1
|
Bai X, Qu H, Ye Z, Wang R, He G, Huang Z, Jiang Z, Zhang C, Li S, Li G. Relationship between short-term exposure to sulfur dioxide and emergency ambulance dispatches due to cardiovascular disease. Environ Epidemiol 2024; 8:e341. [PMID: 39323988 PMCID: PMC11424135 DOI: 10.1097/ee9.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Background The relationship between sulfur dioxide (SO2) and cardiovascular disease (CVD) remains inconclusive. We aimed to clarify the association between short-term exposure to SO2 and emergency ambulance dispatches (EADs) due to CVD. Methods We collected daily data on the number of EADs due to CVD, air pollutants, and meteorological factors between October 2013 and June 2018 in Guangzhou, China. We used the quasi-Poisson generalized additive model combined with a distributed lag nonlinear model to estimate the short-term effect of SO2 on EADs due to CVD in multivariable models. Subgroup and sensitivity analyses were also performed. Results A total of 37,889 EADs due to CVD were documented during the study period. The average daily SO2 concentration was 12.5 μg/m3. A significant relationship between SO2 and EADs due to CVD was found, with a relative risk of 1.04 (95% confidence interval: 1.02, 1.06) with each 10 μg/m3 increment of SO2 at lag 0-1. The relationship was stronger in males, for participants aged ≥65 years, and in the cold season; however, no significant modification by subgroup was found in the association between SO2 and EADs due to CVD. Similar results from sensitivity analyses to the main findings were observed. Conclusions Short-term exposure to SO2 was significantly associated with increased EADs due to CVD.
Collapse
Affiliation(s)
- Xuerui Bai
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hongying Qu
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zebing Ye
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiying Jiang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Czernych R, Kozera G, Badyda AJ, Bieniaszewski L, Zagożdżon P. Air Pollution Increases Risk of Occurrence of Intracerebral Haemorrhage but Not of Subarachnoid Haemorrhage: Time-Series Cross-Sectional Study. Biomedicines 2024; 12:1562. [PMID: 39062135 PMCID: PMC11274972 DOI: 10.3390/biomedicines12071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Haemorrhagic strokes (HS), including intracerebral (ICH) and subarachnoid haemorrhages (SAH), account for approximately 10-15% of strokes worldwide but are associated with worse functional outcomes and higher rates of mortality, and financial burden than ischemic stroke. There is evidence that confirmed poor air quality may increase the incidence of haemorrhagic strokes. The aim of our study was to evaluate the association between individual ambient air pollutants and the risk of haemorrhagic stroke in an urban environment without high levels of air pollution. (2) Methods: A time-series cross-sectional study design was used. A daily air pollution concentration (Agency of Regional Air Quality Monitoring in the Gdansk Metropolitan Area) and incidence of haemorrhagic strokes (National Health Fund) were obtained and covered the time period from 1 January 2014 to 31 December 2018. A generalised additive model with Poisson regression was used to estimate the associations between 24-h mean concentrations of SO2, NO, NO2, NOx, CO, PM10, PM2.5, and O3 and a daily number of haemorrhagic strokes. (3) Results: The single-day lag model results showed that NO2, NO and NOx exposure was associated with increased risk of ICH (88% events) with RR of 1.059 (95% CI: 1.015-1.105 for lag0), 1.033 (95% CI: 1.007-1.060 for lag0) and 1.031 (95% CI: 1.005-1.056 for lag0), but not for SAH (12% events). Exposure to CO was related to a substantial and statistically significant increase in incidence for 1.031 (95% CI: 1.002-1.061 for lag0) but not for SAH. Higher SO2, PM10, PM2.5, and O3 exposures were not significantly related to both ISC and SAH. (4) Conclusions: In this time-series cross-sectional study, we found strong evidence that supports the hypothesis that transient elevations in ambient NO2, NO and CO are associated with a higher relative risk of intracerebral but not subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Radosław Czernych
- Department of Hygiene and Epidemiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Grzegorz Kozera
- Centre of Medical Simulations, Medical University of Gdańsk, 80-204 Gdańsk, Poland; (G.K.); (L.B.)
| | - Artur Jerzy Badyda
- Department of Informatics and Environment Quality Research, Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 01-604 Warsaw, Poland;
| | - Leszek Bieniaszewski
- Centre of Medical Simulations, Medical University of Gdańsk, 80-204 Gdańsk, Poland; (G.K.); (L.B.)
| | - Paweł Zagożdżon
- Department of Hygiene and Epidemiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
3
|
Sun D, Zhang F, Ruan L, Zhao D, Tang H, Zhu W. Is short-term exposure to primary gaseous air pollutants associated with AIDS-related deaths? Evidence from a time-stratified case-crossover study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1267-1274. [PMID: 38570349 DOI: 10.1007/s00484-024-02664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Primary gaseous air pollutants have been associated with death from multiple causes, however, it remains unknown if they play a role in premature mortality among individuals living with HIV/AIDS. Data on HIV/AIDS patients were collected from the Hubei Provincial Center for Disease Control and Prevention, with a total of 1,467 AIDS-related deaths (ARD) between 2013 and 2020. Daily mean sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were generated by artificial intelligence algorithms combined with big data. We employed a time-stratified case-crossover approach and conditional logistical regression models to investigate the acute effects of primary gaseous air pollutants on ARD. Per interquartile range increase in the concentrations of SO2 was significantly linked with ARD, with a corresponding odds ratio (OR) of 1.17 [95% confidence intervals (CIs): 1.01, 1.35] at lag 4 day. Furthermore, our findings indicated that males exhibited a heightened vulnerability to the adverse effects of SO2 and NO2, for example, the ORs were 1.24 (95% CIs: 1.05, 1.47) and 1.16 (95% CIs: 1.01, 1.34), respectively. Moreover, individuals aged over 65 years were more susceptible to SO2 and CO. Additionally, we identified the warm season as a sensitive period for mortality associated with SO2 and NO2. Our study furnished fresh evidence regarding the detrimental effects of primary gaseous air pollutants on ARD.
Collapse
Affiliation(s)
- Dan Sun
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Lianguo Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China.
| | - Dingyuan Zhao
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Heng Tang
- Institute for the Prevention and Control of HIV/AIDS, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Chihana S, Mbale J, Chaamwe N. Unveiling the Nexus: Sulphur Dioxide Exposure, Proximity to Mining, and Respiratory Illnesses in Kankoyo: A Mixed-Methods Investigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:850. [PMID: 39063427 PMCID: PMC11276504 DOI: 10.3390/ijerph21070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024]
Abstract
The emission of sulphur dioxide (SO 2) from mining activities presents significant health hazards, particularly to communities near industrial zones. This mixed-methods study investigates the nexus between (SO 2) exposure and respiratory health in Kankoyo Township, Zambia. Employing community engagement, expert interviews, spatial analysis, and a retrospective examination of 15 years of health and (SO 2) data, the research identified a troubling correlation between (SO 2) exposure and adverse respiratory health effects among the local population. Expert interviews highlighted that respiratory issues constituted approximately 75% of health complications, with a notable reduction in asthma cases following the installation of a monitoring station and upgrades to smelter operations. Spatial analysis demonstrated that (SO 2) levels in Kankoyo exceeded the Zambian Environmental Management Agency (ZEMA) limits by 1713% identifying it as a significant pollution hotspot. Additionally, wind profile analysis indicated frequent low-speed winds from the east-northeast (ENE), contributing to pollutant accumulation. Based on these insights, the study recommends implementing real-time pollution data sharing, affordable air quality sensors, addressing medication shortages, establishing specialized respiratory clinics, launching IT-driven awareness campaigns, and further research into additional pollutants and confounding factors.
Collapse
Affiliation(s)
- Sipiwe Chihana
- School of ICT, Copperbelt University Jambo Drive, Riverside, Kitwe P.O. Box 21692, Zambia; (J.M.); (N.C.)
| | | | | |
Collapse
|
5
|
Khalaf EM, Mohammadi MJ, Sulistiyani S, Ramírez-Coronel AA, Kiani F, Jalil AT, Almulla AF, Asban P, Farhadi M, Derikondi M. Effects of sulfur dioxide inhalation on human health: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:331-337. [PMID: 36635910 DOI: 10.1515/reveh-2022-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sulfur dioxide (SO2) is one of the most important gaseous air pollutants and the chemical index of sulfur oxides (SOx). SO2 is one of the six criteria pollutants in the air quality index (AQI). SO2 can be emitted by natural and anthropogenic sources. Although efforts have been made to reduce sulfur dioxide emissions worldwide, this pollutant and its adverse effects remain a major concern, especially in developing countries. The aim of this study was the investigated the effects of sulfur dioxide inhalation on human health. This narrative review was done based on the literature published from 2000 to 2022 through PubMed, Springer, Web of Science, Science Direct, and Google Scholar databases. In this study, was done screened first based on the abstract and Final assessment done based on the full text of the article. Finally, 38 articles were selected for inclusion in the study. The results of this study showed that sulfur dioxide has adverse health effects on the human respiratory, cardiovascular, and nervous systems and causes type 2 diabetes and non-accidental deaths. Although some evidence suggests that sulfur dioxide in given concentrations has no adverse health effect, its synergistic effects in combination with other air pollutants may be significant. Among the most important practical results of this study can be mentioned to increase the health awareness of the general public, help the politicians of the health sector in making decisions in the health field, creating awareness among polluting producing units and industries and efforts to reduce the emission of Sulfur dioxide.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi 31001, Anbar, Iraq
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Andrés Alexis Ramírez-Coronel
- Doctor in Epidemiology and Biostatistics, Universidad Nacional de Educación (UNAE), Universidad de Palermo, Argentina; Universidad Católica de Cuenca campus, Universidad CES, Colombia, Azogues, Ecuador
| | - Fatemeh Kiani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon 51001, Hilla, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Parisa Asban
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrsa Derikondi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Lin W, Pan J, Li J, Zhou X, Liu X. Short-Term Exposure to Air Pollution and the Incidence and Mortality of Stroke: A Meta-Analysis. Neurologist 2024; 29:179-187. [PMID: 38048541 DOI: 10.1097/nrl.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND The relationship between short-term exposure to various air pollutants [particulate matter <10 μm (PM 10 ), particulate matter <2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon monoxide, and ozone (O 3 )] and the incidence and mortality of stroke remain unclear. REVIEW SUMMARY We conducted a comprehensive search across databases, including PubMed, Web of Science, and others. A random-effects model was employed to estimate the odds ratios (OR) and their 95% CIs. Short-term exposure to PM 10 , PM 2.5 , NO 2 , SO 2 , and O 3 was associated with increased stroke incidence [per 10 μg/m 3 increase in PM 2.5 : OR = 1.005 (95% CI: 1.004-1.007), per 10 μg/m 3 increase in PM 10 : OR = 1.006 (95% CI: 1.004-1.009), per 10 μg/m 3 increase in SO 2 : OR = 1.034 (95% CI: 1.020-1.048), per 10 μg/m 3 increase in NO 2 : OR = 1.029 (95% CI: 1.015-1.043), and O 3 for per 10 μg/m 3 increase: OR: 1.006 (95% CI: 1.004-1.007)]. In addition, short-term exposure to PM 2.5 , PM 10 , SO 2, and NO 2 was correlated with increased mortality from stroke [per 10 μg/m 3 increase in PM 2.5 : OR = 1.010 (95% CI: 1.006-1.013), per 10 μg/m 3 increase in PM 10 : OR = 1.004 (95% CI: 1.003-1.006), per 10 μg/m 3 increase in SO 2 : OR = 1.013 (95% CI: 1.007-1.019) and per 10 μg/m 3 increase in NO 2 : OR = 1.012 (95% CI: 1.008-1.015)]. CONCLUSION Reducing outdoor air pollutant levels may yield a favorable outcome in reducing the incidence and mortality associated with strokes.
Collapse
Affiliation(s)
- Wenjian Lin
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
- Tongji University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Jiahe Li
- Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Zhou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| |
Collapse
|
7
|
Requia WJ, Alahmad B, Koutrakis P. Short-term exposure to sulfur dioxide and daily mortality in Brazil: A nationwide time-series study between 2003-2017. CHEMOSPHERE 2023; 343:140259. [PMID: 37742766 DOI: 10.1016/j.chemosphere.2023.140259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Sulfur dioxide (SO2), despite its ubiquitousness, there is relatively less epidemiological evidence regarding the health risks associated with SO2 compared to other pollutants, especially in low-income countries where there are high levels of SO2 emissions. In this study, we estimated the association between ambient SO2 exposure and daily mortality in Brazil over a period of 15 years (2003-2017). We used an extension of the two-stage time-series design in a time-series analytic approach with a distributed lag model. The study population consisted of 2,872,084 death records, with a higher proportion of male deaths observed across all-cause mortality (58%). The majority of the individuals were aged above 65 years. The mean SO2 concentration across the study period was 1.5 μg/m³ (range: 0.0 to 71.0). The national meta-analysis for the whole dataset (without stratification by sex and age) showed an uncertain association, in which a 10 μg/m3 increase in daily SO2 was associated with an RR of mortality of 1.015 (95%CI: 0.992; 1.037). Robust associations were observed only for the subgroup analysis of people 46-65 years old [RR = 1.050 (95%CI: 1.004; 1.096)] and men 46-65 years old [RR = 1.064 (95%CI: 1.005; 1.122)]. We found moderate heterogeneity in the national analysis, with an I2 of 21% for the subgroup of people 46-65 years old. Excess mortality fraction for people between 46 and 65 years old attributable to per 10 μg/m3 increase in SO2 was 2.93% (95% eCI: 0.29%-6.78%). These results highlight the need for targeted air pollution control policies to reduce the health burden of SO2 exposure in Brazil. Further research is needed to fully understand the mechanisms behind the age-specific and regional effects of SO2 on mortality.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas Brasília, Distrito Federal, Brazil.
| | - Barrak Alahmad
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Petros Koutrakis
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
8
|
Mo S, Hu J, Yu C, Bao J, Shi Z, Zhou P, Yang Z, Luo S, Yin Z, Zhang Y. Short-term effects of fine particulate matter constituents on myocardial infarction death. J Environ Sci (China) 2023; 133:60-69. [PMID: 37451789 DOI: 10.1016/j.jes.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 07/18/2023]
Abstract
Existing evidence suggested that short-term exposure to fine particulate matter (PM2.5) may increase the risk of death from myocardial infarction (MI), while PM2.5 constituents responsible for this association has not been determined. We collected 12,927 MI deaths from 32 counties in southern China during 2011-2013. County-level exposures of ambient PM2.5 and its 5 constituents (i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)) were aggregated from gridded datasets predicted by Community Multiscale Air Quality Modeling System. We employed a space-time-stratified case-crossover design and conditional logistic regression models to quantify the association of MI mortality with short-term exposure to PM2.5 and its constituents across various lag days. Over the study period, the daily mean PM2.5 mass concentration was 77.8 (standard deviation (SD) = 72.7) µg/m3. We estimated an odds ratio of 1.038 (95% confidence interval (CI): 1.003-1.074), 1.038 (1.013-1.063) and 1.057 (1.023-1.097) for MI mortality associated with per interquartile range (IQR) increase in the 3-day moving-average exposure to PM2.5 (IQR = 76.3 µg/m3), EC (4.1 µg/m3) and OC (9.1 µg/m3), respectively. We did not identify significant association between MI death and exposure to water-soluble ions (SO42-, NH4+ and NO3-). Likelihood ratio tests supported no evident violations of linear assumptions for constituents-MI associations. Subgroup analyses showed stronger associations between MI death and EC/OC exposure in the elderly, males and cold months. Short-term exposure to PM2.5 constituents, particularly those carbonaceous aerosols, was associated with increased risks of MI mortality.
Collapse
Affiliation(s)
- Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
9
|
Cai X, Ni H, Wang Q, Dai T, Wang L, Song C, Li Y, Li F, Meng T, Sheng H, Xiao L, Xu T, Yu X, Zeng Q, Guo P, Zhang X. Sperm quality decline associated with gaseous pollutant exposure: Evidence from a large cohort multicenter study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132330. [PMID: 37611389 DOI: 10.1016/j.jhazmat.2023.132330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Poor sperm quality is a prevalent cause of male infertility, and the association between gaseous ambient air pollutants exposure and semen quality remains unclear. OBJECTIVES To examine the relationship between gaseous air pollution exposure with semen quality in a large-scale and multi-center study. METHODS We analyzed 78,952 samples corresponding to 33,234 study subjects from 2014 to 2020. The high-resolution grid pollution dataset was used to estimate personal exposures to CO, SO2, NO2 and O3 across entire stage of semen formation and three crucial stages. The linear mixed models were performed to evaluate the relationships. RESULTS The results showed that sperm count was inversely related to SO2 exposure (-0.0070, -0.0128 to -0.0011). Decreased sperm concentration was associated with SO2 (-0.0083, -0.0142 to -0.0024), NO2 (-0.0162, -0.0320 to -0.0005) and O3 (-0.0306, -0.0480 to -0.0133) during 0-90 lag days, respectively. Additionally, we observed significant decline of PR and total motility with SO2 exposure. Similar trends were observed for SO2 and CO exposure during 3 key periods. CONCLUSIONS Our findings suggest that exposure to gaseous air pollutants may have negative impacts on sperm quality. These findings highlight the importance that critical periods of sperm development should be considered when implementing protective measures.
Collapse
Affiliation(s)
- Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Chunying Song
- Human Sperm Bank, the Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, the Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, the Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| |
Collapse
|
10
|
Meng Y, Liu Z, Hao J, Tao F, Zhang H, Liu Y, Liu S. Association between ambient air pollution and daily hospital visits for cardiovascular diseases in Wuhan, China: a time-series analysis based on medical insurance data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:452-463. [PMID: 35333137 DOI: 10.1080/09603123.2022.2035323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although evidence showed the adverse effects of air pollution on cardiovascular disease (CVDs), few studies were based on medically insured populations. We applied a generalized additive Poisson model (GAM) to estimate the short-term effects of ambient air pollution on a group of medically insured population in Wuhan, China. We extracted daily air pollution data, meteorological data, and daily hospital visits for CVDs. We found that the ambient air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-level ozone (O3) particulate matter (PM) with an aerodynamic diameter ≤10 μm (PM10), and those ≤2.5 μm (PM2.5) all increased the risk of daily hospital visits for CVDs. We also found that the effect of air pollution on daily hospital visits for CVDs is greater in the cold season than in the warm season. Our findings can be used as evidence that supports the formulation of policies for air pollution and CVDs.
Collapse
Affiliation(s)
- Yongna Meng
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhihui Liu
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Jiayuan Hao
- Department of Biostatistics, Harvard University, Cambridge, MA, USA
| | - Fengxi Tao
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Huihui Zhang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Yuehua Liu
- Vanke School of Public Health, Tsinghua university, Beijing, China
| | - Suyang Liu
- School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
You X, Cao X, Guo Y, Wang D, Qiu W, Zhou C, Zhou M, Chen W, Zhang X. Associations between short-term PM2.5 exposure and daily hospital admissions for circulatory system diseases in Ganzhou, China: A time series study. Front Public Health 2023; 11:1134516. [PMID: 36969639 PMCID: PMC10034184 DOI: 10.3389/fpubh.2023.1134516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectivePrevious epidemiological studies have shown that both long-term and short-term exposure to fine particulate matters (PM2.5) were associated with the morbidity and mortality of circulatory system diseases (CSD). However, the impact of PM2.5 on CSD remains inconclusive. This study aimed to investigate the associations between PM2.5 and circulatory system diseases in Ganzhou.MethodsWe conducted this time series study to explore the association between ambient PM2.5 exposure and daily hospital admissions for CSD from 2016 to 2020 in Ganzhou by using generalized additive models (GAMs). Stratified analyses were also performed by gender, age, and season.ResultsBased on 201,799 hospitalized cases, significant and positive associations were found between short-term PM2.5 exposure and hospital admissions for CSD, including total CSD, hypertension, coronary heart disease (CHD), cerebrovascular disease (CEVD), heart failure (HF), and arrhythmia. Each 10 μg/m3 increase in PM2.5 concentrations was associated with a 2.588% (95% confidence interval [CI], 1.161%–4.035%), 2.773% (95% CI, 1.246%–4.324%), 2.865% (95% CI, 0.786%–4.893%), 1.691% (95% CI, 0.239%–3.165%), 4.173% (95% CI, 1.988%–6.404%) and 1.496% (95% CI, 0.030%–2.983%) increment in hospitalizations for total CSD, hypertension, CHD, CEVD, HF, and arrhythmia, respectively. As PM2.5 concentrations rise, the hospitalizations for arrhythmia showed a slow upward trend, while other CSD increased sharply at high PM2.5 levels. In subgroup analyses, the impacts of PM2.5 on hospitalizations for CSD were not materially changed, although the females had higher risks of hypertension, HF, and arrhythmia. The relationships between PM2.5 exposure and hospitalizations for CSD were more significant among individuals aged ≤65 years, except for arrhythmia. PM2.5 had stronger effects on total CSD, hypertension, CEVD, HF, and arrhythmia during cold seasons.ConclusionPM2.5 exposure was positively associated with daily hospital admissions for CSD, which might provide informative insight on adverse effects of PM2.5.
Collapse
Affiliation(s)
- Xiaojie You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuyu Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You Guo
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanfei Zhou
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Weihong Chen
| | - Xiaokang Zhang
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
- Xiaokang Zhang
| |
Collapse
|
12
|
O’Brien E, Masselot P, Sera F, Roye D, Breitner S, Ng CFS, de Sousa Zanotti Stagliorio Coelho M, Madureira J, Tobias A, Vicedo-Cabrera AM, Bell ML, Lavigne E, Kan H, Gasparrini A. Short-Term Association between Sulfur Dioxide and Mortality: A Multicountry Analysis in 399 Cities. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37002. [PMID: 36883823 PMCID: PMC9994178 DOI: 10.1289/ehp11112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Epidemiological evidence on the health risks of sulfur dioxide (SO 2 ) is more limited compared with other pollutants, and doubts remain on several aspects, such as the form of the exposure-response relationship, the potential role of copollutants, as well as the actual risk at low concentrations and possible temporal variation in risks. OBJECTIVES Our aim was to assess the short-term association between exposure to SO 2 and daily mortality in a large multilocation data set, using advanced study designs and statistical techniques. METHODS The analysis included 43,729,018 deaths that occurred in 399 cities within 23 countries between 1980 and 2018. A two-stage design was applied to assess the association between the daily concentration of SO 2 and mortality counts, including first-stage time-series regressions and second-stage multilevel random-effect meta-analyses. Secondary analyses assessed the exposure-response shape and the lag structure using spline terms and distributed lag models, respectively, and temporal variations in risk using a longitudinal meta-regression. Bi-pollutant models were applied to examine confounding effects of particulate matter with an aerodynamic diameter of ≤ 10 μ m (PM 10 ) and 2.5 μ m (PM 2.5 ), ozone, nitrogen dioxide, and carbon monoxide. Associations were reported as relative risks (RRs) and fractions of excess deaths. RESULTS The average daily concentration of SO 2 across the 399 cities was 11 . 7 μ g / m 3 , with 4.7% of days above the World Health Organization (WHO) guideline limit (40 μ g / m 3 , 24-h average), although the exceedances occurred predominantly in specific locations. Exposure levels decreased considerably during the study period, from an average concentration of 19.0 μ g / m 3 in 1980-1989 to 6.3 μ g / m 3 in 2010-2018. For all locations combined, a 10 - μ g / m 3 increase in daily SO 2 was associated with an RR of mortality of 1.0045 [95% confidence interval (CI): 1.0019, 1.0070], with the risk being stable over time but with substantial between-country heterogeneity. Short-term exposure to SO 2 was associated with an excess mortality fraction of 0.50% [95% empirical CI (eCI): 0.42%, 0.57%] in the 399 cities, although decreasing from 0.74% (0.61%, 0.85%) in 1980-1989 to 0.37% (0.27%, 0.47%) in 2010-2018. There was some evidence of nonlinearity, with a steep exposure-response relationship at low concentrations and the risk attenuating at higher levels. The relevant lag window was 0-3 d. Significant positive associations remained after controlling for other pollutants. DISCUSSION The analysis revealed independent mortality risks associated with short-term exposure to SO 2 , with no evidence of a threshold. Levels below the current WHO guidelines for 24-h averages were still associated with substantial excess mortality, indicating the potential benefits of stricter air quality standards. https://doi.org/10.1289/EHP11112.
Collapse
Affiliation(s)
- Edward O’Brien
- London School of Hygiene & Tropical Medicine, London, UK
| | - Pierre Masselot
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications “G. Parenti,” University of Florence, Florence, Italy
| | - Dominic Roye
- Department of Geography, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Susanne Breitner
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University of Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | - Joana Madureira
- Department of Environmental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Publica, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional, Porto, Portugal
| | - Aurelio Tobias
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Eric Lavigne
- School of Epidemiology & Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Antonio Gasparrini
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK
| | | |
Collapse
|
13
|
Zhang X, Lu X, Chuai X, Wang Z, Wu X. Trade-driven relocation of ground-level SO 2 concentrations across Chinese provinces based on satellite observations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14619-14629. [PMID: 36153422 DOI: 10.1007/s11356-022-23034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The influence of trade on ground-level SO2 concentrations in China was evaluated based on multiregional input-output (MRIO) analysis, using the ozone monitoring instrument (OMI) SO2 columns and SO2 profiles from an atmospheric chemical and transport model, MOZART-4. The provincial sum of ground-level SO2 concentrations has a good consistency with the provincial SO2 emissions (R = 0.65, p < 0.01). The provincial SO2 concentrations presented strong spatial variations, with a range of 5.1-50.6 μg/m3 and an average of 19.7 μg/m3 across China. The international trade increased the SO2 concentrations in all of the provinces and increased the national population-weighted SO2 (PWM-SO2) concentration by 2.9 μg/m3. Interprovincial trade within China decreased the ambient SO2 concentrations in Beijing, Tianjin, and Chongqing and the provinces in southeast and central China, but increased SO2 in the remaining provinces of China. In general, interprovincial trade decreased the national PWM-SO2 concentration by 5.3 μg/m3.
Collapse
Affiliation(s)
- Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Xinqing Lu
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xiaowei Chuai
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Zhen Wang
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Xiaodi Wu
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Zhang L, Wang P, Zhou Y, Cheng Y, Li J, Xiao X, Yin C, Li J, Meng X, Zhang Y. Associations of ozone exposure with gestational diabetes mellitus and glucose homeostasis: Evidence from a birth cohort in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159184. [PMID: 36202368 DOI: 10.1016/j.scitotenv.2022.159184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Associations between individual exposure to ozone (O3) and gestational diabetes mellitus (GDM) have rarely been investigated, and critical windows of O3 exposure for GDM have not been identified. OBJECTIVES We aimed to explore the associations of gestational O3 exposure with GDM and glucose homeostasis as well as to identify the potential critical windows. METHODS A total of 7834 pregnant women were included. Individual O3 exposure concentrations were evaluated using a high temporal-spatial resolution model. Each participant underwent an oral glucose tolerance test (OGTT) to screen for GDM between 24 and 28 gestational weeks. Multiple logistic and multiple linear regression models were used to estimate the associations of O3 with GDM risks and with blood glucose levels of OGTT, respectively. Distributed lag nonlinear models (DLNMs) were used to estimate the critical windows of O3 exposure for GDM. RESULTS Nearly 13.29 % of participants developed GDM. After controlling for covariates, we observed increased GDM risks per IQR increment of O3 exposure in the first trimester (OR = 1.738, 95 % CI: 1.002-3.016) and the first two trimesters (OR = 1.576, 95 % CI: 1.005-2.473). Gestational O3 exposure was positively associated with increased fasting blood glucose (the first trimester: β = 2.964, 95 % CI: 1.529-4.398; the first two trimesters: β = 1.620, 95 % CI: 0.436-2.804) and 2 h blood glucose (the first trimester: β = 6.569, 95 % CI: 1.775-11.363; the first two trimesters: β = 6.839, 95 % CI: 2.896-10.782). We also observed a concentration-response relationship of gestational O3 exposure with GDM risk, as well as fasting and 2 h blood glucose levels. Additionally, 5-10 gestational weeks was identified as a critical window of O3 exposure for GDM development. CONCLUSION In summary, we found that gestational O3 exposure disrupts glucose homeostasis and increases the risk of GDM in pregnant women. Furthermore, 5-10 gestational weeks could be a critical window for the effects of O3 exposure on GDM.
Collapse
Affiliation(s)
- Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jialin Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chuanmin Yin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Liu W, Cai M, Long Z, Tong X, Li Y, Wang L, Zhou M, Wei J, Lin H, Yin P. Association between ambient sulfur dioxide pollution and asthma mortality: Evidence from a nationwide analysis in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114442. [PMID: 38321661 DOI: 10.1016/j.ecoenv.2022.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2024]
Abstract
There is a lack of research on the effects of acute exposure to ambient sulfur dioxide (SO2) on mortality caused by asthma, especially nationwide research in China. To explore the acute effect of exposure to ambient SO2 on asthma mortality using nationwide dataset in China from 2015 to 2020 and further evaluate the associations in subgroups with different geographical and demographic characteristics. We used data from China's Disease Surveillance Points system with 29,553 asthma deaths in China during 2015-2020. The exposure variable was the daily mean concentrations of SO2 from the ChinaHighSO2 10 km × 10 km daily grid dataset. Bilinear interpolation was used to estimate each individual's exposure to air pollutants and meteorological variables. We used a time-stratified case crossover design at the individual level to analyze the exposure response relationship between short-term exposure to SO2 and asthma mortality. Stratified analyses were carried out by sex, age group, marital status, warm season and cold season, urbanicity and region. Significant associations between short-term exposure to ambient SO2 and increased asthma mortality were found in this nationwide study. The excess risk (ER) for each 10 μg/m3 increase in SO2 concentrations at lag07 was 7.78 % (95 % CI, 4.16-11.52 %). Season appeared to significantly modify the association. The associations were stronger in cold season (ER 9.78 %, 95 % CI:5.82 -13.89 %). The association remained consistent using different lag periods, adjusting for other pollutants, and in the analysis during pre-Corona Virus Disease 2019 (COVID-19) period. Our study indicates increased risk of asthma mortality with acute exposures to SO2 in Chinese population. The current study lends support for greater awareness of the harmful effect of SO2 in China and other countries with high SO2 pollution.
Collapse
Affiliation(s)
- Wei Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng Long
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xunliang Tong
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanming Li
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
16
|
Zhou W, Ming X, Yang Y, Hu Y, He Z, Chen H, Li Y, Cheng J, Zhou X. Associations between maternal exposure to ambient air pollution and very low birth weight: A birth cohort study in Chongqing, China. Front Public Health 2023; 11:1123594. [PMID: 36960371 PMCID: PMC10028238 DOI: 10.3389/fpubh.2023.1123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction There have been many researches done on the association between maternal exposure to ambient air pollution and adverse pregnancy outcomes, but few studies related to very low birth weight (VLBW). This study thus explores the association between maternal exposure to ambient air pollutants and the risk of VLBW, and estimates the sensitive exposure time window. Methods A retrospective cohort study analyzed in Chongqing, China, during 2015-2020. The Generalized Additive Model were applied to estimate exposures for each participant during each trimester and the entire pregnancy period. Results For each 10 μg/m3 increase in PM2.5 during pregnancy, the relative risk of VLBW increased on the first trimester, with RR = 1.100 (95% CI: 1.012, 1.195) in the single-pollutant model. Similarly, for each 10 μg/m3 increase in PM10, there was a 12.9% (RR = 1.129, 95% CI: 1.055, 1.209) increase for VLBW on the first trimester in the single-pollutant model, and an 11.5% (RR = 1.115, 95% CI: 1.024, 1.213) increase in the multi-pollutant model, respectively. The first and second trimester exposures of NO2 were found to have statistically significant RR values for VLBW. The RR values on the first trimester were 1.131 (95% CI: 1.037, 1.233) and 1.112 (95% CI: 1.015, 1.218) in the single-pollutant model and multi-pollutant model, respectively; The RR values on the second trimester were 1.129 (95% CI: 1.027, 1.241) and 1.146 (95% CI: 1.038, 1.265) in the single-pollutant model and multi-pollutant model, respectively. The RR of O3 exposure for VLBW on the entire trimester was 1.076 (95% CI: 1.010-1.146), and on the second trimester was 1.078 (95% CI: 1:016, 1.144) in the single-pollutant model. Conclusion This study indicates that maternal exposure to high levels of PM2.5, PM10, NO2, and O3 during pregnancy may increase the risk of very low birth weight, especially for exposure on the first and second trimester. Reducing the risk of early maternal exposure to ambient air pollution is thus necessary for pregnant women.
Collapse
Affiliation(s)
- Wenzheng Zhou
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xin Ming
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunping Yang
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yaqiong Hu
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ziyi He
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Hongyan Chen
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yannan Li
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jin Cheng
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Jin Cheng
| | - Xiaojun Zhou
- Department of Quality Management Section, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Quality Management Section, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Xiaojun Zhou
| |
Collapse
|
17
|
Cao R, Liu W, Huang J, Pan X, Zeng Q, Evangelopoulos D, Yin P, Wang L, Zhou M, Li G. The establishment of Air Quality Health Index in China: A comparative analysis of methodological approaches. ENVIRONMENTAL RESEARCH 2022; 215:114264. [PMID: 36084679 DOI: 10.1016/j.envres.2022.114264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Air Quality Index (AQI) has been criticized because it does not adequately account for the health effect of multi-pollutants. Although the developed Air Quality Health Index (AQHI) is a more effective communication tool, little is known about the best method to construct AQHI on long time and large spatial scales. OBJECTIVES To further evaluate the validity of existing approaches to the establishment of AQHI on both long time and larger spatial scales. METHODS By introducing 3 approaches addressing multi-pollutant exposures: cumulative risk index (CRI), supervised principal component analysis (SPCA), and Bayesian multi-pollutants weighted model (BMP), we constructed CRI-AQHI, SPCA-AQHI, BMP-AQHI and standard-AQHI on cardiovascular mortality in China from 2015 to 2019 at both the national and geographic regional levels. We further assessed the performance of the four methods in estimating the joint effect of multi-pollutants by simulations under various scenarios of pollution effect. RESULTS The results of national China showed that the BMP-AQHI improved the goodness of fit of the standard-AQHI by 108.24%, followed by CRI-AQHI (5.02%), and all AQHIs performed better than AQI, consistent with 6 geographic regional results. In addition, the simulation result showed that the BMP method provided stable and relatively accurate estimations of the short-term combined effect of exposure to multi-pollutants. CONCLUSIONS AQHI based on BMP could communicate the air pollution risk to the public more effectively than the current AQHI and AQI.
Collapse
Affiliation(s)
- Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Wei Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Qiang Zeng
- Department of Occupational Disease Control and Prevention, Tianjin Center for Disease Control and Prevention, Tianjin, 300011, PR China.
| | - Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK; National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK.
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
18
|
Chen Z, Liu N, Tang H, Gao X, Zhang Y, Kan H, Deng F, Zhao B, Zeng X, Sun Y, Qian H, Liu W, Mo J, Zheng X, Huang C, Sun C, Zhao Z. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. INDOOR AIR 2022; 32:e13170. [PMID: 36437665 DOI: 10.1111/ina.13170] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease attributed to the indoor exposure to sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), ozone (O3 ), and carbon monoxide (CO) is not clear, and the quantitative concentration-response relationship is a prerequisite. This is a systematic review to summarize the quantitative concentration-response relationships by screening and analyzing the polled effects of population-based epidemiological studies. After collecting literature published between 1980 and 2019, a total of 19 health outcomes in 101 studies with 182 health risk estimates were recruited. By meta-analysis, the leave-one-out sensitivity analysis and Egger's test for publication bias, the robust and reliable effects were found for SO2 (per 10 μg/m3 ) with chronic obstructive pulmonary diseases (COPD) (pooled relative risks [RRs] 1.016, 95% CI: 1.012-1.021) and cardiovascular diseases (CVD) (RR 1.012, 95%CI: 007-1.018), respectively. NO2 (per 10 μg/m3 ) had the pooled RRs for childhood asthma, preterm birth, lung cancer, diabetes, and COPD by 1.134 (1.084-1.186), 1.079 (1.007-1.157), 1.055 (1.010-1.101), 1.019 (1.009-1.029), and 1.016 (1.012-1.120), respectively. CO (per 1 mg/m3 ) was significantly associated with Parkinson's disease (RR 1.574, 95% CI: 1.069-2.317) and CVD (RR 1.024, 95% CI: 1.011-1.038). No robust effects were observed for O3 . This study provided evidence and basis for further estimation of the health burden attributable to the four gaseous pollutants.
Collapse
Affiliation(s)
- Zhuoru Chen
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
| | - Hao Tang
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xuehuan Gao
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Li G, Zhao H, Hu M, He J, Yang W, Zhang H, Zhu Z, Zhu J, Huang F. Short-term exposure to six air pollutants and cause-specific cardiovascular mortality of nine counties or districts in Anhui Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75072-75085. [PMID: 35648349 DOI: 10.1007/s11356-022-21128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, the burden of cardiovascular disease (CVD) has attracted global attention. Meanwhile, CVD has become the leading cause of death in China. Some epidemiological studies have indicated that ambient air pollution may contribute to increased mortality from CVD diseases. Many studies have found a strong association between air pollutants and the risk of CVD deaths in some big cities, but few have focused on the effects of six pollutants in rural areas. Our study aimed to investigate the effects of six air pollutants (CO, NO2, O3, PM2.5, PM10, and SO2) on CVD deaths of rural areas in Anhui Province and to further clarify which populations were susceptible to air pollution. First, the generalized additive models were combined with the distributed lag nonlinear models to evaluate the individual effects of air pollution on CVD deaths in each area. Then, random-effects models were used to aggregate the associations between air pollutants and CVD mortality risk in nine regions. Overall, all six pollutants had a statistically significant effect on the risk of CVD deaths on the lag 07 days. The associations between PM2.5, PM10, and SO2 and daily CVD deaths were strongest, with maximum cumulative RR (lag 07) of 1.91 (1.64-2.18), 2.27 (1.50-3.05), and 2.13 (1.44-2.82). In general, we found that six air pollutants were the important risk factors for CVD and specific CVD deaths in Anhui Province. The elderly were susceptible to PM2.5, PM10, and SO2.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanjun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenyu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jinliang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
20
|
Zheng D, Cao D, Zhang S, Shen H, Liu Y, Liu Q, Sun J, Jiao G, Wang J, Yang X, Zhang X, Lin H. Associations of Ambient NO 2 with Daily Hospitalization, Hospitalization Expenditure and Length of Hospital Stay of Cause-Specific Respiratory Diseases - Shanxi, China, 2017-2019. China CDC Wkly 2022; 4:779-782. [PMID: 36284603 PMCID: PMC9547724 DOI: 10.46234/ccdcw2022.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? Numerous epidemiological studies have documented the association between ambient nitrogen dioxide (NO2) and mortality and morbidity of respiratory diseases, however, research on the effect of NO2 on the length of hospital stay (LOS) and hospitalization expenditure is limited. WHAT IS ADDED BY THIS REPORT? This study collected the respiratory hospitalization, hospital expenditure, and LOS for respiratory diseases from 2017-2019 in Shanxi, China, and comprehensively evaluated the association between ambient NO2 exposure and respiratory hospitalization, expenditure, and LOS. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE? This study provides evidence on the association between ambient NO2 and respiratory burden, suggesting that continuously reducing the NO2 concentrations could prevent respiratory disease-associated hospital admissions and decrease the relative burden in Shanxi Province and other similar regions.
Collapse
Affiliation(s)
- Dashan Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Dawei Cao
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Shiyu Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Huiqing Shen
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Yi Liu
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Qiyong Liu
- Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Guangyuan Jiao
- Department of Ideological and Political Education, School of Marxism, Capital Medical University, Beijing, China
| | - Jianzhen Wang
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Xiaoran Yang
- Department of Standards and Evaluation, Beijing Municipal Health Commission Policy Research Center, Beijing Municipal health Commission Information Center, Beijing, China
| | - Xinri Zhang
- Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China,Xinri Zhang,
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou City, Guangdong Province, China,Hualiang Lin,
| |
Collapse
|
21
|
Chen Q, Chen Q, Wang Q, Xu R, Liu T, Liu Y, Ding Z, Sun H. Particulate matter and ozone might trigger deaths from chronic ischemic heart disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113931. [PMID: 35914398 DOI: 10.1016/j.ecoenv.2022.113931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
AIMS To study the association between short-term exposure to air pollutants and mortality of Chronic Ischemic Heart Disease (CIHD). METHODS Using a case-crossover design, we investigated 148,443 CIHD deaths from 2015 to 2020 in Jiangsu Province, China. Exposure to six ambient pollutants, including PM10, PM2.5, NO2, CO, SO2, and O3, was assessed by extracting daily concentrations from validated 10 km × 10 km pollutant grids at each subject's residential address. A conditional logistic regression approach was used to explore the exposure-response relationship with adjustment for temperature and relative humidity. We calculated the Population Attributable Fractions (PAFs) and the attributable deaths number of CIHD. RESULTS An increase of 10 μg/m3 in PM10 and PM2.5 exposure was associated with a 1.16% (95% CI: 0.85-1.48%) and 1.80% (1.36-2.24%) increase in CIHD mortality, respectively. A threshold value of 123 µg/m3 was identified for the association between O3 exposure and CIHD mortality. Controlling for PM2.5, each increase of 10 µg/m3 in O3 (>threshold) was statistically significantly associated with a 0.94% (0.19-1.71%) increase in CIHD mortality, however there was no association between NO2, SO2, CO exposure and CIHD mortality. Reducing PM2.5, PM10 and O3 to the WHO air quality guidelines would prevent 6.16% (95% CI: 4.70-7.58%), 4.30% (3.18-5.43%) and 1.29% (0.48-4.20%) of CIHD deaths, respectively. During the warm season, mortality and PAFs of CIHD associated with PM2.5, PM10, and O3 were significantly higher. CONCLUSIONS Short-term exposure to ambient PM2.5, PM10, and O3 might trigger deaths from CIHD. These findings indicate that the premature deaths of CIHD patients can be alleviated by reducing exposure to polluted air.
Collapse
Affiliation(s)
- Qing Chen
- Department of Planning and Finance, First People's Hospital of Lianyungang City 6, Zhenhua East Road, Lianyungang, Jiangsu, 222000, China
| | - Qi Chen
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, Jiangsu, 210009, China
| | - Qingqing Wang
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, Jiangsu, 210009, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 74 Zhongshan Second Road, Guangzhou, Guangdong 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 74 Zhongshan Second Road, Guangzhou, Guangdong 510080, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 74 Zhongshan Second Road, Guangzhou, Guangdong 510080, China
| | - Zhen Ding
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, Jiangsu, 210009, China
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
22
|
Li L, Huang S, Tian Y, Ji J, Zhang Y, Hu J, Lv Z, Liu N, Wang P, Yin P, Yu S. Short-term exposure to nitrogen dioxide and ischemic stroke incidence in Shenzhen, China: Modification effects by season and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113644. [PMID: 35588618 DOI: 10.1016/j.ecoenv.2022.113644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES China has experienced a serious public health burden because of the increased incidence of ischemic stroke. Evidence describing the association between short-term exposure to nitrogen dioxide (NO2) and ischemic stroke morbidity is limited, and few studies have focused on the effects of season and temperature. This study aimed to evaluate the acute effects of NO2 on ischemic stroke incidence in Shenzhen, a southeastern city of China, considering the modified effects of season and temperature. METHODS A time-stratified case-crossover study was conducted between 2003 and 2014 among 98,482 ischemic stroke hospitalizations. Conditional quasi-Poisson regression was used to estimate the percentage changes in ischemic stroke admissions in relation to each 10 μg/m3 increment in NO2. RESULTS NO2 was positively associated with ischemic stroke onset over the full year, as well as in the cold season (November through April) and on cold days (ambient temperature≤median temperature), with significant single-day effects within 3 days after the exposure, and significant cumulative effects within the delayed five days. The maximum percentage changes were obtained at lag0-5, with 1.81% (95% confidence interval (CI) was 0.86-2.76%) over the full year, 2.75% (1.48-4.03%) in the cold season, and 3.04% (1.74-4.35%) on cold days. Additionally, the effects of exposure were found to be greater in males and people with higher education, and were lasting longer in subgroups of older individuals. CONCLUSIONS Our findings provide evidence that reductions in NO2 levels might decrease ischemic stroke morbidity, and enhance the understanding of ischemic stroke occurrence associated with NO2 modified by season and temperature.
Collapse
Affiliation(s)
- Lei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Yuchen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Jiajia Ji
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Jing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Ziquan Lv
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Ning Liu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China.
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China.
| | - Shuyuan Yu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
23
|
Short-Term Effects of Low-Level Ambient Air NO 2 on the Risk of Incident Stroke in Enshi City, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116683. [PMID: 35682266 PMCID: PMC9180296 DOI: 10.3390/ijerph19116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Previous studies found that exposure to ambient nitrogen dioxide (NO2) was associated with an increased risk of incident stroke, but few studies have been conducted for relatively low NO2 pollution areas. In this study, the short-term effects of NO2 on the risk of incident stroke in a relatively low-pollution area, Enshi city of Hubei Province, China, were investigated through time-series analysis. Daily air-pollution data, meteorological data, and stroke incidence data of residents in Enshi city from 1 January 2015 to 31 December 2018 were collected. A time-series analysis using a generalised additive model (GAM) based on Poisson distribution was applied to explore the short-term effects of low-level NO2 exposure on the risk of incident stroke and stroke subtypes, as well as possible age, sex, and seasonal differences behind the effects. In the GAM model, potential confounding factors, such as public holidays, day of the week, long-term trends, and meteorological factors (temperature and relative humidity), were controlled. A total of 9122 stroke incident cases were included during the study period. We found that NO2 had statistically significant effects on the incidence of stroke and ischemic stroke, estimated by excess risk (ER) of 0.37% (95% CI: 0.04–0.70%) and 0.58% (95% CI: 0.18–0.98%), respectively. For the cumulative lag effects, the NO2 still had a statistically significant effect on incident ischemic stroke, estimated by ER of 0.61% (95% CI: 0.01–1.21%). The two-pollutant model showed that the effects of NO2 on incident total stroke were still statistically significant after adjusting for other air pollutants (PM2.5, PM10, SO2, CO, and O3). In addition, the effects of NO2 exposure on incident stroke were statistically significant in elderly (ER = 0.75%; 95% CI: 0.11–1.40%), males (ER = 0.47%; 95% CI: 0.05–0.89%) and cold season (ER = 0.83%; 95% CI: 0.15–1.51%) subgroups. Our study showed that, as commonly observed in high-pollution areas, short-term exposure to low-level NO2 was associated with an increased risk of incident stroke, including ischemic stroke. Males and elderly people were more vulnerable to the effects of NO2, and the adverse effects might be promoted in the cold season.
Collapse
|
24
|
Nurhisanah S, Hasyim H. Environmental health risk assessment of sulfur dioxide (SO2) at workers around in combined cycle power plant (CCPP). Heliyon 2022; 8:e09388. [PMID: 35600447 PMCID: PMC9115319 DOI: 10.1016/j.heliyon.2022.e09388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
State electricity company is an Indonesian government-owned corporation with a monopoly on Indonesia's electricity distribution. Sulfur dioxide (SO2) pollution is produced by burning fossil fuels with coal and oil-fired power plants. At the combined cycle power plant (CCPP), the state electricity company has the largest role in SO2 production. In addition, SO2 can cause respiratory tract dysfunction, decreased lung function, eye irritation, throat irritation, and coughing at certain concentrations. This study aims to assess the magnitude of SO2 exposure to workers health at CCPP Indralaya unit, Indonesia. The research is a quantitative study using the environmental health risk assessment (EHRA) method. Purposive sampling was used to obtain 32 respondents. The results revealed that the average SO2 concentration was 0.085 mg/m3. The non-carcinogenic intake was 0.0025 mg/kg/day for real-time exposure and 0.0069 mg/kg/day for lifetime exposure. The Risk Quotient (RQ) for real-time exposure obtained is 0.0959, and RQ for lifetime exposure is 0.2668, indicating an RQ = 1. The study concluded that the CCPP Indralaya unit is not at-risk cause non-carcinogenic due to SO2 exposure. Regardless, precautions must ensure that workers' exposure to SO2 or other emissions gases produced by CCPP activities does not endanger their health.
Collapse
|
25
|
Guo X, Song Q, Wang H, Li N, Su W, Liang M, Sun C, Ding X, Liang Q, Sun Y. Systematic review and meta-analysis of studies between short-term exposure to ambient carbon monoxide and non-accidental, cardiovascular, and respiratory mortality in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35707-35722. [PMID: 35257337 DOI: 10.1007/s11356-022-19464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although a growing number of original epidemiological studies imply a link between ambient pollution exposure and mortality risk, the findings associated with carbon monoxide (CO) exposure are inconsistent. Thus, we conducted a systematic review and meta-analysis of epidemiological studies to evaluate the correlations between ambient CO and non-accidental, cardiovascular, and respiratory mortality in China. Eight databases were searched from inception to 15 May 2021. A random-effect model was used to calculate the pooled relative risks (RRs) and 95% confidence intervals (CIs). Subgroup analyses as well as sensitivity analyses were performed. The I square value (I2) was used to assess heterogeneity among different studies. The assessment of publication bias on included studies was examined by funnel plot and Egger's test. The influence of a potential publication bias on findings was explored by using the trim-and-fill procedure. Ultimately, a total of 19 studies were included in our analysis. The pooled relative risk for each 1 mg/m3 increase of ambient carbon monoxide was 1.0220 (95%CI: 1.0102-1.0339) for non-accidental mortality, 1.0304 (95%CI:1.0154-1.0457) for cardiovascular mortality, and 1.0318 (95%CI:1.0132-1.0506) for respiratory mortality. None of subgroup analyses could explain the source of heterogeneity. Exclusion of any single study did not materially alter the pooled effect estimates. Although it was suggestive of publication bias, findings were generally similar with principal findings when we explored the influence of a potential publication bias using the trim-and-fill method. Our meta-analysis demonstrated that exposure to ambient CO was positive with risk of deaths from all non-accidental causes, total cardiovascular, and respiratory diseases. Based on these findings, tougher intervention policies and initiatives to reduce the health effects of CO exposure should be established.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- Centre for Evidence-Based Practice, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
26
|
Zhou X, Gao Y, Wang D, Chen W, Zhang X. Association Between Sulfur Dioxide and Daily Inpatient Visits With Respiratory Diseases in Ganzhou, China: A Time Series Study Based on Hospital Data. Front Public Health 2022; 10:854922. [PMID: 35433609 PMCID: PMC9008542 DOI: 10.3389/fpubh.2022.854922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sulfur dioxide (SO2) has been reported to be related to the mortality of respiratory diseases, but the relationship between SO2 and hospital inpatient visits with respiratory diseases and the potential impact of different seasons on this relationship is still unclear. Methods The daily average concentrations of air pollutants, including SO2 and meteorological data in Ganzhou, China, from 2017 to 2019 were collected. The data on daily hospitalization for respiratory diseases from the biggest hospital in the city were extracted. The generalized additive models (GAM) and the distributed lag non-linear model (DLNM) were employed to evaluate the association between ambient SO2 and daily inpatient visits for respiratory diseases. Stratified analyses by gender, age, and season were performed to find their potential effects on this association. Results There is a positive exposure-response relationship between SO2 concentration and relative risk of respiratory inpatient visits. Every 10 μg/m3 increase in SO2 was related to a 3.2% (95% CI: 0.6–6.7%) exaltation in daily respiratory inpatient visits at lag3. In addition, SO2 had a stronger association with respiratory inpatient visits in women, older adults (≥65 years), and warmer season (May-Oct) subgroups. The relationship between SO2 and inpatient visits for respiratory diseases was robust after adjusting for other air pollutants, including PM10, NO2, O3, and CO. Conclusion This time-series study showed that there is a positive association between short-term SO2 exposure and daily respiratory inpatient visits. These results are important for local administrators to formulate environmental public health policies.
Collapse
Affiliation(s)
- Xingye Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanfang Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokang Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Xu R, Wang Q, Wei J, Lu W, Wang R, Liu T, Wang Y, Fan Z, Li Y, Xu L, Shi C, Li G, Chen G, Zhang L, Zhou Y, Liu Y, Sun H. Association of short-term exposure to ambient air pollution with mortality from ischemic and hemorrhagic stroke. Eur J Neurol 2022; 29:1994-2005. [PMID: 35363940 DOI: 10.1111/ene.15343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Short-term exposure to ambient air pollution has been linked to increased risk of stroke mortality, but its adverse effects on mortality from specific types of stroke including ischemic stroke and hemorrhagic stroke remain poorly understood. METHODS Using the China National Mortality Surveillance System, we conducted a time-stratified case-crossover study among 412,567 stroke deaths in Jiangsu province, China during 2015-2019. Residential daily PM2.5 , PM10 , SO2 , NO2 , CO and O3 exposure concentration was extracted from the ChinaHighAirPollutants dataset for each subject. Conditional logistic regression models were performed to conduct exposure-response analysis. RESULTS Each 10 μg/m3 increase of PM2.5 , PM10 , SO2 , NO2 , CO and O3 was respectively associated with a 1.44%, 0.93%, 5.55%, 2.90%, 0.148%, and 0.54% increase in odds of mortality from ischemic stroke, which was significantly stronger than that from hemorrhagic stroke (percent change in odds: 0.74%, 0.51%, 3.11%, 1.15%, 0.090%, and 0.10%). The excess fraction of ischemic stroke mortality associated with PM2.5 , PM10 , SO2 , NO2 , CO, and O3 exposure was 6.90%, 6.48%, 8.21%, 8.61%, 9.67%, and 4.76%, respectively, which was also significantly higher than that of hemorrhagic stroke mortality (excess fraction: 3.49%, 3.48%, 4.69%, 3.48%, 5.86%, and 0.88%). These differences in adverse effects generally remained across sex, age, and season. CONCLUSIONS Short-term exposure to ambient air pollution was significantly associated with increased risk of both ischemic and hemorrhagic stroke mortality and posed considerable excess mortality. Our results suggest that air pollution exposure may lead to substantially greater adverse effects on mortality from ischemic stroke than that from hemorrhagic stroke.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingqing Wang
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Wenfeng Lu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaqi Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luxi Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lan Zhang
- Institute of Chronic Noncommunicable Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Zhou W, Ming X, Yang Y, Hu Y, He Z, Chen H, Li Y, Zhou X, Yin P. Association between Maternal Exposure to Ambient Air Pollution and the Risk of Preterm Birth: A Birth Cohort Study in Chongqing, China, 2015-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042211. [PMID: 35206398 PMCID: PMC8871940 DOI: 10.3390/ijerph19042211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Recent study results on the association between maternal exposure to ambient air pollution with preterm birth have been inconsistent. The sensitive window of exposure and influence level of air pollutants varied greatly. We aimed to explore the association between maternal exposure to ambient air pollutants and the risk of preterm birth, and to estimate the sensitive exposure time window. A total of 572,116 mother–newborn pairs, daily concentrations of air pollutants from nearest monitoring stations were used to estimate exposures for each participant during 2015–2020 in Chongqing, China. We applied a generalized additive model and estimated RRs and 95% CIs for preterm birth in each trimester and the entire pregnancy period. In the single-pollutant model, we observed that each 10 μg/m3 increase in PM2.5 had a statistically significant effect on the third trimester and entire pregnancy, with RR = 1.036 (95% CI: 1.021, 1.051) and RR = 1.101 (95% CI: 1.075, 1.128), respectively. Similarly, for each 10 μg/m3 increase in PM10, there were 2.7% (RR = 1.027, 95% CI: 1.016, 1.038) increase for PTB on the third trimester, and 3.8% (RR = 1.038, 95% CI: 1.020, 1.057) increase during the whole pregnancy. We found that for each 10 mg/m3 CO increases, the relative risk of PTB increased on the first trimester (RR = 1.081, 95% CI: 1.007, 1.162), second trimester (RR = 1.116, 95% CI: 1.035, 1.204), third trimester (RR = 1.167, 95% CI: 1.090, 1.250) and whole pregnancy (RR = 1.098, 95% CI: 1.011, 1.192). No statistically significant RR was found for SO2 and NO2 on each trimester of pregnancy. Our study indicates that maternal exposure to high levels of PM2.5 and PM10 during pregnancy may increase the risk for preterm birth, especially for women at the late stage of pregnancy. Statistically increased risks of preterm birth were associated with CO exposure during each trimester and entire pregnancy. Reducing exposure to ambient air pollutants for pregnant women is clearly necessary to improve the health of infants.
Collapse
Affiliation(s)
- Wenzheng Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xin Ming
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yunping Yang
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yaqiong Hu
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Ziyi He
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Hongyan Chen
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Yannan Li
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
| | - Xiaojun Zhou
- Chongqing Health Center for Women and Children, Chongqing 401147, China; (X.M.); (Y.Y.); (Y.H.); (Z.H.); (H.C.); (Y.L.)
- Correspondence: (X.Z.); (P.Y.)
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Correspondence: (X.Z.); (P.Y.)
| |
Collapse
|
29
|
Nie Z, Li C, Tian S, Ning P, Yang D, Li Y. An insight into mineral waste pulp for sulfur dioxide removal: A novel synergy-coordination mechanism involving surfactant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
HU YANRU, WU TINGTING, LIU XIAOLI, QIAO DECAI. Effects of exercise on the cardiovascular function of rats in a sulfur dioxide polluted environment. AN ACAD BRAS CIENC 2022; 94:e20211180. [DOI: 10.1590/0001-3765202220211180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- YANRU HU
- School of Humanities, Beijing Dance Academy, China; College of Physical Education and Sports, China
| | | | - XIAOLI LIU
- College of Physical Education and Sports, China
| | - DECAI QIAO
- College of Physical Education and Sports, China
| |
Collapse
|
31
|
Li L, Bai Y, Wang B, Ren Y, Dai W, Tan J, Yang W, Wu Z, Hu Y. Cooking fuel and the risk of pregnancy-induced hypertension in Lanzhou, China: A birth cohort study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.38320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lanlan Li
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Yang Bai
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Baolin Wang
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Yucheng Ren
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Wei Dai
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Jianwei Tan
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Weihu Yang
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Zhuming Wu
- Gansu Provincial Maternity and Child Care Hospital, China
| | - Yaguang Hu
- Gansu Provincial Maternity and Child Care Hospital, China
| |
Collapse
|
32
|
Li G, Wu H, Zhong Q, He J, Yang W, Zhu J, Zhao H, Zhang H, Zhu Z, Huang F. Six air pollutants and cause-specific mortality: a multi-area study in nine counties or districts of Anhui Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:468-482. [PMID: 34331645 DOI: 10.1007/s11356-021-15730-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Air pollution and its negative effects on health of people have been a global concern. Many studies had found a strong association between air pollutants and risk of death, but few had focused on the effects of six pollutants and rural areas. Our study aimed to investigate the effects of six air pollutants (CO, NO2, O3, PM2.5, PM10, and SO2) on non-accidental and respiratory deaths in rural areas of Anhui Province by adjusting for confounding factors, and to further clarify which populations were susceptible to death associated with air pollution. In the first phase of the analysis, the generalized additive models were combined with the distributed lag non-linear models to evaluate the individual effects of air pollution on death in each area. In the second stage, random-effects models were used to aggregate the associations between air pollutants and mortality risk in nine areas. Overall, six pollutants had the strongest effects on the risk of death on the lag 07 days. The associations between PM2.5 and NO2 and daily non-accidental deaths were strongest, with maximum RR (lag 07): 1.63 (1.37-1.88) and 1.67 (1.37-1.96). The maximum pooled effects of association between six air pollutants and RD were PM2.5, with RR (lag 07): 1.89 (1.45-2.34). PM2.5 and PM10 had significant differences between the elderly and the non-elderly with respectively, RRR: 1.22 (1.04-1.41) and 1.26 (1.11-1.42). In general, we found that six air pollutants were the important risk factors for deaths (deaths from respiratory disease and non-accidental) in rural areas of Anhui Province. PM10 and PM2.5 had a considerable impact on the elderly.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huabing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Qi Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Wanjun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jinliang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Zhenyu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
33
|
Cao D, Zheng D, Qian ZM, Shen H, Liu Y, Liu Q, Sun J, Zhang S, Jiao G, Yang X, Vaughn MG, Wang C, Zhang X, Lin H. Ambient sulfur dioxide and hospital expenditures and length of hospital stay for respiratory diseases: A multicity study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113082. [PMID: 34929503 DOI: 10.1016/j.ecoenv.2021.113082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient sulfur dioxide (SO2) has been associated with morbidity and mortality of respiratory diseases, however, its effect on length of hospital stays (LOS) and cost for these diagnoses remain unclear. METHODS We collected hospital admission information for respiratory diseases from all 11 cities in the Shanxi Province of China during 2017-2019. We assessed individual-level exposure by using an inverse distance weighting approach based on geocoded residential addresses. A generalized additive model was built to delineate city-specific effects of SO2 on hospitalization, hospital expenditure, and length of hospital stay for respiratory diseases. The overall effects were obtained by random-effects meta-analysis. We further estimated the respiratory burden attributable to SO2 by comparing different reference concentrations. RESULTS We observed significant effects of SO2 exposure on respiratory diseases. At the provincial level, each 10 μg/m3 increase in SO2 on lag03 was associated with a 0.63% (95% CI: 0.14-0.11) increase in hospital admission, an increase of 4.56 days (95% CI: 1.16-7.95) of hospital stay, and 3647.97 renminbi (RMB, Chinese money) (95% CI: 1091.05-6204.90) in hospital cost. We estimated about 6.13 (95% CI: 1.33-11.10) thousand hospital admissions, 65.77 million RMB (95% CI: 19.67-111.87) in hospital expenditure, and 82.13 (95% CI: 20.87-143.40) thousand days of hospital stay could have potentially been avoided had the daily SO2 concentrations been reduced to WHO's reference concentration (40 µg/m3). Variable values in correspondence with this reference concentration could reduce the hospital cost and LOS of each case by 52.67 RMB (95% CI: 15.75-89.59) and 0.07 days (95% CI: 0.02-0.117). CONCLUSION This study provides evidence that short-term ambient SO2 exposure is an important risk factor of respiratory diseases, indicating that continually tightening policies to reduce SO2 levels could effectively reduce respiratory disease burden in Shanxi Province.
Collapse
Affiliation(s)
- Dawei Cao
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dashan Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, USA
| | - Huiqing Shen
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Liu
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiyong Liu
- Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shiyu Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Guangyuan Jiao
- Department of Ideological and Political Education, School of Marxism, Capital Medical University, Beijing, China
| | - Xiaoran Yang
- Department of Standards and Evaluation, Beijing Municipal Health Commission Policy Research Center, Beijing Municipal health Commission Information Center, Beijing, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Tegeler Hall, 3550 Lindell Boulevard, St. Louis, MO 631034, USA
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinri Zhang
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
34
|
Huang R, Ju T, Dong H, Duan J, Fan J, Liang Z, Geng T. Analysis of atmospheric SO 2 in Sichuan-Chongqing region based on OMI data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:849. [PMID: 34839393 DOI: 10.1007/s10661-021-09638-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The Sichuan-Chongqing region is the leader and growth pole of economic development in western China. With the rapid development of economy and unique geographical environment, high concentration of sulfur dioxide air pollution has existed for a long time in Sichuan-Chongqing area. Based on 10 years of remote sensing data, this paper studies the temporal and spatial distribution characteristics, stability, and influencing factors of sulfur dioxide in this area. Based on potential sources, the impact of surrounding areas on sulfur dioxide in Sichuan and Chongqing is analyzed. The results shows that the spatial distribution of sulfur dioxide in the Sichuan-Chongqing region is higher in the southeast and lower in the west. The Midwest region has low fluctuation and good stability. The time distribution shows obvious seasonal regularity. The concentration of sulfur dioxide is affected by socio-economic factors and natural factors. In this study, it is found that the distribution of sulfur dioxide is closely related to PM2.5, which provides an important reference for the comprehensive management of air pollution. The OMI data effectively reflects the distribution and change of atmospheric sulfur dioxide in the Sichuan-Chongqing region, and provides certain ideas for air pollution control in the Sichuan-Chongqing region and other regions in China.
Collapse
Affiliation(s)
- Ruirui Huang
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tianzhen Ju
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Huiping Dong
- Gansu Industry Polytechnic College, Tianshui, 730070, China
| | - Jiale Duan
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jiachen Fan
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zhuohong Liang
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tunyang Geng
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
35
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Ye T, Guo S, Xie Y, Chen Z, Abramson MJ, Heyworth J, Hales S, Woodward A, Bell M, Guo Y, Li S. Health and related economic benefits associated with reduction in air pollution during COVID-19 outbreak in 367 cities in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112481. [PMID: 34229169 PMCID: PMC8241793 DOI: 10.1016/j.ecoenv.2021.112481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 05/17/2023]
Abstract
Due to the COVID-19 outbreak, the Chinese government implemented nationwide traffic restrictions and self-quarantine measures from January 23 to April 8 (in Wuhan), 2020. We estimated how these measures impacted ambient air pollution and the subsequent consequences on health and the health-related economy in 367 Chinese cities. A random forests modeling was used to predict the business-as-usual air pollution concentrations in 2020, after adjusting for the impact of long-term trend and weather conditions. We calculated changes in mortality attributable to reductions in air pollution in early 2020 and health-related economic benefits based on the value of statistical life (VSL). Compared with the business-as-usual scenario, we estimated 1239 (95% CI: 844-1578) PM2.5-related deaths were avoided, as were 2777 (95% CI: 1565-3995) PM10-related deaths, 1587 (95% CI: 98-3104) CO-related deaths, 4711 (95% CI: 3649-5781) NO2-related deaths, 215 (95% CI: 116-314) O3-related deaths, and 1088 (95% CI: 774-1421) SO2-related deaths. Based on the reduction in deaths, economic benefits for in PM2.5, PM10, CO, NO2, O3, and SO2 were 1.22, 2.60, 1.36, 4.05, 0.20, and 0.95 billion USD, respectively. Our findings demonstrate the substantial benefits in human health and health-related costs due to improved urban air quality during the COVID lockdown period in China in early 2020.
Collapse
Affiliation(s)
- Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia; School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Suying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - Zhaoyue Chen
- Barcelona Institute for Global Health (ISGlobal), Barcelona 08003, Spain
| | - Michael J Abramson
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009, Australia
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, Otago 9016, New Zealand
| | - Alistair Woodward
- School of Population Health, University of Auckland, Auckland 1010, New Zealand
| | - Michelle Bell
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia; School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
37
|
Li Y, Li C, Liu J, Meng C, Xu C, Liu Z, Wang Q, Liu Y, Han J, Xu D. An association between PM 2.5 and pediatric respiratory outpatient visits in four Chinese cities. CHEMOSPHERE 2021; 280:130843. [PMID: 34162098 DOI: 10.1016/j.chemosphere.2021.130843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The effects of exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) on children's respiratory system were investigated in numerous epidemiological literatures. However, studies on the association between PM2.5 and pediatric outpatient visits for respiratory diseases, especially considering the multicenter studies were limited in China. OBJECTIVES To study the association between the short-term exposure to PM2.5 and the number of children's outpatient visits for respiratory diseases in four Chinese cities as well as the pooled health effects. METHODS Data of pediatric outpatient visits for respiratory diseases (RD, ICD: J00-J99) from representative hospitals in Shijiazhuang (SJZ), Xi'an (XA), Nanjing (NJ) and Guangzhou (GZ) in China from 2015 to 2018 were collected and the air quality data for the same period were collected from environmental protection departments. Generalized additive model (GAM) with quasi-Poisson regression was conducted to analyze the effects of PM2.5 on the number of pediatric outpatient visits in each city. Single-day lag model (lag0 to lag7) and moving average lag model (lag01 and lag07) were used to examine the lag effects and cumulative effects. Random-effects meta-analysis was used to pool the estimated risks of four cities. The interactions between PM2.5 and temperature were also explored. RESULTS The average daily/total outpatient visits for RD, in SJZ, XA, NJ and GZ from 2015 to 2018 were 854.2/1,245,384, 2353.9/3,439,025, 1267.2/1,851,438 and 1399.5/2,044,740 respectively. The percentages of acute upper respiratory infections (URD, ICD: J00-J06) and other acute lower respiratory infections (LRD, ICD: J20-J22) in RD were 33%, 13% (SJZ), 43%, 32% (XA), 26%, 21% (NJ) and 54%, 26% (GZ). The largest pooled estimates of single-day lag effects for RD, URD, and LRD were at lag0, lag0 and lag1. Every 10 μg/m3 increase in PM2.5 concentration was associated with a 0.46% (95%CI: 0.21%-0.70%), 0.50% (95%CI: 0.19%-0.81%) and 0.42% (95%CI: 0.06%-0.79%) increased number of outpatient visits significantly. While max cumulative effects which were all at lag 07 were 1.10% (95%CI: 0.46%-1.74%), 0.96% (95%CI: 0.20%-1.73%) and 1.06% (95%CI: 0.12%-2.00%). Less polluted cities (GZ and NJ) showed greater city-specific excess risks, but the excess risks significantly decreased after adjusting for NO2 in two-pollutant models. Generally, PM2.5 showed larger health hazards on lower temperature days. CONCLUSIONS Our study showed that exposure to the ambient PM2.5 was associated with the increase of the number of outpatient visits with pediatric respiratory diseases in four Chinese cities. The health effects of PM2.5 may not be independent of other air pollutants and could be modified by temperature.
Collapse
Affiliation(s)
- Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Jingyi Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Congshen Meng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Chunyu Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Zhe Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Yue Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Jingxiu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China.
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China.
| |
Collapse
|
38
|
Jia C, Li W, Wu T, He M. Road traffic and air pollution: Evidence from a nationwide traffic control during coronavirus disease 2019 outbreak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146618. [PMID: 33780836 PMCID: PMC9671408 DOI: 10.1016/j.scitotenv.2021.146618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Existing estimations of air pollution from automobile sources are based on either experiments or small-scale governmental interventions. China's nationwide traffic control during the coronavirus disease 2019 outbreak provided us a unique opportunity to assess the direct dose-effect relationship between vehicle density and air pollution. We found that, during the coronavirus disease 2019 outbreak, the nationwide reduced air pollution (except for O3) could be largely explained by traffic control measures. During the traffic control period, every doubling of vehicle density was associated with a decrease of 4.2 (2.0, 6.4) μg/m3 in PM2.5, 5.5 (2.9, 8.1) μg/m3 in PM10, 1.5 (0.9, 2.0) μg/m3 in NO2, and 0.04 (0.02, 0.07) mg/m3 in CO comparing cities with different vehicle densities. Similarly, for every 10% increase in the truck proportion, PM2.5 decreased by 12.3 (4.1, 20.6) μg/m3, PM10 decreased by 14.3 (4.6, 23.9) μg/m3, and CO decreased by 0.14 (0.05, 0.23) mg/m3. Moreover, the associations between vehicle density and reduction in PM2.5, PM10, and CO during the traffic control period were stronger and showed near-complete linearity in cities with low green coverage rate (All P < 0.05 for interaction). According to our estimation, PM2.5 emissions from every doubling of vehicle density can lead to over 8000 excess deaths per year, 66% of which were caused by cardiopulmonary diseases. This natural experiment study is the first to observe the dose-effect relationship between on-road traffic and traffic-generated air pollution, as well as the mitigating effect of urban greening. Findings provide key evidence to the assessment and control of traffic-generated air pollution and its public health impact.
Collapse
Affiliation(s)
- Chengyong Jia
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
39
|
Amster E. Public health impact of coal-fired power plants: a critical systematic review of the epidemiological literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:558-580. [PMID: 31617747 DOI: 10.1080/09603123.2019.1674256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Coal-based energy production is the most utilized method of electricity production worldwide and releases the highest concentration of gaseous, particulate, and metallic pollutants. Toxicological research has shown that coal combustion by-products are carcinogens, endocrine disruptors, and cardiorespiratory toxins. This article aims to systematically review the epidemiological literature on the impact emissions from coal-based power production has on morbidity and mortality worldwide. Two thousand one hundred and fifty-two articles were retrieved based on search criteria. Word search of abstract and article text filtered the results to 95 articles. Forty articles were included after screening. The literature indicates a significant adverse effect from particulate matter and polyaromatic hydrocarbon emissions on morbidity and mortality. There is a lack of consistency of exposure assessment and inadequate control of significant potential confounders such as social economic status. Future research should focus on improving exposure assessment models, specifically source-apportionment and geographic information system methods to model power plant-specific emissions.
Collapse
Affiliation(s)
- Eric Amster
- Faculty of Social Welfare and Health Sciences, School of Public Health, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Cao R, Wang Y, Huang J, Zeng Q, Pan X, Li G, He T. The construction of the air quality health index (AQHI) and a validity comparison based on three different methods. ENVIRONMENTAL RESEARCH 2021; 197:110987. [PMID: 33689821 DOI: 10.1016/j.envres.2021.110987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 05/05/2023]
Abstract
The most common currently used air quality risk communication tool, the Air Quality Index (AQI), has been criticized. As a result, Canada proposed the Air Quality Health Index (AQHI) to communicate the health risks of multiple pollutants. However, the AQHI is calculated by directly summing the excess risks from single-pollutant models, which may overestimate the effects of the pollutants. To solve this problem, we introduced two methods for estimating the joint effects of multiple pollutants: the cumulative risk index (CRI) and supervised principal component analysis (SPCA). Based on three methods, i.e., the standard, CRI and SPCA methods, we constructed three types of AQHIs and compared their validity to select the best communication tool. Our results showed that compared with the AQI, all three AQHIs had a linear relationship with mortality. In addition, the CRI-AQHI had the best goodness of fit and captured the overall health risk of pollution mixtures most robustly among various cause-specific mortalities when identifying health risks. Our study indicated that the CRI-AQHI may have the potential to be a better alternative to the standard AQHI in communicating air pollution-related health risks to the public.
Collapse
Affiliation(s)
- Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, China.
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China.
| | - Tianfeng He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, 100191, Beijing, China; Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China.
| |
Collapse
|
41
|
Association between Atrial Fibrillation Incidence and Temperatures, Wind Scale and Air Quality: An Exploratory Study for Shanghai and Kunming. SUSTAINABILITY 2021. [DOI: 10.3390/su13095247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a common cardiovascular disease, atrial fibrillation has the characteristics of high morbidity, high disability, and high fatality rates, seriously endangering human health and sustainability. Some research has confirmed that environmental factors are related to the risk of illness and death from cardiovascular diseases (including atrial fibrillation), while there is still little comparison on the situation of the two cities in China. This research uses medical data in Shanghai and Kunming establishing, through two-step research, logistic models to compare the impacts on atrial fibrillation incidence to figure out the association between environmental factors (including air pollution, weather, temperature, and wind scales) and atrial fibrillation. Finally, this research shows that environmental impacts on atrial fibrillation prevalence have generality, regionality, and lagging characteristics. The result is significant for atrial fibrillation patients and provides a reliable medical theory basis for nursing measures. Besides, this research provides a prospective method of offering early warning for potential atrial fibrillation patients, helping to maintain human beings’ sustainable development.
Collapse
|
42
|
Association between short-term exposure to sulfur dioxide and carbon monoxide and ischemic heart disease and non-accidental death in Changsha city, China. PLoS One 2021; 16:e0251108. [PMID: 33939751 PMCID: PMC8092655 DOI: 10.1371/journal.pone.0251108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Background To investigate the effects of short-term exposure to sulfur dioxide (SO2) and carbon monoxide (CO) in the central and southern China areas on ischemic heart disease (IHD) and non-accidental deaths. Method We investigated the associations between short-term exposure to SO2 and CO in a city in south-central China and IHD and non-accidental death using a time-series design and generalized additive models with up to a 5-day lag adjusting for day of the week, temperature, air pressure, wind speed, and relative humidity. The relative risks of IHD and non-accidental death per 10-unit increase in SO2 and CO were derived from zero to five days in single-pollutant models. Results Between 2016 and 2018, a total of 10,507 IHD and 44,070 non-accidental deaths were identified. The largest significant relative risk for IHD death was lag 02 for both SO2 (1.080; 95% confidence interval: 1.075–1.084) and CO (5.297; 95% confidence interval: 5.177–5.418) in single-pollutants models. A significant association was shown at all lag multiple-day moving averages. Two-pollutant models identified an association between SO2 and mortality when adjusting for CO. In stratified analyses, SO2 exhibited a stronger association with death during the cold season, while CO exhibited a stronger association with mortality from IHD during the warm season. The risk of death was more robust in the elderly for both pollutants, but was greater in men for CO and in women for SO2. Conclusions Overall, we found an association between short-term exposure to low-level SO2 and CO and the risk of IHD and non-accidental death.
Collapse
|
43
|
Orellano P, Reynoso J, Quaranta N. Short-term exposure to sulphur dioxide (SO 2) and all-cause and respiratory mortality: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2021; 150:106434. [PMID: 33601225 PMCID: PMC7937788 DOI: 10.1016/j.envint.2021.106434] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Many studies have assessed the harmful effects of ambient air pollution on human mortality, but the evidence needs further exploration, analysis, and refinement, given the large number of studies that have been published in recent years. The objective of this study was to evaluate all the available evidence of the effect of short-term exposure to ambient sulphur dioxide (SO2) on all-cause and respiratory mortality. METHODS Articles reporting observational epidemiological studies were included, comprising time-series and case-crossover designs. A broad search and wide inclusion criteria were considered, encompassing international and regional databases, with no geographical or language restrictions. A random effect meta-analysis was conducted, and pooled relative risk for an increment of 10 µg/m3 in SO2 concentrations were calculated for each outcome. We analysed the risk of bias (RoB) in individual studies for specific domains using a new domain-based RoB assessment tool, and the certainty of evidence across studies with an adaptation of the Grading of Recommendations Assessment, Development and Evaluation approach. The certainty of evidence was judged separately for each exposure-outcome combination. A number of subgroup and sensitivity analyses were carried out, as well as assessments of heterogeneity and potential publication bias. The protocol for this review was registered with PROSPERO (CRD42019120738). RESULTS Our search retrieved 1,128 articles, from which 67 were included in quantitative analysis. The RoB was low or moderate in the majority of articles and domains. An increment of 10 µg/m3 in SO2 (24-hour average) was associated with all-cause mortality (RR: 1.0059; 95% CI: 1.0046-1.0071; p-value: <0.01), and respiratory mortality (RR: 1.0067; 95% CI: 1.0025-1.0109; p-value: <0.01), while the same increment in SO2 (1-hour max.) was associated with respiratory mortality (RR:1.0052; 95% CI: 1.0013-1.0091; p-value: 0.03). Similarly, the association was positive but non-significant for SO2 (1-hour max.) and all-cause mortality (RR: 1.0016; 95% CI: 0.9930-1.0102; p-value: 0.60). These associations were still significant after the adjustment for particulate matter, but not for other pollutants, according to the results from 13 articles that evaluated co-pollutant models. In general, linear concentration-response functions with no thresholds were found for the two outcomes, although this was only evaluated in a small number of studies. We found signs of heterogeneity for SO2 (24-hour average) - respiratory mortality and SO2 (1-hour max.) - all-cause mortality, and funnel plot asymmetry for SO2 (24-hour average) - all-cause mortality. The certainty of evidence was high in two combinations, i.e. SO2 (24-hour average) - all-cause mortality and SO2 (1-hour max.) - respiratory mortality, moderate in one combination, i.e. SO2 (24-hour average) - respiratory mortality, and low in the remaining one combination. CONCLUSIONS Positive associations were found between short-term exposure to ambient SO2 and all-cause and respiratory mortality. These associations were robust against several sensitivity analyses, and were judged to be of moderate or high certainty in three of the four exposure-outcome combinations.
Collapse
Affiliation(s)
- Pablo Orellano
- Centro de Investigaciones y Transferencia San Nicolás, Universidad Tecnológica Nacional (CONICET), San Nicolás, Argentina.
| | | | - Nancy Quaranta
- Facultad Regional San Nicolás, Universidad Tecnológica Nacional, San Nicolás, Argentina, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| |
Collapse
|
44
|
Li J, Huang J, Cao R, Yin P, Wang L, Liu Y, Pan X, Li G, Zhou M. The association between ozone and years of life lost from stroke, 2013-2017: A retrospective regression analysis in 48 major Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124220. [PMID: 33092875 DOI: 10.1016/j.jhazmat.2020.124220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The adverse impact of ozone on public health has attracted worldwide attention. However, few studies have addressed the contribution of ozone to disease burden caused by cardiovascular diseases. This study aimed to examine the association between short-term ozone exposure and years of life lost (YLL) from stroke in 48 Chinese cities. City-specific relative change of YLL was estimated by a generalized additive model, then pooled using random-effects meta-analysis. The potential effect modification of individual, climatic, and city-level characteristics was also evaluated. A 10 μg/m3 increase in three-day moving average of ozone concentration was associated with 0.54% (95% CI: 0.41%, 0.66%), 0.25% (95% CI: 0.10%, 0.40%), and 0.70% (95% CI: 0.48%, 0.92%) relative increment in YLL from stroke, haemorrhagic stroke, and ischaemic stroke, respectively. The association magnitudes were larger in elderly people, females, or higher quartile groups of temperature (all p < 0.01). The potential avoidable life lost due to YLL from stroke was 5.5 days per deceased person if ozone concentration could reduce to the standard recommended by the World Health Organization (100 μg/m3). Our findings provided robust evidence on the impact of short-term ozone exposure on YLL from stroke and called for more stringent regulation of ozone.
Collapse
Affiliation(s)
- Jie Li
- Department of Occupational health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
45
|
Li J, Wang Y, Yin P, Huang J, Wu Z, Cao R, Wang L, Zeng Q, Pan X, Li G, Zhou M. The burden of sulfur dioxide pollution on years of life lost from chronic obstructive pulmonary disease: A nationwide analysis in China. ENVIRONMENTAL RESEARCH 2021; 194:110503. [PMID: 33221304 DOI: 10.1016/j.envres.2020.110503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfur dioxide (SO2) is one of the major gaseous pollutants in China and other developing countries. Few multicity studies have been done to examine the short-term effect of SO2 on cause-specific years of life lost (YLL). This study was designed to investigate the burden of chronic obstructive pulmonary disease (COPD) associated with SO2 exposure. METHODS A 5-year time-series study was conducted in 48 Chinese cities from 2013 to 2017. Generalized additive models were first used to estimate the city-specific relationship. Then, random-effects meta-analyses were applied to pool the estimates. Furthermore, the roles of potential modifiers and the related economic loss estimated by the method of value per statistical life year were also evaluated. RESULTS The annual mean concentration of SO2 was 27.1 μg/m3. A 10 μg/m3 increase in 4-day moving average (lag03) of SO2 concentration was associated with 0.83% (95% CI: 0.13%, 1.53%) relative increment in YLL from COPD, and relevant percent change of mortality was 0.78% (95% CI: 0.16%, 1.41%). Moreover, a significantly higher effect was observed in the warm season, particularly in the south region. SO2 exposure was estimated to account for 1.89% of the total economic loss due to YLL from COPD. CONCLUSIONS Our findings showed a positive association between short-term exposure to SO2 and YLL from COPD and highlighted the importance of continuous control of SO2 pollution to reduce corresponding attributable disease burden.
Collapse
Affiliation(s)
- Jie Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ziting Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Qiang Zeng
- Department of Occupational Disease Control and Prevention, Tianjin Center for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
46
|
Wu Z, Li J, Huang J, Wang Y, Cao R, Yin P, Wang L, Zeng Q, Pan X, Zhou M, Li G. Ambient sulfur dioxide and years of life lost from stroke in China: a time-series analysis in 48 cities. CHEMOSPHERE 2021; 267:128857. [PMID: 33183785 DOI: 10.1016/j.chemosphere.2020.128857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Sulfur dioxide (SO2) is a ubiquitous air pollutant and its concentration in China remains at a higher level in the world. However, evidence regarding short-term effect of SO2 on years of life lost (YLL) from stroke is scarce. We aim to estimate the short-term association between SO2 pollution and YLL for stroke and the related excess life years and economic loss. METHODS A national time-series study was conducted in 48 Chinese cities from 2013 to 2017. Generalized additive model coupled with random-effects model were used to explore the effects of SO2 on YLL from stroke. Stratified analyses were performed by demographical and geographical factors, and the effect modification of city-level factors was estimated. In addition, the related economic loss was calculated using the method of the value per statistical life year (VSLY). RESULTS Averaged daily mean SO2 concentration was 27.1 μg/m3 in 48 Chinese cities from 2013 to 2017. Per 10 μg/m3 increase in the concentration of SO2 (lag03) was associated with an increment of 0.70% (95% confidence interval: 0.27%,1.13%), 0.51% (-0.01%,1.04%), 0.71% (0.14%,1.28%) increase in YLL from total stroke, hemorrhagic and ischemic stroke, respectively. The effect of short-term ambient SO2 exposure on YLL from stroke was more pronounced in the less-educated population and those living in the south. The corresponding excess economic loss during the study period due to SO2-related YLL from stroke accounted for 0.08% (0.03%, 0.13%) of the GDP in China. CONCLUSIONS Our results provide evidence from China that short-term exposure to SO2 is positively associated with YLL from stroke and its major subtypes in certain subgroups of population. This study calls for greater awareness of the adverse health effect due to SO2 in China and other developing countries, as well as local-specific implementation of air pollution mitigation measures.
Collapse
Affiliation(s)
- Ziting Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jie Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Qiang Zeng
- Department of Occupational Disease Control and Prevention, Tianjin Center for Disease Control and Prevention, Tianjin, 300011, PR China
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
47
|
Liu XB, Wen XM, Sun XH, Hong QQ, Wang Q, Kang Z, Xia SJ, Yang C, Zhu S. The Short-Term Effects of Ambient Air Pollutants are Associated With Daily Mortality in Northeast China From 2014 to 2018: A Time Series Analysis. J Occup Environ Med 2021; 63:173-180. [PMID: 33149009 DOI: 10.1097/jom.0000000000002075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE We aimed to examine the associations between ambient air pollutants and daily mortality in Northeast China from 2014 to 2018. METHODS A two-stage approach was used to estimate particulate matter with an aerodynamic diameter of 10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) exposure and daily mortality. RESULTS An increase of 10 μg/m3 of PM10 exposure and NO2 at lag of 0 to16 days was associated with the cumulative relative risk of 1.011 (95% confidence interval [CI]: 1.004, 1.019) and 1.026 (95% CI: 1.004, 1.049), respectively, in non-accident mortality. Meanwhile, significant association was observed in people aged under 60 years between SO2 exposure and respiratory mortality at lag of 0 to 9 days. CONCLUSIONS Our findings strengthen the evidence of PM10 and NO2 exposures were independent risk for daily mortality.
Collapse
Affiliation(s)
- Xiao-Bo Liu
- Department of Epidemiology and Statistics, School of Basic Medical Sciences, Jinan University, Guangzhou, China (Ms Wen, Ms Wang, Dr Xia, Dr Zhu); Department of Environment, Harbin Center for Disease Control and Prevention, Harbin, China (Ms Liu, Ms Hong, Ms Kang); Department of Physicochemical Laboratory, Harbin Center for Disease Control and Prevention, Harbin, China (Ms Sun); Harbin Center for Disease Control and Prevention, Harbin, China (Mr Yang)
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo H, Wei J, Li X, Ho HC, Song Y, Wu J, Li W. Do socioeconomic factors modify the effects of PM1 and SO2 on lung cancer incidence in China? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143998. [PMID: 33310217 DOI: 10.1016/j.scitotenv.2020.143998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND It remains uncertain whether socioeconomic factors modify the effect of air pollution on human health. Moreover, studies investigating socioeconomic modifying roles on the effect of PM1 are quite limited, especially in developing countries. OBJECTIVES The present study aims to investigate socioeconomic modification effects on the associations of the incidence rate of male lung cancer with ambient PM1 and SO2 in China. METHODS We conducted a nationwide analysis in 345 Chinese counties (districts) between 2014 and 2015. In terms of multivariable linear regression models, we examined the modification effects of urban-rural division, education level and proportion of construction workers in the stratified and combined datasets according to the tertile and binary divisions of the three factors. Moreover, we performed three sensitivity analyses to test the robustness of socioeconomic modification effects. RESULTS We found a larger effect of PM1 on the incidence rate of male lung cancer in urban areas than in rural areas. The association between PM1 (or SO2) and the incidence rate of male lung cancer was stronger in counties with low education levels than in those with high education levels. The findings of the significant modification effects of urban-rural division and education level were robust in the three sensitivity analyses. No significant modification effect was observed for the proportion of construction workers. CONCLUSIONS Male residents in urban areas have a high risk of lung cancer incidence associated with ambient PM1. Male residents with low education levels suffer from larger effects of PM1 and SO2 on the incidence rate of lung cancer. Area- and population-specific strategies should be developed to reduce the urban-rural and educational disparities in air pollution effects, which thereby alleviates air pollution-associated health disparities in China.
Collapse
Affiliation(s)
- Huagui Guo
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, PR China.
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Xin Li
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China.
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China.
| | - Yimeng Song
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China.
| | - Jiansheng Wu
- Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School, Peking University, Shenzhen 518055, PR China; Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Weifeng Li
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, PR China.
| |
Collapse
|
49
|
Chen Q, Wang Q, Xu B, Xu Y, Ding Z, Sun H. Air pollution and cardiovascular mortality in Nanjing, China: Evidence highlighting the roles of cumulative exposure and mortality displacement. CHEMOSPHERE 2021; 265:129035. [PMID: 33246705 DOI: 10.1016/j.chemosphere.2020.129035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Few studies have investigated cumulative effects and mortality displacement of short-term air pollution exposure on deaths; therefore, uncertainty remains regarding its public health significance. METHODS We obtained air pollution and daily cause-specific mortality data of Nanjing from January 2004 to December 2019, covering a period of 16 years. We performed a time-series analysis with single-day, 2-day moving average, and distributed lag models, respectively, to estimate the effects of PM2.5, PM10, NO2, and SO2 exposure on total cardiovascular disease, ischaemic heart disease (IHD), and cerebrovascular disease (CBVD) mortality. Distributed lag models were used to assess the roles of cumulative exposure and mortality displacement. RESULTS Cumulative effect estimates for 0-7 lag days were more considerable than estimates for single-day lags and 2-day moving average lag. The cumulative effect estimates for PM10, NO2 and SO2 on total cardiovascular and CBVD mortality became essentially zero within 30 days, which suggested the existence of mortality displacement. But the cumulative effect estimates for PM2.5 and SO2 on IHD mortality remained elevated and statistically significant within 27 (2.11%; 95% CI: 0.12, 4.27%) and 22 (2.63%; 95% CI: 0.39, 4.91%) days, respectively, which suggested the absence of mortality displacement. CONCLUSIONS Our results indicated that risk assessment based on single-day or 2-day moving average exposure rather than cumulative exposure likely underestimate the adverse effects of air pollution. The cumulative PM2.5 and SO2 exposure for nearly a month may have adverse effects on IHD mortality.
Collapse
Affiliation(s)
- Qi Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| | - Qingqing Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| | - Bin Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| | - Yan Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, 210009, Nanjing, PR China.
| |
Collapse
|
50
|
Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants. Environ Health Prev Med 2021; 26:15. [PMID: 33499804 PMCID: PMC7839211 DOI: 10.1186/s12199-021-00937-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have suggested that exposure to air pollution may increase stroke risk, but the results remain inconsistent. Evidence of more recent studies is highly warranted, especially gas air pollutants. METHODS We searched PubMed, Embase, and Web of Science to identify studies till February 2020 and conducted a meta-analysis on the association between air pollution (PM2.5, particulate matter with aerodynamic diameter less than 2.5 μm; PM10, particulate matter with aerodynamic diameter less than 10 μm; NO2, nitrogen dioxide; SO2, sulfur dioxide; CO, carbon monoxide; O3, ozone) and stroke (hospital admission, incidence, and mortality). Fixed- or random-effects model was used to calculate pooled odds ratios (OR)/hazard ratio (HR) and their 95% confidence intervals (CI) for a 10 μg/m3 increase in air pollutant concentration. RESULTS A total of 68 studies conducted from more than 23 million participants were included in our meta-analysis. Meta-analyses showed significant associations of all six air pollutants and stroke hospital admission (e.g., PM2.5: OR = 1.008 (95% CI 1.005, 1.011); NO2: OR = 1.023 (95% CI 1.015, 1.030), per 10 μg/m3 increases in air pollutant concentration). Exposure to PM2.5, SO2, and NO2 was associated with increased risks of stroke incidence (PM2.5: HR = 1.048 (95% CI 1.020, 1.076); SO2: HR = 1.002 (95% CI 1.000, 1.003); NO2: HR = 1.002 (95% CI 1.000, 1.003), respectively). However, no significant differences were found in associations of PM10, CO, O3, and stroke incidence. Except for CO and O3, we found that higher level of air pollution (PM2.5, PM10, SO2, and NO2) exposure was associated with higher stroke mortality (e.g., PM10: OR = 1.006 (95% CI 1.003, 1.010), SO2: OR = 1.006 (95% CI 1.005, 1.008). CONCLUSIONS Exposure to air pollution was positively associated with an increased risk of stroke hospital admission (PM2.5, PM10, SO2, NO2, CO, and O3), incidence (PM2.5, SO2, and NO2), and mortality (PM2.5, PM10, SO2, and NO2). Our study would provide a more comprehensive evidence of air pollution and stroke, especially SO2 and NO2.
Collapse
|