pb were analyzed to investigate whether Pb isotope ratios can serve as an indicator for the source investigation of these metals. We found that average ratios of 206Pb/204Pb, 206Pb/207Pb, and 208Pb/207Pb in cigarettes were heavier than those in incense sticks. Scatter plots of Pb isotope ratios indicated an overlap of values for incense sticks or cigarettes linked to different brands, in that ratios for cigarettes with high nicotine content were heavier than for those with low nicotine content. Scatter plots of As, Cr, or Pb concentration against Pb isotope ratios clearly distinguished the effects of cigarette burning versus incense sticks with respect to PM2.5 of these metals. Results indicate that brand differences did not affect the determination of PM2.5 in these two sources. We suggest that Pb isotope ratios can be a useful tool in investigating the influence of incense sticks and of cigarettes (with high or low nicotine content) burning to PM2.5 and associated metals.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd, Beitun District, Taichung City, 40640, Taiwan.
| | - Zih-Hong Syu
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan City, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei City, Taiwan
| | - Yi-Tang Huang
- Research Center for Environmental Changes, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
12
|
Akhlaq S, Ara SA, Ahmad B, Fazil M, Akram U, Haque M, Khan AA. Interventions of Unani medicine for maintenance of health with special reference to air quality: an evidence-based review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:85-96. [PMID: 34883008 DOI: 10.1515/reveh-2021-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This article aims to discuss the impact of air quality on human health, measures to achieve the goal of good indoor air quality and proposed benefits of interventions of Unani Medicine with an evidence-based approach. CONTENT The significance of air quality on the health of the community cannot be denied. Recent evidences from WHO illustrated data on severe air pollutants and their impacts on human health ranges from minor upper respiratory irritation to chronic respiratory ailments including lung carcinoma and heart disease associated with premature mortality and reduced life expectancy. In Unani Medicine, air has been included in the list of factors, which are six in number and play the central role in prevention of diseases and maintenance of health. Air is considered as the medium of most of the extrinsic factors such as chemical and biological pollutants affecting health and their exposure results in short and long-term health issues. The literature of Unani Medicine proposes many simple and effective measures, which help to improve indoor and outdoor air quality. The goal of outdoor clean air is achieved through implementation of measures to tackle the source of pollution, while indoor clean air is attained through various means e.g., fumigation with herbal drugs. Hence, an extensive literature survey on Unani reserve was conducted to collect information about the concept of air discussed under the heading of six essential factors and its implication in prevention of diseases and maintenance of health. Further, research databases such as Pub Med, Google Scholar, and Science-Direct were broadly searched for evidence on the efficacy of herbals mentioned in Unani literature for the indoor air purification and subsequent air quality improvement. SUMMARY AND OUTLOOK Recent studies showed good air quality leads to decrease in mortality, particularly of respiratory and cardiovascular deaths whereas poor air quality results in a variety of diseases. Unani scholars prescribed several regimens such as Bukhoor (Fumigation), Sa'oot (Nasal instillation) and use of Abeer (Perfumes) and Nadd (Incense) for the improvement of air quality. Likewise various herbal fumigants and sprays containing drugs like mī'a sā'ila (Liquidambar orientalis Mill.), mastagi (Pistacia lentiscus L.), mushk (Moschus moschiferus L.), loban (Styrax benzoides W. G. Craib), ābnoos (Diospyros ebenum J. Koenig ex Retz), zā'fran (Crocus sativus L.) and sirka (vinegar) etc. has been well explained and used exclusively for air purification and improvement of AQI. Therefore, in the present scenario of altered air quality, we forward certain measures described in Unani system of medicine for health promotion and protection. Scientific evidence on several drugs reveal the presence of a number of pharmacologically active substances, which may provide a new approach into the purification of air.
Collapse
|
13
|
Shah S, Kim E, Kim KN, Ha E. Can individual protective measures safeguard cardiopulmonary health from air pollution? A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 229:115708. [PMID: 36940818 DOI: 10.1016/j.envres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Evidence supporting the effect of individual protective measures (IPMs) on air pollution is relatively scarce. In this study, we performed a systematic review and meta-analysis to investigate the effects of air purifiers, air-purifying respirators, and cookstove changes on cardiopulmonary health outcomes. We searched PubMed, Scopus, and Web of Science until December 31, 2022, 90 articles and 39,760 participants were included. Two authors independently searched and selected the studies, extracted information, and assessed each study's quality and risk of bias. We performed meta-analyses when three or more studies were available for each IPMs, with comparable intervention and health outcome. Systematic review showed that IPMs were beneficial in children and elderly with asthma along with healthy individuals. Meta-analysis results showed a reduction in cardiopulmonary inflammation using air purifiers than in control groups (with sham/no filter) with a decrease in interleukin 6 by -0.247 μg/mL (95% confidence intervals [CI] = -0.413, -0.082). A sub-group analysis for air purifier as an IPMs in developing counties reduced fractional exhaled nitric oxide by -0.208 ppb (95% confidence intervals [CI] = -0.394, -0.022). However, evidence describing the effects of air purifying respirator and cook stove changes on cardiopulmonary outcomes remained insufficient. Therefore, air purifiers can serve as efficient IPMs against air pollution. The beneficial effect of air purifiers is likely to have a greater effect in developing countries than in developed countries.
Collapse
Affiliation(s)
- Surabhi Shah
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eunji Kim
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Eunhee Ha
- Department of Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), Ewha Womans University College of Medicine, Seoul, Republic of Korea; Department of Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Liu Z, Wang Q, Li N, Xu C, Li Y, Zhou J, Liu L, Zhang H, Mo Y, Han F, Xu D. Cardiovascular benefits of air purifier in patients with stable coronary artery disease: A randomized single-blind crossover study. Front Public Health 2023; 10:1082327. [PMID: 36699920 PMCID: PMC9868303 DOI: 10.3389/fpubh.2022.1082327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Background Exposure to PM2.5 will accelerate the progression of cardiovascular diseases. Air purifier can reduce the PM2.5 exposure and theoretically alleviate the influence of PM2.5 on patients with stable coronary artery disease (SCAD). However, few studies of the protective effect showed significant results because the interferent effects of routine medication had not been taken into account. In order to explore the actual effect on patients with SCAD, we conducted a randomized single-blind crossover air purifier intervention trial. Method Levels of PM2.5 exposure during intervention and cardiovascular indicators (inflammation, coagulation, plaque stability, and blood lipids) after intervention were detected, meanwhile the information of drug use was obtained by questionnaire. The kinds of drug used by more than 20% of the subjects were sorted out. And the influence of these drugs on cardiovascular indicators was summarized through literature review. Based on that, the drug use was included as a variable in linear mixed effects models that used to analyze the associations between PM2.5 exposure reduction by air purifier and cardiovascular indicators. Results The result revealed that the interpretation contribution rate of drug use was more than that of PM2.5 exposure. The level of C-reactive protein significantly decreased by 20.93% (95%CI: 6.56%, 33.10%), 23.44% (95%CI: 2.77%, 39.39%) and 24.11% (95%CI: 4.21%, 39.69%) on lag1, lag01 and lag02 respectively, while the level of high-density lipoprotein cholesterol significantly increased by 5.10% (95%CI: 0.69%, 9.05%), 3.71% (95%CI: 0.92%, 6.60%) and 6.48% (95%CI: 2.58%, 10.24%) respectively on lag0, lag1 and lag01 associated with an interquartile range decrease of 22.51 μg/m3 in PM2.5 exposure. Conclusion The study shows positive effects of air purifier on SCAD, and also provides methodological reference for future related research.
Collapse
Affiliation(s)
- Zhe Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunyu Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunpu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liu Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China,Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Haijing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Mo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China,National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China,*Correspondence: Dongqun Xu ✉
| |
Collapse
|
15
|
Wang W, Zhou N, Yu H, Yang H, Zhou J, Hong X. Time Trends in Ischemic Heart Disease Mortality Attributable to PM 2.5 Exposure in Southeastern China from 1990 to 2019: An Age-Period-Cohort Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:973. [PMID: 36673728 PMCID: PMC9859070 DOI: 10.3390/ijerph20020973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
PM2.5 exposure is a major environmental risk factor for the mortality of ischemic heart disease (IHD). This study aimed to analyze trends in IHD mortality attributable to PM2.5 exposure in Jiangsu Province, China, from 1990 to 2019, and their correlation with age, period, and birth cohort. METHODS Data were extracted from the Global Burden of Disease study 2019 (GBD2019). The magnitude and direction of the trends in IHD mortality attributable to PM2.5 exposure were analyzed by Joinpoint regression. The age-period-cohort (APC) model was used to evaluate the cohort and period effect. RESULTS Age-standardized mortality rate (ASMR) of IHD attributable to PM2.5 exposure decreased from 1990 to 2019, with an average annual percentage change (AAPC) of -1.71% (95%CI: -2.02~-1.40), which, due to ambient PM2.5 (APM) exposure and household PM2.5 (HPM) exposure increased with AAPCs of 1.45% (95%CI: 1.18~1.72) and -8.27% (95%CI: -8.84~-7.69), respectively. APC analysis revealed an exponential distribution in age effects on IHD mortality attributable to APM exposure, which rapidly increased in the elderly. The risk for IHD mortality due to HPM exposure showed a decline in the period and cohort effects, which, due to APM, increased in the period and cohort effects. However, favorable period effects were found in the recent decade. The overall net drift values for APM were above zero, and were below zero for HPM. The values for local drift with age both for APM and HPM exposures were initially reduced and then enhanced. CONCLUSION The main environmental risk factor for IHD mortality changed from HPM to APM exposure in Jiangsu Province, China. Corresponding health strategies and prevention management should be adopted to reduce ambient air pollution and decrease the effects of APM exposure on IHD mortality.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Non-Communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, 3 Zizhulin Road, Gulou District, Nanjing 210003, China
| | - Nan Zhou
- Department of Non-Communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, 3 Zizhulin Road, Gulou District, Nanjing 210003, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Hao Yu
- Department of Non-Communicable Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Gulou District, Nanjing 210009, China
| | - Huafeng Yang
- Department of Non-Communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, 3 Zizhulin Road, Gulou District, Nanjing 210003, China
| | - Jinyi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
- Department of Non-Communicable Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Gulou District, Nanjing 210009, China
| | - Xin Hong
- Department of Non-Communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, 3 Zizhulin Road, Gulou District, Nanjing 210003, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| |
Collapse
|
16
|
Jung CC, Chen YH, Chou CCK. Spatial and seasonal variations in the carbon and lead isotopes of PM 2.5 in air of residential buildings and their applications for source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120654. [PMID: 36375577 DOI: 10.1016/j.envpol.2022.120654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
To understand isotope distributions of PM2.5 in residential buildings and apply them for source identification, carbon (δ13C) and lead (Pb) isotope ratios in indoor and outdoor air of residential buildings were analyzed. Moreover, factor analysis (FA) was employed to investigate sources, which were compared through isotopic analyses. The average δ13C values of indoor air are -26.94 ± 1.22‰ and -27.04 ± 0.44‰ in warm (August to October) and cold (February to March) seasons, respectively, and the corresponding values for outdoor air are -26.77 ± 0.54‰ and -26.57 ± 0.39‰. The average 206Pb/207Pb (208Pb/207Pb) ratios of indoor air are 1.1584 ± 0.0091 (2.4309 ± 0.0125) and 1.1529 ± 0.0032 (2.4227 ± 0.0081) in warm and cold seasons, respectively, and the corresponding values for outdoor air are 1.1594 ± 0.0069 (2.4374 ± 0.0103) and 1.1538 ± 0.0077 (2.4222 ± 0.0085). Seasonal variation in δ13C values or Pb isotope ratios of indoor air was not significant, and similar results were obtained for outdoor air. Significant differences were not observed between δ13C values or Pb isotope ratios of indoor and outdoor air. Traffic emission is the major contributor to indoor and outdoor PM2.5 based on isotopic analyses; this result was consistent with the results of FA. The δ13C values of indoor air in buildings with poor ventilation conditions were significantly lighter than those of outdoor air. In summary, the spatial and seasonal variations of isotopes were similar in residential buildings, which can be used to identify sources of indoor PM2.5, and ventilation condition is an influencing factor.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Yang-Hsueh Chen
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Khaltaev N, Axelrod S. Countrywide cardiovascular disease prevention and control in 49 countries with different socio-economic status. Chronic Dis Transl Med 2022; 8:296-304. [PMID: 36420179 PMCID: PMC9676122 DOI: 10.1002/cdt3.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the major noncommunicable disease (NCD) accounting for 17.9 million deaths. If current trends continue, the annual number of deaths from CVD will rise to 22.2 million by 2030. The United Nations General Assembly adopted a sustainable development goal (SDG) by 2030 to reduce NCD mortality by one-third. The purpose of this study was to analyze the CVD mortality trends in different countries implementing World Health Organization (WHO) NCD Action Plan and emphasize effective ways to achieve SDG. Methods WHO statistics, based on the Member-States unified mortality and causes-of-death reports were used for analyzing trends and different interventions. Results Reduction of CVD mortality from 2000 to 2016 in 49 countries was achieved for stroke at 43% and ischemic heart disease at 30%. Smoking prevalence and raised blood pressure (RBP) decreased in 84% and 55% of the countries. Eighty-nine percent of high-income countries (HIC) demonstrated a decline in tobacco smoking against 67% in middle-income countries (MIC). Sixty-nine percent of HIC demonstrated a decline in RBP against 15% in MIC. CVD management, tobacco, and unhealthy diet reduction measures are significantly better in HIC. The air pollution level was higher in MIC. Conclusion Building partnerships between countries could enhance their efforts for CVD prevention and successful achievement of SDG.
Collapse
Affiliation(s)
- Nikolai Khaltaev
- Global Alliance against Chronic Respiratory Diseases (GARD)GenevaSwitzerland
| | - Svetlana Axelrod
- Institute for Leadership and Health ManagementI.M. Sechenov First Moscow State University (Sechenov University)MoscowRussia
| |
Collapse
|
18
|
Fritz H, Tang M, Kinney K, Nagy Z. Evaluating machine learning models to classify occupants' perceptions of their indoor environment and sleep quality from indoor air quality. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1381-1397. [PMID: 35939653 DOI: 10.1080/10962247.2022.2105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A variety of factors can affect a person's perception of their environment and health, but one factor that is often overlooked in indoor settings is the air quality. To address this gap, we develop and evaluate four Machine Learning (ML) models on two disparate datasets using Indoor Air Quality (IAQ) parameters as primary features and components of self-reported IAQ satisfaction and sleep quality as target variables. In each case, we compare models to each other as well as to a simple model that always predicts the majority outcome. In the first analysis, we use open-source data collected from 93 California residences to predict occupant's satisfaction with their indoor environment. Results indicate building ventilation rate, Relative Humidity (RH), and formaldehyde are most influential when predicting IAQ perception and do so with an accuracy greater than the simplified model. The second analysis uses IAQ data gathered from a field study we conducted with 20 participants over 11 weeks to train similar models. We obtain accuracy and F1 scores similar to the simplified model where PM2.5 and TVOCs represent the most important predictors. Our results underscore the ability of IAQ to affect a person's perception of their built environment and health and highlight the utility of ML models to explore the strength of these relationships.Implications: The results from this study show that two outcome variables - occupant's indoor air quality (IAQ) satisfaction and perceived sleep quality - are related to the measured IAQ parameters but not heavily influenced by typical values measured in apartments and homes. This study highlights the ability of machine learning models as exploratory analysis tools to determine underlying relationships within and across datasets in addition to understanding the importance of certain features on the outcome variable. We compare four different models and find that the random forest classifier has the best performance in both analysis on IAQ satisfaction and perceived sleep quality. It is a suitable model for predicting IAQ-related subjective metrics and also provides value insight into the feature importance of the IAQ parameters. The accuracy of any of these machine learning models in predicting occupants' comfort or sleep quality is limited by the dataset size, how data is collected, and range of data. This study identifies the factors that are important to IAQ perception: ventilation rate, relative humidity, and concentrations of formaldehyde, NO2, and particulate matter. It indicates that sensors that can measure these variables are necessary for future, related studies that model occupants' IAQ satisfaction. However, this study does not find strong relationships between any of the IAQ parameters measured in this study and perceived sleep quality despite the logical pathway between these many pollutants and respiratory issues. A prediction model of IAQ perception or sleep quality can be integrated into home management systems to automatically adjust building operations such as ventilation rates in smart buildings. Once buildings are equipped with a network of low-cost sensors that measure concentrations of pollutants and operating conditions of the ventilation system, the prediction model can be used to predict the occupants' comfort and facilitate the control of the ventilation system.
Collapse
Affiliation(s)
- Hagen Fritz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Mengjia Tang
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Kerry Kinney
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Zoltan Nagy
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
19
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
20
|
Jung CC, Syu ZH, Su HJ, Lian PY, Chen NT. Stable C and N isotopes of PM 2.5 and size-segregated particles emitted from incense stick and cigarette burning. ENVIRONMENTAL RESEARCH 2022; 212:113346. [PMID: 35461851 DOI: 10.1016/j.envres.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
This work measured the δ13C and δ15N signatures in PM2.5 and size-segregated particles emitted from incense stick and cigarette burning in different brands or nicotine contents for pollution source identification indoors. Three popular brands of incense stick and cigarette were selected for experiments. A personal environmental monitoring sampler and a Sioutas cascade impactor were used to collect PM2.5 and size-segregated particles, respectively, for isotopic signatures analyses. Our data showed that both δ13C and δ15N values were heavier from incense stick burning (δ13C: 27.3 ± 0.5; δ15N: 8.63 ± 1.35) than cigarette (δ13C: 28.5 ± 0.2; δ15N: 4.15 ± 0.69). The scatter plots of δ13C and TC/PM2.5 and of δ15N and TN/PM2.5 can be applied to distinguish particle pollution sources and assess the influence of cigarette burning to PM2.5 according to different nicotine contents. The δ13C values in size-segregated particles were similar to incense stick or cigarette burning; the δ13C values in PM2.5 were significantly higher than those in size-segregated particles. However, the nitrogen amount was too low in most of the size-segregated particles to analyze δ15N from incense stick and cigarette burning. These results suggest that the δ13C signatures on PM2.5 cannot represent the isotopic characteristics of size-segregated particles and δ15N has limitation for pollution source identification of different particle sizes.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Zih-Hong Syu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| | - Pei-Yu Lian
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
21
|
Ren J, Liang J, Wang J, Yin B, Zhang F, Li X, Zhu S, Tian H, Cui Q, Song J, Liu G, Ling W, Ma Y. Vascular benefits of vitamin C supplementation against fine particulate air pollution in healthy adults: A double-blind randomised crossover trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113735. [PMID: 35689890 DOI: 10.1016/j.ecoenv.2022.113735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the health benefits of vitamin C supplementation in highly polluted areas has not been evaluated. We aimed to evaluate whether dietary vitamin C supplementation can improve vascular health linked to particulate matter (PM) exposure. A randomised double-blind crossover trial involving 58 health young adults was performed in Shijiazhuang, China in 2018. All subjects were randomly assigned to the vitamin C supplementation group (2000 mg/d) or placebo group for a week alternating with a 2 week washout period. Fifteen circulating biomarkers were measured. Linear mixed-effect model was applied to evaluate the effect of vitamin C supplementation on health outcomes. The average concentrations of PM2.5 and PM10 were 164.91 and 327.05 μg/m3, respectively. Vitamin C supplementation was significantly associated with a 19.47% decrease in interleukin-6 (IL-6), 17.30% decrease in tumour necrosis factor-a (TNF-α), 34.01% decrease in C-reactive protein (CRP), 3.37% decrease in systolic blood pressure (SBP) and 6.03% decrease in pulse pressure (PP). Furthermore, glutathione peroxidase (GSH-Px) was significantly increased by 7.15%. Sex-subgroup analysis showed that vitamin C significantly reduced TNF-α by 27.85% in male participants and significantly increased APOB by 6.28% and GSH-Px by 14.47% only in female participants. This study indicated that vitamin C supplementation may protect vascular vessels against PM exposure among healthy young adults in China.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jufeng Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiaqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianshi Song
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Wenhua Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
22
|
Positive Effect of Air Purifier Intervention on Baroreflex Sensitivity and Biomarkers of Oxidative Stress in Patients with Coronary Artery Disease: A Randomized Crossover Intervention Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127078. [PMID: 35742327 PMCID: PMC9223013 DOI: 10.3390/ijerph19127078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Exposure to fine particulate matter increases the risk of cardiovascular morbidity and mortality. Few studies have tested the beneficial effect of indoor air filtration intervention in patients with cardiovascular disease. The aim of this study is to investigate the effect of air filtration on mitigating cardiovascular health in patients with coronary artery disease. This randomized, double-blind, crossover study is conducted with 38 coronary artery disease patients. The intervention consists of the following three periods: two-week active and sham air filtration interventions, with a two-week washout period. The indoor PM2.5 concentration is continuously monitored during the entire study period. We measure the blood pressure, heart rate variability, baroreflex sensitivity, autonomic function test results, and endothelial function. The two-week active air filtration intervention for two weeks reduces the average indoor concentration of PM2.5 by 33.9%. The indoor PM2.5 concentration is significantly correlated to cross-correlation baroreflex sensitivity. Active air filtration is significantly associated with a decrease in the indicator of oxidative stress represented as 8-hydroxy-2′-deoxyguanosine. This study shows that a short-term air filtration intervention improved baroreflex sensitivity and might reduce oxidative stress in coronary artery disease patients. These findings suggest that the use of an air purifier could mitigate the recurrence of cardiovascular disease events in patients with coronary artery disease.
Collapse
|
23
|
Yang X, Wang Q, Han F, Dong B, Wen B, Li L, Ruan H, Zhang S, Kong J, Zhi H, Wang C, Wang J, Zhang M, Xu D. Pulmonary Benefits of Intervention with Air Cleaner among Schoolchildren in Beijing: A Randomized Double-Blind Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7185-7193. [PMID: 34491046 DOI: 10.1021/acs.est.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We conducted a crossover study employing air cleaner intervention among 125 schoolchildren aged 9-12 years in a boarding school in Beijing, China. The PM concentrations were monitored, and 27 biomarkers were analyzed. We used the linear mixed-effects model to evaluate the association of intervention/time-weighted PM concentrations with biomarkers. The outcomes showed that air cleaner intervention was associated with FeNO, exhaled breath condensate (EBC) IL-1β, and IL-6, which decreased by 12.57%, 10.83%, and 4.33%, respectively. Similar results were observed in the associations with PMs. Lag 1 day PMs had the strongest relationship with biomarkers, and significant changes were observed in biomarkers such as FEV1, FeNO, EBC 8-iso, and MCP-1. Boys showed higher percentage changes than girls, and the related biomarkers were FeNO, EBC 4-HNE, IL-1β, IL-6, and MCP-1. The results showed that biomarkers such as FeNO, EBC IL-6, MCP-1, and 4-HNE could sensitively reflect the early abnormal response of the respiratory system under short-term PM exposure among healthy schoolchildren and indicated that (1) air cleaners exert a protective effect on children's respiratory system. (2) PM had lag and cumulative effect, lag 1 day had the greatest effect. (3) The boys were more sensitive than the girls.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qin Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Air Quality and Health Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Han
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Bo Wen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Li Li
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongjie Ruan
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shaoping Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Kong
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Zhi
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jun Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Chemistry, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ming Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dongqun Xu
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
24
|
Wittkopp S, Walzer D, Thorpe L, Roberts T, Xia Y, Gordon T, Thurston G, Brook R, Newman JD. Portable air cleaner use and biomarkers of inflammation: A systematic review and meta-analysis. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 18:100182. [PMID: 38390226 PMCID: PMC10883590 DOI: 10.1016/j.ahjo.2022.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Fine particulate matter air pollution (PM2.5) is a major contributor to cardiovascular morbidity and mortality, potentially via increased inflammation. PM2.5 exposure increases inflammatory biomarkers linked to cardiovascular disease, including CRP, IL-6 and TNFα. Portable air cleaners (PACs) reduce individual PM2.5 exposure but evidence is limited regarding whether PACs also reduce inflammatory biomarkers. We performed a systematic review and meta-analysis of trials evaluating the use of PACs to reduce PM2.5 exposure and inflammatory biomarker concentrations. We identified English-language articles of randomized sham-controlled trials evaluating high efficiency particulate air filters in non-smoking, residential settings measuring serum CRP, IL-6 and TNFα before and after active versus sham filtration, and performed meta-analysis on the extracted modeled percent change in biomarker concentration across studies. Of 487 articles identified, we analyzed 14 studies enrolling 778 participants that met inclusion criteria. These studies showed PACs reduced PM2.5 by 61.5 % on average. Of the 14 included studies, 10 reported CRP concentrations in 570 participants; these showed active PAC use was associated with 7 % lower CRP (95 % CI: -14 % to 0.0 %, p = 0.05). Nine studies of IL-6, with 379 participants, showed active PAC use was associated with 13 % lower IL-6 (95 % CI: [-23 %, -3 %], p = 0.009). Six studies, with 269 participants, reported TNF-α and demonstrated no statistical evidence of difference between active and sham PAC use. Portable air cleaners that reduce PM2.5 exposure can decrease concentrations of inflammatory biomarkers associated with cardiovascular disease. Additional studies are needed to evaluate clinical outcomes and other biomarkers.
Collapse
Affiliation(s)
- Sharine Wittkopp
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, United States of America
| | - Dalia Walzer
- Department of Medicine, NYU Grossman School of Medicine, United States of America
| | - Lorna Thorpe
- Department of Population Health, NYU Grossman School of Medicine, United States of America
| | - Timothy Roberts
- Department of Population Health, NYU Grossman School of Medicine, United States of America
| | - Yuhe Xia
- Division of Biostatistics, NYU Grossman School of Medicine, United States of America
| | - Terry Gordon
- Department of Environmental Medicine, NYU Grossman School of Medicine, United States of America
| | - George Thurston
- Department of Environmental Medicine, NYU Grossman School of Medicine, United States of America
| | - Robert Brook
- Division of Cardiovascular Diseases, Wayne State University, United States of America
| | - Jonathan D Newman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, United States of America
| |
Collapse
|
25
|
Chang LT, Liu IJ, Chang TY, Hong GB, Lin LY, Chuang HC, Ho KF, Chuang KJ. Association of long-term indoor exposure to fine particles with pulmonary effects in Northern Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153097. [PMID: 35041956 DOI: 10.1016/j.scitotenv.2022.153097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
An association between short-term indoor exposure to fine particles (PM2.5) and acute respiratory effects has been reported. It is still unclear whether long-term indoor exposure to PM2.5 is associated with pulmonary events. This study recruited 1023 healthy adult homeworkers to conduct a prospective observational study from 2010 to 2021. Four repeated home visits per year were conducted for each participant to measure 24-hour PM2.5 and peak expiratory flow rate (PEFR) and to collect blood samples for absolute eosinophil count (AEC) and carcinoembryonic antigen (CEA) analysis. Additionally, a questionnaire related to personal characteristics, health status and home characteristics was conducted for each participant. The mixed-effects models showed a significant association of PM2.5 with increased CEA and AEC and decreased % predicted PEFR. No significant association between low-level PM2.5 exposure (10-year mean level < 10 μg/m3) and adverse pulmonary effects was observed. The present study concluded that long-term indoor exposure to PM2.5 at a concentration higher than 10 μg/m3 was associated with adverse pulmonary effects among healthy adult homeworkers.
Collapse
Affiliation(s)
- Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - I-Jung Liu
- Department of Nursing, College of Health and Nursing, National Quemoy University, Kinmen County, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Lian-Yu Lin
- Department of Internal Medicine, Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kin-Fai Ho
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Qiu H, Chuang KJ, Fan YC, Chang TP, Bai CH, Ho KF. Acute effects of ambient non-methane hydrocarbons on cardiorespiratory hospitalizations: A multicity time-series study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113370. [PMID: 35255250 DOI: 10.1016/j.ecoenv.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few environmental epidemiological studies and no large multicity studies have evaluated the acute short-term health effects of ambient non-methane hydrocarbons (NMHC), the essential precursors of ground-level ozone and secondary organic aerosol formation. OBJECTIVE We conducted this multicity time-series study in Taiwan to evaluate the association between airborne NMHC exposure and cardiorespiratory hospital admissions. METHODS We collected the daily mean concentrations of NMHC, fine particulate matter (PM2.5), ozone (O3), weather conditions, and daily hospital admission count for cardiorespiratory diseases between 2014 and 2017 from eight major cities of Taiwan. We applied an over-dispersed generalized additive Poisson model (GAM) with adjustment for temporal trends, seasonal variations, weather conditions, and calendar effects to compute the effect estimate for each city. Then we conducted a random-effects meta-analysis to pool the eight city-specific effect estimates to obtain the overall associations of NMHC exposure on lag0 day with hospital admissions for respiratory and circulatory diseases, respectively. RESULTS On average, a 0.1-ppm increase of lag0 NMHC demonstrated an overall 0.9% (95% CI: 0.4-1.3%) and 0.8% (95% CI: 0.4-1.2%) increment of hospital admissions for respiratory and circulatory diseases, respectively. Further analyses with adjustment for PM2.5 and O3 in the multi-pollutant model or sensitivity analyses with restricting the NMHC monitoring from the general stations only confirmed the robustness of the association between ambient NMHC exposure and cardiorespiratory hospitalizations. CONCLUSION Our findings provide robust evidence of higher cardiorespiratory hospitalizations in association with acute exposure to ambient NMHC in eight major cities of Taiwan.
Collapse
Affiliation(s)
- Hong Qiu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Ma Y, Yang D, Bai J, Zhao Y, Hu Q, Yu C. Time Trends in Stroke and Subtypes Mortality Attributable to Household Air Pollution in Chinese and Indian Adults: An Age-Period-Cohort Analysis Using the Global Burden of Disease Study 2019. Front Aging Neurosci 2022; 14:740549. [PMID: 35250534 PMCID: PMC8895296 DOI: 10.3389/fnagi.2022.740549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Household air pollution (HAP) exposure is recognized as a major health concern in areas relied on residential burning of solid fuels for cooking and heating. However, previous study has focused on mortality across time and reported changes in age-specific mortality globally but failed to distinguish cohort from period effects. Therefore, this study aimed to differentiate the relative contributions of period and cohort effects to overall time trends of HAP-attributable stroke mortality between the most presentative East and South Asia countries. Data were obtained from the Global Burden of Disease (GBD) database. The age, period, and cohort effects were estimated using the age-period-cohort (APC) model. The overall age-standardized mortality rates (ASMRs) of stroke in China decreased by 39.8% compared with 35.8% in India, while stroke subtypes in both the sexes and countries showed consecutive significant declines from 1990 to 2019. The age-specific and cohort-specific HAP-attributable stroke mortality declined over time in China and India. By APC analysis, substantially increasing age effects were presented for stroke and subtypes from 25 to 84 years. China had a rapid reduction in the independent period and cohort effects. Also, the risk of death for subarachnoid hemorrhage (SAH) had the most striking decline for both sexes in period and cohort effects. Reductions of India were less favorable than China, but the independent period and cohort effects progressively decreased during the entire period for both the sexes. Males experienced a slightly higher mortality risk than females in both countries. Although prominent reductions were observed in HAP-attributable stroke and subtypes mortality during the past 30 years, China and India still suffered uneven HAP-attributable stroke burden. Thus, it is of high significance to introduce advanced solid fuels replace technology and knowledge regarding clean fuel use.
Collapse
Affiliation(s)
- Yudiyang Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Donghui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jianjun Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Yudi Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Qian Hu
- Department of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- *Correspondence: Chuanhua Yu, ; orcid.org/0000-0002-5467-2481
| |
Collapse
|
28
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
29
|
Qiu H, Niu XY, Cao JJ, Xu HM, Xiao S, Zhang NN, Xia X, Shen ZX, Huang Y, Lau GNC, Yim SHL, Ho KF. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151217. [PMID: 34717999 DOI: 10.1016/j.scitotenv.2021.151217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An outdoor solar assisted large-scale cleaning system (SALSCS) was constructed to mitigate the levels of fine particulate matter (PM2.5) in urban areas of Xi'an China, providing a quasi-experimental opportunity to examine the biologic responses to the changes in pollution level. We conducted this outdoor SALSCS based real-world quasi-interventional study to examine the associations of the SALSCS intervention and changes in air pollution levels with the biomarkers of systemic inflammation and oxidative stress in healthy elders. We measured the levels of 8-hydrox-2-deoxyguanosine (8-OHdG), Interlukin-6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) from urine samples, and IL-6 from saliva samples of 123 healthy retired participants from interventional/control residential areas in two sampling campaigns. We collected daily 24-h PM2.5 samples in two residential areas during the study periods using mini-volume samplers. Data on PM10, gaseous pollutants and weather factors were collected from the nearest national air quality monitoring stations. We used linear mixed-effect models to examine the percent change in each biomarker associated with the SALSCS intervention and air pollution levels, after adjusting for time trend, seasonality, weather factors and personal characteristics. Results showed that the SALSCS intervention was significantly associated with decreases in the geometric mean of biomarkers by 47.6% (95% confidence interval: 16.5-67.2%) for 8-OHdG, 66% (31.0-83.3%) for TNF-α, 41.7% (0.2-65.9%) and 43.4% (13.6-62.9%) for urinary and salivary IL-6, respectively. An inter-quartile range increase of ambient PM2.5 exposure averaged on the day of the collection of bio-samples and the day before (34.1 μg/m3) was associated, albeit non-significantly so, with 22.8%-37.9% increases in the geometric mean of these biomarkers. This study demonstrated that the SALSCS intervention and decreased ambient air pollution exposure results in lower burden of systemic inflammation and oxidative stress in older adults.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
| | - Xin-Yi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Jun-Ji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Hong-Mei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Ning-Ning Zhang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xi Xia
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Gabriel Ngar-Cheung Lau
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China; The Asian School of the Environment, Nanyang Technological University, Singapore
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China.
| |
Collapse
|
30
|
Fernandes JMPA, de Aguiar Pontes Pamplona Y, Vaz JA, Pereira AR, Barbieri CLA, Braga ALF, Martins LC. Association between high-risk pregnancy and environmental contaminants in the Metropolitan Region of Baixada Santista, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14552-14560. [PMID: 34613545 DOI: 10.1007/s11356-021-16794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The Metropolitan Region of Baixada Santista (MRBS) is a highly contaminated area. High-risk pregnancy is one factor that leads to a higher chance of both morbidity and mortality of the mother-fetus binomial. The purpose of this study is to analyze the association between exposure to environmental contaminants and high-risk pregnancy. Case-control study, using a probabilistic and random sample composed of 201 high-risk pregnant women (cases) and 201 no high-risk pregnant women (control) followed up during prenatal care at a Public Hospital. The instrument used was a self-administered questionnaire. Contaminated areas data were obtained from the Environmental Company of the São Paulo State. The participants were georeferenced by their place of residence. Descriptive analysis, Chi-square test, and univariate and multiple logistic regression analysis were performed. The multiple logistic regression model demonstrated that living in a contaminated area (OR = 1.565; 95%CI: 1.033; 2.370), preterm delivery in the current pregnancy (OR = 1.989; 95%CI: 1.239; 3.194), and more than 35 years old (OR = 2.822; 95%CI: 1.692; 4.706) are factors jointly related to high-risk pregnancy. Environmental contaminants play an important role in high-risk pregnancy, and mitigating measures are needed to improve the environment and reduce high-risk pregnancy.
Collapse
Affiliation(s)
- Joice Maria Pacheco Antonio Fernandes
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
| | - Ysabely de Aguiar Pontes Pamplona
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
| | - Jhonnes Alberto Vaz
- Centro de Ciencias Exatas, Arquitetura E Engenharia da Universidade Católica de Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
| | - Amanda Rodrigues Pereira
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
| | - Carolina Luísa Alves Barbieri
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
| | - Alfésio Luís Ferreira Braga
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 450, São Paulo, CEP: 01246-903, Brazil
| | - Lourdes Conceição Martins
- Exposure and Environmental Risk Assessment Group-Postgraduate Program in Collective Health, Catholic University of Santos, Av. Conselheiro Nebias, 300, Santos, São Paulo, CEP: 11045-003, Brazil.
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 450, São Paulo, CEP: 01246-903, Brazil.
- , São Paulo, Brazil.
| |
Collapse
|
31
|
Wei Q, Ji Y, Gao H, Yi W, Pan R, Cheng J, He Y, Tang C, Liu X, Song S, Song J, Su H. Oxidative stress-mediated particulate matter affects the risk of relapse in schizophrenia patients: Air purification intervention-based panel study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118348. [PMID: 34637828 DOI: 10.1016/j.envpol.2021.118348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter (PM) exposure increased the risk of hospital admission and was related to symptoms of schizophrenia (SCZ). However, there are limited studies on the relationship between PM exposure and SCZ relapse risk, and the underlying biological mechanisms remain unclear. We designed an air purification intervention study under a 16-day real air purifier scenario and another 16-day sham air purifier scenario, with a 2-day washout period. Twenty-four chronic stable male patients were recruited. The oxidative stress biomarkers were measured including serum catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), and nitric oxide (NO). The relapse risk was evaluated by the early signs scale (ESS). Linear mixed effect models were fitted to establish the associations between PM exposure and ESS and oxidative stress. Mediation model was performed to explore the mediation effect of oxidative stress on the PM-ESS association. Higher concentrations of PM2.5/PM10 exposure were associated with an elevated risk of relapse of SCZ. For each 10 μg/m3 in PM2.5 concentration, the scores of ESS and subscales of incipient psychosis (ESS-IP), depression/withdrawal (ESS-N), anxiety/agitation (ESS-A), and excitability/disinhibition (ESS-D) were increased by 4.112 (95% CI: 3.174, 5.050), 1.516 (95%CI: 1.178, 1.853), 1.143 (95%CI: 0.598, 1.689), 1.176 (95%CI: 0.727, 1.625) and 0.238 (95%CI: 0.013, 0.464), while logCAT, SOD and T-AOC were reduced by 0.039 U/ml (95% CI: 0.017, 0.060), 1.258 U/ml (95% CI: 0.541, 1.975), and 0.076 mmol/l (95% CI: 0.026, 0.126). In addition, pathways of "PM2.5→T-AOC→ESS-A″ and "PM2.5→T-AOC→ESS-D″ were found, with significant T-AOC mediated effects 15.70% (P = 0.02) and 52.99% (P = 0.04). Our findings suggest that PM may increase the risk of anxiety, depression, excitability, and incipient psychosis behaviors in SCZ patients, while reducing the function of the antioxidant system. The decrease of T-AOC may medicate the PM-ESS association in SCZ.
Collapse
Affiliation(s)
- Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, China
| | - Hua Gao
- Anhui Mental Health Center, Hefei, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
32
|
Liu S, Wu R, Zhu Y, Wang T, Fang J, Xie Y, Yuan N, Xu H, Song X, Huang W. The effect of using personal-level indoor air cleaners and respirators on biomarkers of cardiorespiratory health: a systematic review. ENVIRONMENT INTERNATIONAL 2022; 158:106981. [PMID: 34991245 DOI: 10.1016/j.envint.2021.106981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Emerging studies have investigated potential cardiovascular and respiratory health impacts from the use of personal-level intervention equipment against air pollution exposure. The objective of this systematic review is to assess the efficacy of personal-level air pollution intervention on mitigating adverse health effects from air pollution exposure by using portable air cleaner or wearing respirator. METHODS In this systematic review, we searched PubMed and Web of Science for published literatures up to May 31, 2020, focusing on personal-level air pollution intervention studies. Among these studies, we investigated the impacts on cardio-respiratory responses to the use of these interventions. The intervention of review interest was the use of personal-level equipment against air pollution, including using portable air cleaner indoors or wearing respirator outdoors. The outcome of review interest was impacts on cardio-respiratory health endpoints following interventions, including level changes in blood pressure, heart rate variability (HRV), lung function, and biomarkers of inflammation and oxidative stress. Weighted mean differences or percent changes were pooled in meta-analyses for these health endpoints. The heterogeneity across studies was assessed using the Cochran's Q-statistic test, and the individual study quality was assessed using the Cochrane risk of bias tool version 2 (RoB 2). We further applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method to evaluate the certainty of evidence. RESULTS From systematic literature search and screening, we identified 29 related eligible intervention studies, including 21 studies on indoor portable air cleaner use and 8 studies on respirator use. For portable air cleaner intervention, we observed suggestive evidence of beneficial changes on cardio-respiratory health endpoints. Collectively in these studies, we found significantly beneficial changes of 2.01% decreases (95% CI: 0.50%, 3.52%) in systolic blood pressure, as well as non-significantly beneficial changes of 3.04% increases (95% CI: -2.65%, 8.74%) in reactive hyperemia index and 0.24% increases (95% CI: -0.82%, 1.31%) in forced expiratory volume in 1 s. We also observed non-significant reductions in levels of inflammation and oxidative stress biomarkers, including C-reactive protein, interleukin-6, fibrinogen, fractional exhaled nitric oxide and malondialdehyde. For respirator intervention, we observed some beneficial changes on cardiovascular health endpoints, such as significant increases in HRV parameters [SDNN (2.20%, 95% CI: 0.54%, 3.86%)], as well as non-significant decreases in blood pressure [SBP (0.63 mmHg, 95% CI: -0.39, 1.66)]; however, no sufficient data were available for meta-analyses on lung function and biomarkers. RoB 2 assessments suggested that most intervention studies were with a moderate to high overall risk of bias. The certainty of evidence for intervention outcome pairs was graded very low for either portable air cleaner or respirator intervention. The common reasons to downgrade study evidence included loss to follow-up, lack of blinding, lack of washout period, small sample size, and high heterogeneity across studies. CONCLUSIONS The uses of indoor portable air cleaner and respirator could contribute to some beneficial changes on cardiovascular health, but with much limited evidence on respiratory health. Low certainty of the overall study evidence shed light on future research for larger sample size trials with more rigorous study design.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Ningman Yuan
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing, China.
| |
Collapse
|
33
|
Li W, Ruan W, Cui X, Lu Z, Wang D. Blood volatile organic aromatic compounds concentrations across adulthood in relation to total and cause specific mortality: A prospective cohort study. CHEMOSPHERE 2022; 286:131590. [PMID: 34293566 DOI: 10.1016/j.chemosphere.2021.131590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE We aimed to evaluate the relationship between blood volatile organic aromatic compounds (VOACs) across adulthood and mortality. METHODS A total of 16,968 participants from the National health and Nutrition Examination Surveys (NHANES 1988-1994 and 1999-2014) were included in the present study. Cox proportional hazards models were used to explore the associations between VOACs and total or cause-specific mortality. RESULTS A total of 1,282 deaths occurred among 16,968 participants with a median follow-up of 8.06 years. We observed significant positive dose-response relationship between VOACs including benzene, ethylbenzene, o-xylene, m-/p-xylene and BEX (the sum of benzene, ethylbenzene, m-/p-and o-xylene concentrations) and total mortality, the multiple adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were 1.24 (1.13, 1.36), 1.15 (1.04, 1.27), 1.10 (1.00, 1.23), 1.09 (1.01, 1.19) and 1.21 (1.08, 1.35), respectively. In addition, all VOACs significantly elevated risk of the mortality from cancer, and benzene was associated with risk of the mortality from heart disease and the HRs and 95% CIs was 1.39 (1.09-1.77). For non-smokers, benzene, ethylbenzene and BEX were associated with elevated risk of total mortality and the mortality from cancer, and benzene was associated with risk of the mortality from heart disease. CONCLUSIONS Blood VOACs are associated with increased risks of total and specific-cause mortality, which are also observed among non-smokers.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wenyu Ruan
- Shangluo Central Hospital, Shangluo, Shaanxi, 726000, China
| | - Xiuqing Cui
- Institute of Health Surveillance, Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
34
|
Schwartz JD, Yitshak-Sade M, Zanobetti A, Di Q, Requia WJ, Dominici F, Mittleman MA. A self-controlled approach to survival analysis, with application to air pollution and mortality. ENVIRONMENT INTERNATIONAL 2021; 157:106861. [PMID: 34507231 PMCID: PMC8490318 DOI: 10.1016/j.envint.2021.106861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Many studies have reported that long-term air pollution exposure is associated with increased mortality rates. These investigations have been criticized for failure to control for omitted, generally personal, confounders. Study designs that are robust to such confounders can address this issue. METHODS We used a self-controlled design for survival analysis. We stratified on each person in the Medicare cohort between 2000 and 2015 who died, and examined whether PM2.5, O3 and NO2 exposures predicted in which follow-up period the death occurred. We used conditional logistic regression stratified on person and controlled for nonlinear terms in calendar year and age. By design slowly varying covariates such as smoking history, BMI, diabetes and other pre-existing conditions, usual alcohol consumption, sex, race, socioeconomic status, and green space were controlled by matching each person to themselves. RESULTS There were 6,452,618 deaths in the study population in the study period. We observed a 5.37% increase in the mortality rate (95% CI 4.67%, 6.08%) for every 5 μg/m3 increase in PM2.5, a 1.98% (95% CI 1.61%, 2.36%) increase for 5 ppb increment in O3, and a 2.10% decrease (95% CI 1.88%, 2.33%) for a 5 ppb increase in NO2. When restricted to persons whose PM2.5 exposure never exceeded 12 μg/m3 in any year between 2000 and 2015, the effect size increased for PM2.5 (12.71% (11.30, 14.15)), and the signs of O3 and NO2 reversed (-0.26% (-0.88, 0.35) for O3 and 1.77% increase (1.40, 2.13) for NO2). Effect sizes were larger for Blacks (e.g. 7.71% (5.46, 10.02) for PM2.5). CONCLUSION There is strong evidence that the association between annual exposure to PM2.5 and mortality is not confounded by individual or neighborhood covariates, and continues below the standard. The effects of O3 and NO2 are difficult to disentangle.
Collapse
Affiliation(s)
- Joel D Schwartz
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States; Harvard TH Chan School of Public Health, Department of Epidemiology, United States.
| | - Ma'ayan Yitshak-Sade
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Antonella Zanobetti
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Qian Di
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Weeberb J Requia
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Francesca Dominici
- Harvard TH Chan School of Public Health, Department of Biostatistics, United States
| | - Murray A Mittleman
- Harvard TH Chan School of Public Health, Department of Epidemiology, United States
| |
Collapse
|
35
|
Zhu Y, Song X, Wu R, Fang J, Liu L, Wang T, Liu S, Xu H, Huang W. A review on reducing indoor particulate matter concentrations from personal-level air filtration intervention under real-world exposure situations. INDOOR AIR 2021; 31:1707-1721. [PMID: 34374125 DOI: 10.1111/ina.12922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5 ) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%-82% in indoor PM2.5 concentrations were observed with SMD of -1.19 (95% CI: -1.50, -0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
36
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
37
|
Xia X, Chan KH, Lam KBH, Qiu H, Li Z, Yim SHL, Ho KF. Effectiveness of indoor air purification intervention in improving cardiovascular health: A systematic review and meta-analysis of randomized controlled trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147882. [PMID: 34058577 PMCID: PMC7611692 DOI: 10.1016/j.scitotenv.2021.147882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 04/13/2023]
Abstract
Indoor air purifiers are increasingly marketed for their health benefits, but their cardiovascular effects remain unclear. We systematically reviewed and meta-analysed randomized controlled trials (RCTs) on the cardiovascular effects of indoor air purification interventions in humans of all ages. We searched Embase, Medline, PubMed, and Web of Science from inception to 22 August 2020. Fourteen cross-over RCTs (18 publications) were included. Systolic blood pressure (SBP) was significantly reduced after intervention (-2.28 (95% CI: -3.92, -0.64) mmHg). There were tendencies of reductions in diastolic blood pressure (-0.35 [-1.52, 0.83] mmHg), pulse pressure (PP) (-0.86 [-2.07, 0.34] mmHg), C-reactive protein (-0.23 [-0.63, 0.18] mg/L), and improvement in reactive hyperaemia index (RHI) (0.10 [-0.04, 0.24]) after indoor air purification, although the effects were not statistically significant. However, when restricting the analyses to RCTs using physical-type purifiers only, significant improvements in PP (-1.56 [-2.98, -0.15] mmHg) and RHI (0.13 [0.01, 0.25]) were observed. This study found potential evidence on the short-term cardiovascular benefits of using indoor air purifiers, especially for SBP, PP and RHI. However, under the Grading of Recommendations Assessment, Development and Evaluation framework, the overall certainty of evidence was very low, which discourage unsubstantiated claims on the cardiovascular benefits of air purifiers. We have also identified several key methodological limitations, including small sample size, short duration of intervention, and the lack of wash-out period. Further RCTs with larger sample size and longer follow-up duration are needed to clarify the cardiovascular benefits of air purification interventions.
Collapse
Affiliation(s)
- Xi Xia
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ka Hung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK; Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, UK.
| | - Kin Bong Hubert Lam
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK.
| | - Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Steve Hung Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Asian School of the Environment, Nanyang Technological University, Singapore.
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
38
|
Assessing effectiveness of air purifiers (HEPA) for controlling indoor particulate pollution. Heliyon 2021; 7:e07976. [PMID: 34568599 PMCID: PMC8449022 DOI: 10.1016/j.heliyon.2021.e07976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
The present study deals with an evaluation of the air purifier's effectiveness in reducing the concentration of different sized particulate matter (PM) and ions in the real-world indoor environment. Two types of air purifiers (API and APII) mainly equipped with High-Efficiency Particulate Air (HEPA) filters that differed in other specifications were employed in general indoor air and the presence of an external source (candles and incense). The gravimetric sampling of PM was carried out by SKC Cascade Impactor and further samples were analyzed for determining ions' concentration while real-time monitoring of different sized PM was done through Grimm Aerosol Spectrometer (1.109). The result showed that API reduced PM levels of different sizes ranged from 12-52% and 29–53% in general indoor air and presence of external source respectively. Concerning the APII, a higher decrease percent in PM level was explored in presence of an external source (52–68%) as compared to scenarios of general indoor air (37–64%). The concentrations of the ions were noticed to be decreased in all three size fractions but surprisingly some ions' (not specific) concentrations increased on the operation of both types of air purifiers. Overall, the study recommends the use of air purifiers with mechanical filters (HEPA) instead of those which release ions for air purification. Efficiency of air purifier (AP) in removing indoor air pollutants was observed. AP was more effective on small-sized particles than large ones. AP of large Clean Air Delivery Rate removed particulate and ions more effectively. APs with mechanical filters must be employed instead of ions generators.
Collapse
|
39
|
Qiu H, Bai CH, Chuang KJ, Fan YC, Chang TP, Yim SHL, Ho KF. Association of cardiorespiratory hospital admissions with ambient volatile organic compounds: Evidence from a time-series study in Taipei, Taiwan. CHEMOSPHERE 2021; 276:130172. [PMID: 33721630 DOI: 10.1016/j.chemosphere.2021.130172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
As important precursors of ozone and secondary organic aerosols, the harmful impact of exposure to ambient volatile organic compounds (VOCs) is of public health interest. However, few studies have investigated the health risks of numerous individual VOC species. This study linked the daily concentrations of 54 C2-C11 VOC species monitored from the Wanhua Photochemical Assessment Monitoring Station and hospital admissions for cardiorespiratory diseases in Taipei, Taiwan, from the National Health Insurance Research Database. A standard time-series approach entailing a series of sensitivity analyses was applied to investigate the short-term health risks of exposure to VOC subgroups and species. Consistent associations of all VOC subgroups and main species with chronic obstructive pulmonary disease (COPD) hospitalizations were demonstrated. In addition, associations of the C5-C6 alkanes, C2-C3 alkenes, toluene, and xylene with asthma hospitalizations were found, as were associations of aromatic hydrocarbons with hospitalizations for heart failure. An interquartile range increase in total VOC exposure at lag0 day (102.6 parts per billion carbon) was associated with increments of 1.84% (95% confidence interval: 0.54%-3.15%), 1.65% (0.71%-2.60%), and 1.21% (0.36%-2.07%) in hospitalizations for asthma, COPD, and heart failure, respectively. The effect estimates were robust with data excluding extreme values, the second pollutant adjustment for PM2.5 and O3, and the Bonferroni correction. The associations of ambient VOC exposure with cardiorespiratory hospitalizations in Taipei serve as a reference for VOC regulations and ozone control strategies.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region.
| |
Collapse
|
40
|
Wang Y, Zhao Y, Xue L, Wu S, Wang B, Li G, Huang J, Guo X. Effects of air purification of indoor PM 2.5 on the cardiorespiratory biomarkers in young healthy adults. INDOOR AIR 2021; 31:1125-1133. [PMID: 33682970 DOI: 10.1111/ina.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Ambient fine particulate matter (PM2.5 ), as one of the predominant air pollutants, has achieved effective control in recent years in China. Whether the use of indoor air purifiers is still necessary needs further exploration. A randomized crossover trial was conducted in 54 healthy students in Beijing, China. Participants were randomized assigned to the use of real or sham high-efficiency particulate air filter (HEPA) for a week and changed the status after a washout period. Health measurements of cardiorespiratory biomarkers were performed at the end of each period. Linear mixed-effects models were used to evaluate the association between PM2.5 exposure and cardiorespiratory biomarkers. Compared with sham air purification, average diastolic blood pressure (DBP), fractional exhaled nitric oxide (FeNO), and 8-isoprostane (8-isoPGF2α) levels decreased significantly in the real purification. The effects of indoor air purification on lung function indicators including forced expiratory volume in one second (FEV1 ), peak expiratory flow (PEF), and forced expiratory flow between the 25th and 75th percentile of forced vital capacity (FEF25%-75% ) were also significant. Our findings showed a protective effect of indoor HEPA air purifiers on cardiorespiratory health of young healthy adults reflected by the decreased blood pressure, respiratory inflammation, and systematic oxidative stress and improved lung function.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health School of Public Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bin Wang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Science, Peking University School of Public Health, Beijing, China
| |
Collapse
|
41
|
A Direct Estimate of the Impact of PM2.5, NO2, and O3 Exposure on Life Expectancy Using Propensity Scores. Epidemiology 2021; 32:469-476. [PMID: 34042074 PMCID: PMC8162225 DOI: 10.1097/ede.0000000000001354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Many studies have reported associations of air pollutants and death, but fewer examined multiple pollutants, or used causal methods. We present a method for directly estimating changes in the distribution of age at death using propensity scores.
Collapse
|
42
|
Huang M, Chen J, Yang Y, Yuan H, Huang Z, Lu Y. Effects of Ambient Air Pollution on Blood Pressure Among Children and Adolescents: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2021; 10:e017734. [PMID: 33942625 PMCID: PMC8200690 DOI: 10.1161/jaha.120.017734] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Previous studies have investigated the association of ambient air pollution with blood pressure (BP) in children and adolescents, however, the results are not consistent. We conducted a systematic review and meta‐analysis to assess the relationship between short‐term and long‐term ambient air pollutant exposure with BP values among children and adolescents. Methods and Results We searched PubMed, Web of Science, and Embase before September 6, 2020. Two reviewers independently searched and selected studies, extracted data, and assessed study quality. The studies were divided into groups by composition of air pollutants (NO2, particulate matter (PM) with diameter ≤10 μm or ≤2.5 μm) and length of exposure. The beta regression coefficients (β) and their 95% CIs were calculated to evaluate the strength of the effect with each 10 μg/m3 increase in air pollutants. Out of 36 650 articles, 14 articles were included in this meta‐analysis. The meta‐analysis showed short‐term exposure to PM with diameter ≤10 μm (β=0.267; 95% CI, 0.033‒0.501) was significantly associated with elevated systolic BP values. In addition, long‐term exposure to PM with diameter ≤2.5 μm (β=1.809; 95% CI, 0.962‒2.655), PM with diameter ≤10 μm (β=0.526; 95% CI, 0.095‒0.958), and NO2 (β=0.754; 95% CI, 0.541‒0.968) were associated with systolic BP values and long‐term exposure to PM with diameter ≤2.5 μm (β=0.931; 95% CI, 0.157‒1.705), and PM with diameter ≤10 μm (β=0.378; 95% CI, 0.022‒0.735) was associated with diastolic BP. Conclusions Our study indicates that both short‐term and long‐term exposure to some ambient air pollutants may increase BP values among children and adolescents.
Collapse
Affiliation(s)
- Miao Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Jingyuan Chen
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Yiping Yang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Hong Yuan
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Zhijun Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Yao Lu
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China.,Department of Life Science and Medicine King's College London London United Kingdom
| |
Collapse
|
43
|
Peng J, Chen Y, Xia Q, Rong G, Zhang J. Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116038. [PMID: 33280915 DOI: 10.1016/j.envpol.2020.116038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Soil ecological risk caused by compound pollutants is a topic that deserves increasing attention, and soil risk early warning is a more in-depth discussion on this topic. In this study, we collected soil samples from Changchun, a typical industrial city, and determined the contents of 13 heavy metals (HMs) (0.00 mg kg-1-6380 mg kg-1), 16 polycyclic aromatic hydrocarbons (PAHs) (0.00 mg kg-1-27.7 mg kg-1), 7 polychlorinated biphenyls (PCBs) (0.30 μg kg-1-168 μg kg-1), and 8 organochlorine pesticides (OCPs) (0.00 mg kg-1-4.52 mg kg-1). The soil ecological risks of compound pollutants were assessed. The results showed that PAHs were the greatest risk pollutants, followed by PCBs and HMs, and OCPs were the smallest risk pollutants. Most of the ecological risks of compound pollutants were classified as "moderate severity" level according to the (contamination severity index) CSI evaluation criteria. With the help of modern industrial economic theory, through the analysis of the annual accumulation of pollutants, it is possible to predict the future pollutant content in Changchun, and the soil risks could be forewarned. The results showed that if active measures were not taken to reduce the accumulation of PAHs in Changchun soil, the CSI-PAHs would be classified as "ultra-high severity" level in 2035.
Collapse
Affiliation(s)
- Jingyao Peng
- School of Environment, Northeast Normal University, Changchun, 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| | - Yanan Chen
- College of Water Conservancy and Environmental Engineering, Changchun Institute of Technology, Changchun, 130012, China
| | - Qing Xia
- School of Environment, Northeast Normal University, Changchun, 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| | - Guangzhi Rong
- School of Environment, Northeast Normal University, Changchun, 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun, 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| |
Collapse
|
44
|
Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events. CLIMATE 2021. [DOI: 10.3390/cli9020032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exposure to bushfire smoke is associated with acute and chronic health effects such as respiratory and cardiovascular disease. Residential buildings are important places of refuge from bushfire smoke, however the air quality within these locations can become heavily polluted by smoke infiltration. Consequently, some residential buildings may offer limited protection from exposure to poor air quality, especially during extended smoke events. This paper evaluates the impact of bushfire smoke on indoor air quality within residential buildings and proposes strategies and guidance to reduce indoor levels of particulates and other pollutants. The paper explores the different monitoring techniques used to measure air pollutants and assesses the influence of the building envelope, filtration technologies, and portable air cleaners used to improve indoor air quality. The evaluation found that bushfire smoke can substantially increase the levels of pollutants within residential buildings. Notably, some studies reported indoor levels of PM2.5 of approximately 500µg/m3 during bushfire smoke events. Many Australian homes are very leaky (i.e., >15 ACH) compared to those in countries such as the USA. Strategies such as improving the building envelope will help reduce smoke infiltration, however even in airtight homes pollutant levels will eventually increase over time. Therefore, the appropriate design, selection, and operation of household ventilation systems that include particle filtration will be critical to reduce indoor exposures during prolonged smoke events. Future studies of bushfire smoke intrusion in residences could also focus on filtration technologies that can remove gaseous pollutants.
Collapse
|
45
|
Wang JX, Cao X, Chen YP. An air distribution optimization of hospital wards for minimizing cross-infection. JOURNAL OF CLEANER PRODUCTION 2021; 279:123431. [PMID: 32836912 PMCID: PMC7417288 DOI: 10.1016/j.jclepro.2020.123431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 05/18/2023]
Abstract
Currently, the "2019-CoV-2" has been raging across the world for months, causing massive death, huge panic, chaos, and immeasurable economic loss. Such emerging epidemic viruses come again and again over years, leading to similar destructive consequences. Air-borne transmission among humans is the main reason for the rapid spreading of the virus. Blocking the air-borne transmission should be a significant measure to suppress the spreading of the pandemic. Considering the hospital is the most probable place to occur massive cross-infection among patients as emerging virus usually comes in a disguised way, an air distribution optimization of a general three-bed hospital ward in China is carried out in this paper. Using the Eulerian-Lagrangian method, sneeze process from patients who are assumed to be the virus carrier, which is responsible for a common event to trigger cross-infection, is simulated. The trajectory of the released toxic particle and the probability of approaching others in the same ward are calculated. Two evaluation parameter, total maximum time (TMT) and overall particle concentration (OPC) to reflect the particle mobility and probability to cause cross-infection respectively, are developed to evaluate the proposed ten air distributions in this paper. A relatively optimized air distribution proposal with the lowest TMT and OPC is distinguished through a three-stage analysis. Results show that a bottom-in and top-out air distribution proposal is recommended to minimize cross-infections.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Xiang Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Yong-Ping Chen
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, 225009, PR China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| |
Collapse
|
46
|
Lyu L, Li Y, Ou X, Guo W, Zhang Y, Duan S, Gao Y, Xu Y, Yang T, Wang Y. Health effects of occupational exposure to printer emissions on workers in China: Cardiopulmonary function change. NANOIMPACT 2021; 21:100289. [PMID: 35559778 DOI: 10.1016/j.impact.2020.100289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 06/15/2023]
Abstract
Printers emitted nanoparticles (NPs), ozone (O3) and volatile organic chemicals (VOCs) during operation that elicited adverse effects on indoor air quality of the printing room, which may affect the health of exposed workers. The aim of this work was to explore the health effects of occupational exposure to printer emissions on workers, especially cardiovascular and lung function. We sampled particles in the print shop for characterization, including particle size distribution and elemental composition, and measured PM1 number concentrations in print shops and other workplaces. We assessed blood pressure, heart rate and pulmonary function in 53 printing room workers and 54 controls in Beijing, China. Multiple linear regression analysis were used to examine health effects of exposure to printer emissions. The PM1 number concentration in the print shop was more than 2 times that of the control group. Compared with controls, the exposed workers with lower education and income had heavier workload with a median of 7 days per week and 12 h per day on working days, and presented cardiopulmonary function injury with increased the diastolic blood pressure (DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP). The most significant changes of cardiopulmonary function were found in exposed workers with more than 10 years of working age. Multiple linear regression also showed printer emissions exposure was associated with increased SBP and MAP, while decreased lung function indices. This study found changes in the cardiopulmonary function of staff members exposed to printer emissions, which prompted the necessity and urgency of improving the environment of printing rooms and protecting the health of exposed workers.
Collapse
Affiliation(s)
- Lizhi Lyu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Yuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Xiaxian Ou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Wanqian Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Yu Xu
- Department of Respiratory Medicine, Peking University People's Hospital, Beijing, PR China
| | - Tianzhuo Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China.
| |
Collapse
|
47
|
Liu W, Huang J, Lin Y, Cai C, Zhao Y, Teng Y, Mo J, Xue L, Liu L, Xu W, Guo X, Zhang Y, Zhang JJ. Negative ions offset cardiorespiratory benefits of PM 2.5 reduction from residential use of negative ion air purifiers. INDOOR AIR 2021; 31:220-228. [PMID: 32757287 DOI: 10.1111/ina.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Negative ion air purifiers (NIAPs), as a less costly alternative to the HEPA filtration, have been increasingly deployed in China and potentially elsewhere. While reducing indoor concentrations of fine particulate matter (PM2.5 ), NIAPs generate massive amounts of negative ions that may be of health concern. We performed week-long interventions with NIAPs in the dormitories of 56 healthy college students living in Beijing. In a randomized order, each student underwent a true and a sham NIAP session. Cardiorespiratory outcomes were measured before and after each session. The use of true NIAPs reduced indoor PM2.5 concentrations significantly, while notably increased negative ion levels. Increases in PM2.5 and negative ion (NI) exposure were independently associated with increased urinary concentration of malondialdehyde, a biomarker of systemic oxidative stress, resulting in a null net effect of NIAP on malondialdehyde. Likewise, no significant net effects of NIAPs were observed for other outcomes indicative of lung function, vascular tone, arterial stiffness, and inflammation. Our findings suggest that negative ions, possibly along with their reaction products with the room air constituents, adversely affect health. The downsides do not support the use of NIAPs as a health-based mitigation strategy to reduce PM2.5 exposure, especially in residences with PM2.5 concentrations that are not extremely high.
Collapse
Affiliation(s)
- Wei Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Beijing Key Lab of Indoor Air Quality Evaluation and Control, Beijing, China
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yan Lin
- Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Chaorui Cai
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Beijing Key Lab of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | | | - Jinhan Mo
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Beijing Key Lab of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Li Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Beijing Key Lab of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Wei Xu
- Institute of Building Environment and Energy, China Academy of Building Research, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yinping Zhang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Beijing Key Lab of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Junfeng Jim Zhang
- Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC, USA
- Duke Kunshan University, Kunshan, China
| |
Collapse
|
48
|
Rosário Filho NA, Urrutia-Pereira M, D'Amato G, Cecchi L, Ansotegui IJ, Galán C, Pomés A, Murrieta-Aguttes M, Caraballo L, Rouadi P, Chong-Neto HJ, Peden DB. Air pollution and indoor settings. World Allergy Organ J 2021; 14:100499. [PMID: 33510831 PMCID: PMC7806792 DOI: 10.1016/j.waojou.2020.100499] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.
Collapse
Key Words
- AR, allergic rhinitis
- Air pollutants
- BAL, bronchoalveolar lavage
- CO, carbon monoxide
- CO2, carbon dioxide
- COPD, chronic obstructive pulmonary disease
- DEPs, diesel exhaust particles
- Environmental pollution
- FEV1, forced expiratory volume
- FeNO, fractional exhaled nitric oxide
- GM-CSF, granulocyte and macrophage growth stimulating factor
- GST, glutathione S-transferase
- HAP, household air pollution
- HEPA, High Efficiency Particulate Arrestance
- ILC2, innate lymphoid cells
- Indoor air pollution
- NCD, non-communicable disease
- NO, nitric oxide
- NO2, nitrogen dioxide
- O3, ozone
- PAH, polycyclic aromatic hydrocarbons
- PM, particulate matter
- PMNs, polymorphonuclear leukocytes
- Pollution
- SO2, sulfur dioxide
- TRAP, Traffic-related air pollution
- TSLP, thymic stromal lymphopoietin
- VOCs, volatile organic compounds
Collapse
Affiliation(s)
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy; SOS Allergy and Clinical Immunology, USL Toscana Centro Prato, Italy
| | | | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Philip Rouadi
- Department of Otolaryngology- Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Herberto J. Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - David B. Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
49
|
Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020; 142:e411-e431. [PMID: 33150789 DOI: 10.1161/cir.0000000000000931] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM2.5, or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM2.5. Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM2.5. The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM2.5, guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM2.5, but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.
Collapse
|
50
|
Allen RW, Barn P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep 2020; 7:424-440. [PMID: 33241434 PMCID: PMC7749091 DOI: 10.1007/s40572-020-00296-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We reviewed recent peer-reviewed literature on three categories of individual- and household-level interventions against air pollution: air purifiers, facemasks, and behavior change. RECENT FINDINGS High-efficiency particulate air/arresting (HEPA) filter air purifier use over days to weeks can substantially reduce fine particulate matter (PM2.5) concentrations indoors and improve subclinical cardiopulmonary health. Modeling studies suggest that the population-level benefits of HEPA filter air purification would often exceed costs. Well-fitting N95 and equivalent respirators can reduce PM2.5 exposure, with several randomized crossover studies also reporting improvements in subclinical cardiovascular health. The health benefits of other types of face coverings have not been tested and their effectiveness in reducing exposure is highly variable, depends largely on fit, and is unrelated to cost. Behavior modifications may reduce exposure, but there has been little research on health impacts. There is now substantial evidence that HEPA filter air purifiers reduce indoor PM2.5 concentrations and improve subclinical health indicators. As a result, their use is being recommended by a growing number of government and public health organizations. Several studies have also reported subclinical cardiovascular health benefits from well-fitting respirators, while evidence of health benefits from other types of facemasks and behavior changes remains very limited. In situations when emissions cannot be controlled at the source, such as during forest fires, individual- or household-level interventions may be the primary option. In most cases, however, such interventions should be supplemental to emission reduction efforts that benefit entire communities.
Collapse
Affiliation(s)
- Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Prabjit Barn
- Legacy for Airway Health, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|