1
|
杜 越, 王 亚. [The association between preterm birth and hypertension]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:871-878. [PMID: 39148394 PMCID: PMC11334553 DOI: 10.7499/j.issn.1008-8830.2312129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
In recent years, the number of premature births worldwide has been increasing, and their long-term prognoses, particularly the cardiovascular outcomes of preterm individuals in adulthood, have become a growing concern. Adults who were born prematurely are at a higher risk for cardiovascular diseases, which may be related to changes in cardiovascular structure, renal structure alterations, changes in body composition, and overactivation of the hypothalamic-pituitary-adrenal axis. To improve the outcomes for preterm individuals, long-term follow-up monitoring and effective prevention and treatment measures are necessary. This article aims to review the relevant literature, summarize the risks and mechanisms of hypertension during childhood and adulthood in those born prematurely, and enhance awareness and understanding of the risk of hypertension in adults who were born prematurely.
Collapse
|
2
|
Danziger J. Synergistic susceptibility to environmental lead toxicity in chronic kidney disease. Curr Opin Nephrol Hypertens 2024:00041552-990000000-00174. [PMID: 39017648 DOI: 10.1097/mnh.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW While high levels of lead exposure, as occurs accidentally or occupationally, can cause toxicity across multiple organ systems, the hazard of commonly encountered levels of lead in the environment remains unresolved. Challenges to researching the health effects of lead include its complex interplay with renal function, rendering analyses at risk of unaccounted confounding, and the likely small effect size of environmental levels of exposure. While children are known to be disproportionately susceptible to lead toxicity, resulting in appropriately more stringent regulatory surveillance for those under 5 years old, emerging evidence suggests that those with chronic kidney disease (CKD) similarly are at a greater risk. This review summarizes the role of environmental lead toxicity as a potential cause and consequence of CKD. RECENT FINDINGS Whether environmental lead exposure causes CKD remains debatable, with little recent research advancing the conflicting, mostly cross-sectional, analyses from years ago. However, an emerging body of evidence suggests that CKD increases the susceptibility to lead toxicity. Higher circulating lead levels and lower urinary excretion result in greater lead accumulation in CKD, with simultaneous greater risk of clinically meaningful disease. Recent studies suggest that levels of lead found commonly in the United States drinking water supply, and currently permissible by the Environmental Protection Agency, associate with hematologic toxicity in those with advanced CKD. Whether environmental lead contamination may have additional negative health impact among this at-risk population, including cardiovascular and neurocognitive disease, warrants further study. SUMMARY The underlying pathophysiology of kidney disease synergizes the susceptibility to environmental lead toxicity for those with CKD. Low levels of exposure, as found commonly in the United States water supply, may have adverse health impact in CKD. Further research will be needed to determine if more stringent environmental regulations are warranted to protect the health of all.
Collapse
Affiliation(s)
- John Danziger
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zuo J, Zhang H, Gang H, Mai Q, Jia Z, Liu H, Xia W, Xu S, Li Y. Associations of intrauterine exposure to manganese with fetal and early-childhood growth: a prospective prenatal cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14303-14317. [PMID: 38273082 DOI: 10.1007/s11356-023-31773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Prenatal manganese (Mn) exposure may be related to poor birth outcomes; however, there are few relevant epidemiological reports on the effects of intrauterine Mn levels on intrauterine fetal and early childhood growth. From 2013 to 2016, 2082 pairs of mothers and infants were recruited in Wuhan, China, who provided an entire set of urine samples during their first, second, and third trimesters. Fetal head circumference (HC), abdominal circumference (AC), femoral length (FL), and estimated fetal weight (EFW) were obtained by ultrasound at the 16, 24, and 31 weeks of pregnancy. When the children were born, 6 months old, 12 months old, and 24 months old, their weight, height, weight-for-height, and BMI were measured. We used generalized linear models, generalized estimated equations, and restricted cubic spline curves (RCS) to investigate the linear and nonlinear relationships between antenatal Mn levels and fetal and early childhood growth. In all fetuses, Mn exposure during the 1st and 2nd gestation was associated with decreased fetal AC, FL, and EFW at 24 weeks (e.g., for each doubling of urinary Mn concentrations during the 1st and 2nd gestation, the SD score of EFW at 24 weeks decreased by - 4.16% (95% CI, - 6.22%, - 2.10%) and - 3.78% (95% CI, - 5.86%, - 1.70%)). Mn concentrations in the highest tertile group of the 1st and 2nd gestation were related to decreased fetus growth parameters compared to the lowest tertile group. For each doubling of the average Mn concentrations during pregnancy, the z-scores of weight, weight-for-height, and BMI at 12 months decreased, with percentage changes of - 2.93% (95% CI, - 5.08%, - 0.79%), - 3.25% (95% CI, - 5.56%, - 0.94%), and - 3.09% (95% CI, - 5.44%, - 0.73%). In the RCS model, we found a reverse U-shaped association between 1st trimester Mn concentration and fetal FL at 16 weeks and HC at 31 weeks in male fetuses and a non-linear association between mean Mn concentration during pregnancy and girls' weight-for-height and BMI at 6 months. Intrauterine exposure to Mn may be related to restricted growth in the fetus and early childhood, especially in fetuses at 24 weeks of gestation and children at 12 months of age. Also, meaningful curvilinear relationships were found in the sex stratification.
Collapse
Affiliation(s)
- Jingwen Zuo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, People's Republic of China
| | - Huiqing Gang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Mai
- Center for Public Health Laboratory Service, Wuhan Centers for Disease Control & Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
India Aldana S, Colicino E, Cantoral Preciado A, Tolentino M, Baccarelli AA, Wright RO, Téllez Rojo MM, Valvi D. Longitudinal associations between early-life fluoride exposures and cardiometabolic outcomes in school-aged children. ENVIRONMENT INTERNATIONAL 2024; 183:108375. [PMID: 38128386 PMCID: PMC10842303 DOI: 10.1016/j.envint.2023.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND/AIM Fluoride is a natural mineral present in food, water, and dental products, constituting ubiquitous long-term exposure in early childhood and across the lifespan. Experimental evidence shows fluoride-induced lipid disturbances with potential implications for cardiometabolic health. However, epidemiological studies are scarce. For the first time, we evaluated associations between repeated fluoride measures and cardiometabolic outcomes in children. METHODS We studied ∼ 500 Mexican children from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort with measurements on urinary fluoride at age 4, and dietary fluoride at ages 4, 6, and 8 years approximately. We used covariate-adjusted linear mixed-effects and linear regression models to assess fluoride associations with multiple cardiometabolic outcomes (ages 4-8): lipids (total cholesterol, HDL, LDL, and triglycerides), glucose, HbA1c, adipokines (leptin and adiponectin), body fat, and age- and sex-specific z-scores of body mass index (zBMI), waist circumference, and blood pressure. RESULTS Dietary fluoride intake at age 4 was associated with annual increases in triglycerides [β per-fluoride-doubling = 2.02 (95 % CI: 0.37, 3.69)], cholesterol [β = 1.46 (95 % CI: 0.52, 2.39)], HDL [β = 0.39 (95 % CI: 0.02, 0.76)], LDL [β = 0.87 (95 % CI: 0.02, 1.71)], and HbA1c [β = 0.76 (95 % CI: 0.28, 1.24)], and decreased leptin [β = -3.58 (95 % CI: -6.34, -0.75)] between the ages 4 and 8. In cross-sectional analyses at age 8, higher tertiles of fluoride exposure were associated with increases in zBMI, triglycerides, glucose, and leptin (p-tertile trend < 0.05). Stronger associations were observed in boys at year 8 and in girls prior to year 8 (p-sex interaction < 0.05). Fewer but consistent associations were observed for urinary fluoride at age 4, indicating increased annual changes in HDL and HbA1c with higher fluoride levels. CONCLUSION Dietary fluoride exposures in early- and mid-childhood were associated with adverse cardiometabolic outcomes in school-aged children. Further research is needed to elucidate whether these associations persist at later ages.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Maricruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Chaurasia P, McClean SI, Mahdi AA, Yogarajah P, Ansari JA, Kunwar S, Ahmad MK. Automated lead toxicity prediction using computational modelling framework. Health Inf Sci Syst 2023; 11:56. [PMID: 38028960 PMCID: PMC10661678 DOI: 10.1007/s13755-023-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background Lead, an environmental toxicant, accounts for 0.6% of the global burden of disease, with the highest burden in developing countries. Lead poisoning is very much preventable with adequate and timely action. Therefore, it is important to identify factors that contribute to maternal BLL and minimise them to reduce the transfer to the foetus. Literacy and awareness related to its impact are low and the clinical establishment for biological monitoring of blood lead level (BLL) is low, costly, and time-consuming. A significant contribution to an infant's BLL load is caused by maternal lead transfer during pregnancy. This acts as the first pathway to the infant's lead exposure. The social and demographic information that includes lifestyle and environmental factors are key to maternal lead exposure. Results We propose a novel approach to build a computational model framework that can predict lead toxicity levels in maternal blood using a set of sociodemographic features. To illustrate our proposed approach, maternal data comprising socio-demographic features and blood samples from the pregnant woman is collected, analysed, and modelled. The computational model is built that learns from the maternal data and then predicts lead level in a pregnant woman using a set of questionnaires that relate to the maternal's social and demographic information as the first point of testing. The range of features identified in the built models can estimate the underlying function and provide an understanding of the toxicity level. Following feature selection methods, the 12-feature set obtained from the Boruta algorithm gave better prediction results (kNN = 76.84%, DT = 74.70%, and NN = 73.99%). Conclusion The built prediction model can be beneficial in improving the point of care and hence reducing the cost and the risk involved. It is envisaged that in future, the proposed methodology will become a part of a screening process to assist healthcare experts at the point of evaluating the lead toxicity level in pregnant women. Women screened positive could be given a range of facilities including preliminary counselling to being referred to the health centre for further diagnosis. Steps could be taken to reduce maternal lead exposure; hence, it could also be possible to mitigate the infant's lead exposure by reducing transfer from the pregnant woman.
Collapse
Affiliation(s)
- Priyanka Chaurasia
- School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, Londonderry, BT487JL UK
| | - Sally I. McClean
- School of Computing, Ulster University, Co. Antrim, Newtownabbey, BT370QB UK
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Pratheepan Yogarajah
- School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, Londonderry, BT487JL UK
| | - Jamal Akhtar Ansari
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Shipra Kunwar
- Department of Obstetrics & Gynecology, Faculty of Medicine, Era University, Lucknow, Uttar Pradesh 226003 India
| | - Mohammad Kaleem Ahmad
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh 226003 India
| |
Collapse
|
6
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
7
|
Politis MD, Yao M, Gennings C, Tamayo-Ortiz M, Valvi D, Kim-Schulze S, Qi J, Amarasiriwardena C, Pantic I, Tolentino MC, Estrada-Gutierrez G, Greenberg JH, Téllez-Rojo MM, Wright RO, Sanders AP, Rosa MJ. Prenatal Metal Exposures and Associations with Kidney Injury Biomarkers in Children. TOXICS 2022; 10:692. [PMID: 36422900 PMCID: PMC9699100 DOI: 10.3390/toxics10110692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Prenatal exposure to arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) may be nephrotoxic, yet limited studies have examined subclinical kidney injury biomarkers in children. We assessed whether metal exposure in the second trimester (2T), a crucial time of kidney development, is associated with altered urine kidney injury and function biomarkers in preadolescent children. Analyses included 494 children participating in a birth cohort study in Mexico City. Concentrations of As, Cd, and Pb were measured from pregnant women in 2T blood and urine, and Hg in urine only. Kidney biomarkers were measured from children in urine at age 8-12 years. We assessed the associations between individual metals and (1) kidney biomarkers using linear regression and (2) a multi-protein kidney mixture using weighted quantile sum (WQS) regression. Associations of separate urine and blood metal mixtures with individual kidney biomarkers were assessed via WQS. Within the multi-protein mixture, the association with increased urinary As was predominated by urine alpha-1-microglobulin (A1M), interferon gamma-induced protein 10 (IP10), and fatty acid binding protein 1; the association with increased urinary Cd was predominated by A1M, clusterin, and albumin. The urine metal mixture was associated with increased albumin (0.23 ng/mL; 95% confidence interval (CI): 0.10, 0.37), IP10 (0.15 ng/mL; 95% CI: 0.02, 0.28), and cystatin C (0.17 ng/mL; 95% CI: 0.04, 0.31); these associations were mainly driven by urinary As and Cd. We observed null associations between prenatal blood or urine metal mixtures and estimated glomerular filtration rate. Higher prenatal urinary metals, individually and as a mixture were associated with altered kidney injury biomarkers in children. Further research and longer participant follow-up are required to ascertain the risk of kidney disease later in life.
Collapse
Affiliation(s)
- Maria D. Politis
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City 06600, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Pantic
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City 06600, Mexico
| | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City 06600, Mexico
| | | | - Jason H. Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Sanders AP, Gennings C, Tamayo-Ortiz M, Mistry S, Pantic I, Martinez M, Estrada-Gutierrez G, Espejel-Nuñez A, Olascoaga LT, Wright RO, Téllez-Rojo MM, Arora M, Austin C. Prenatal and early childhood critical windows for the association of nephrotoxic metal and metalloid mixtures with kidney function. ENVIRONMENT INTERNATIONAL 2022; 166:107361. [PMID: 35797845 PMCID: PMC9792626 DOI: 10.1016/j.envint.2022.107361] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 05/30/2023]
Abstract
INTRODUCTION As renal development and maturation processes begin in utero and continue through early childhood, sensitive developmental periods arise during which metal exposures can program subclinical nephrotoxicity that manifests later in life. We used novel dentine biomarkers of established nephrotoxicants including arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), and lithium (Li), and their mixtures, to identify critical windows of exposure-associated kidney function alterations in preadolescents. METHODS Participants included 353 children in the Programming Research in Obesity Growth, Environment and Social Stressors (PROGRESS) longitudinal birth cohort study based in Mexico City. Estimated glomerular filtration rate (eGFR) was assessed in 8-12 year old children using serum cystatin C measures. Pre- and postnatal metal(loid) concentrations were assessed in weekly increments by analyzing deciduous teeth with laser ablation-inductively coupled plasma-mass spectrometry. We used reverse distributed lag models (rDLMs) and lagged Weighted Quantile Sum (L-WQS) regression to examine time-varying associations between weekly perinatal metal(loid) exposure or metal(loid) mixtures and preadolescent eGFR while adjusting for age, sex, BMI z-score, SES and prenatal tobacco smoke exposure. RESULTS We identified a critical window of susceptibility to Pb exposure, in the late 3rd trimester (5 weeks prior to birth) during which higher Pb exposure was associated with children's increased eGFR. When all elements were assessed as a mixture, we identified late 2nd/early 3rd trimester (weeks 8-17 of gestation) as a window of vulnerability associated with decreased eGFR, with Li and Cr contributing the greatest weights to the association. When stratified by sex, we observed stronger effects among boys than girls. CONCLUSIONS Using tooth-matrix biomarkers, we identified discrete developmental exposure windows wherein Pb and metal(loid) mixtures were associated with altered preadolescent kidney function.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Shachi Mistry
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Pantic
- Research Division, National Institute of Perinatology, Mexico City, Mexico
| | - Mauro Martinez
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Libni Torres Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Saylor C, Malin AJ, Tamayo-Ortiz M, Cantoral A, Amarasiriwardena C, Estrada-Gutierrez G, Tolentino MC, Pantic I, Wright RO, Tellez-Rojo MM, Sanders AP. Early childhood fluoride exposure and preadolescent kidney function. ENVIRONMENTAL RESEARCH 2022; 204:112014. [PMID: 34506780 PMCID: PMC11071127 DOI: 10.1016/j.envres.2021.112014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life renal maturation is susceptible to nephrotoxic environmental chemicals. Given the widespread consumption of fluoride and the global obesity epidemic, our main aim was to determine whether childhood fluoride exposure adversely affects kidney function in preadolescence, and if adiposity status modifies this association. METHODS Our study included 438 children from the PROGRESS cohort. Urinary fluoride (uF) was assessed at age 4 by diffusion analysis; outcomes studied included estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), selected kidney proteins and blood pressure measured at age 8-12 years. We modeled the relationship between uF and outcomes, and adjusted for body mass index (BMI), age, sex, and socioeconomic status. RESULTS The median uF concentration was 0.67 μg/mL. We observed null associations between 4-year uF and preadolescent eGFR, although effect estimates were in the expected inverse direction. A single unit increase in ln-transformed uF was associated with a 2.2 mL/min decrease in cystatin C-based eGFR (95% CI: 5.8, 1.4; p = 0.23). We observed no evidence of sex-specific effects or effect modification by BMI status. Although uF was not associated with BMI, among children with obesity, we observed an inverse association (β: 4.8; 95% CI: 10.2, 0.6; p = 0.08) between uF and eGFR. CONCLUSIONS Low-level fluoride exposure in early childhood was not associated with renal function in preadolescence. However, given the adverse outcomes of chronic fluoride consumption it is possible that the preadolescent age was too young to observe any effects. Longitudinal follow-up in this cohort and others is an important next step.
Collapse
Affiliation(s)
- Charles Saylor
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley J Malin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, 2001 N Soto St., Los Angeles, CA, 90032, USA.
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico.
| | - Alejandra Cantoral
- Iberoamerican University -Mexico City, Department of Health, Mexico City, Mexico
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Tellez-Rojo
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, USA.
| |
Collapse
|
10
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Human risk associated with the ingestion of artichokes grown in soils irrigated with water contaminated by potentially toxic elements, Junin, Peru. Saudi J Biol Sci 2021; 28:5952-5962. [PMID: 34588912 PMCID: PMC8459158 DOI: 10.1016/j.sjbs.2021.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022] Open
Abstract
The contamination of water, air and soil with potentially toxic elements (PTE) compromises the supply of contaminant free food. Vegetables grown in contaminated soils can absorb and accumulate PTE at concentrations that are toxic to human health. In this context, the human risk associated with the intake of artichokes grown in soils irrigated with PTE contaminated water was assessed. 120 samples of surface soil and artichoke heads were collected and the concentrations of Cu, Fe, Pb, Zn and As were determined. The results showed that the concentrations of Cu, Fe and Zn in soil did not exceed the standards of the Ministry of Environment of Peru, but they did exceed those of Pb (125.45 mg kg-1) and As (28.70 mg kg-1). The decreasing order of mean PTE concentration in artichoke heads was Fe > Zn > Cu > Pb > As, exceeding the permissible levels of FAO/WHO CODEX Alimentarius. However, the concentrations of As comply with the maximum limits of inorganic contaminants in vegetables (0.3 mg kg-1) established in the MERCOSUR regulations. The non-carcinogenic and carcinogenic risk of Pb and As indicated that the ingestion of artichoke heads does not represent a health risk.
Collapse
|
12
|
Saylor C, Tamayo-Ortiz M, Pantic I, Amarasiriwardena C, McRae N, Estrada-Gutierrez G, Parra-Hernandez S, Tolentino MC, Baccarelli AA, Fadrowski JJ, Gennings C, Satlin LM, Wright RO, Tellez-Rojo MM, Sanders AP. Prenatal blood lead levels and reduced preadolescent glomerular filtration rate: Modification by body mass index. ENVIRONMENT INTERNATIONAL 2021; 154:106414. [PMID: 33678412 PMCID: PMC8217093 DOI: 10.1016/j.envint.2021.106414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND For the developing kidney, the prenatal period may represent a critical window of vulnerability to environmental insults resulting in permanent nephron loss. Given that the majority of nephron formation is complete in the 3rd trimester, we set out to test whether 1) prenatal lead exposure is associated with decreased preadolescent kidney function and 2) whether preadolescent obesity acts synergistically with early life lead exposure to reduce kidney function. METHODS Our study included 453 mother-child pairs participating in the PROGRESS birth cohort. We assessed prenatal blood lead levels (BLLs) in samples collected in the 2nd and 3rd trimesters and at delivery, as well as tibial and patellar bone lead measures assessed one-month postpartum. Preadolescent estimated glomerular filtration rate (eGFR) was derived from serum levels of creatinine and/or cystatin C measured at age 8-12 years. We applied linear regression to assess the relationship between prenatal bone and BLL with preadolescent eGFR, and adjusted for covariates including age, sex, BMI z-score, indoor tobacco smoke exposure, and socioeconomic status. We also examined sex-specific associations and tested for effect modification by BMI status. RESULTS We observed null associations between prenatal lead exposure and eGFR. However, in interaction analyses we found that among overweight children, there was an inverse association between BLL (assessed at 2nd and 3rd trimester and at delivery) and preadolescent eGFR. For example, among overweight participants, a one ln-unit increase in 2nd trimester BLL was associated with a 10.5 unit decrease in cystatin C-based eGFR (95% CI: -18.1, -2.8; p = 0.008). Regardless of lead exposure, we also observed null relationships between BMI z-score and eGFR overall, as well as among overweight participants. However, among participants with preadolescent obesity, we observed a significant 5.9-unit decrease in eGFR. We observed no evidence of sex-specific effects. CONCLUSIONS Our findings, if confirmed in other studies, suggest a complex interplay between the combined adverse effects of adiposity and perinatal lead exposure as they relate to adolescent kidney function. Future studies will assess kidney function and adiposity trajectories through adolescence to better understand environmental risk factors for kidney function decline.
Collapse
Affiliation(s)
- Charlie Saylor
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nia McRae
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sandra Parra-Hernandez
- Department of Immunobiochemistry, National Institute of Perinatology, Mexico City, Mexico
| | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeffrey J Fadrowski
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Nephrotoxic Metal Mixtures and Preadolescent Kidney Function. CHILDREN-BASEL 2021; 8:children8080673. [PMID: 34438564 PMCID: PMC8391795 DOI: 10.3390/children8080673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Exposure to metals including lead (Pb), cadmium (Cd), and arsenic (As), may impair kidney function as individual toxicants or in mixtures. However, no single medium is ideal to study multiple metals simultaneously. We hypothesized that multi-media biomarkers (MMBs), integrated indices combining information across biomarkers, are informative of adverse kidney function. Levels of Pb, Cd, and As were quantified in blood and urine in 4–6-year-old Mexican children (n = 300) in the PROGRESS longitudinal cohort study. We estimated the mixture effects of these metals, using weighted quantile sum regression (WQS) applied to urine biomarkers (Umix), blood biomarkers (Bmix), and MMBs, on the cystatin C-based estimated glomerular filtration rate (eGFR) and serum cystatin C assessed at 8–10 years of age, adjusted for covariates. Quartile increases in Umix and the MMB mixture were associated with 2.5% (95%CI: 0.1, 5.0) and 3.0% (95%CI: 0.2, 5.7) increased eGFR and −2.6% (95% CI: −5.1%, −0.1%) and −3.3% (95% CI: −6.5%, −0.1%) decreased cystatin C, respectively. Weights indicate that the strongest contributors to the associations with eGFR and serum cystatin C were Cd and Pb, respectively. MMBs detected mixture effects distinct from associations with individual metals or media-type, highlighting the benefits of incorporating information from multiple exposure media in mixtures analyses.
Collapse
|
14
|
Levin-Schwartz Y, Curtin P, Flores D, Aushev VN, Tamayo-Ortiz M, Svensson K, Pantic I, Estrada-Gutierrez G, Pizano-Zárate ML, Gennings C, Satlin LM, Baccarelli AA, Tellez-Rojo MM, Wright RO, Sanders AP. Exosomal miRNAs in urine associated with children's cardiorenal parameters: a cross-sectional study. Epigenomics 2021; 13:499-512. [PMID: 33635093 PMCID: PMC8033423 DOI: 10.2217/epi-2020-0342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims: The authors sought to examine associations between urinary exosomal miRNAs (exo-miRs), emerging biomarkers of renal health, and cardiorenal outcomes in early childhood. Materials & methods: The authors extracted exo-miRs in urine from 88 healthy Mexican children aged 4–6 years. The authors measured associations between 193 exo-miRs and cardiorenal outcomes: systolic/diastolic blood pressure, estimated glomerular filtration rate and urinary sodium and potassium levels. The authors adjusted for age, sex, BMI, socioeconomic status, indoor tobacco smoke exposure and urine specific gravity. Results: Multiple exo-miRs were identified meeting a false discovery rate threshold of q < 0.1. Specifically, three exo-miRs had increased expression with urinary sodium, 17 with urinary sodium-to-potassium ratio and one with decreased estimated glomerular filtration rate. Conclusions: These results highlight urinary exo-miRs as early-life biomarkers of children's cardiorenal health.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Paul Curtin
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Vasily N Aushev
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition & Health Research, National Institute of Public Health, 62100 Cuernavaca, Morelos, Mexico.,National Council for Science & Technology, 03940 Mexico City, Mexico
| | - Katherine Svensson
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, 11000 Mexico City, Mexico
| | | | - María L Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, 11000 Mexico City, Mexico
| | - Chris Gennings
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 10027 New York, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition & Health Research, National Institute of Public Health, 62100 Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Alison P Sanders
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| |
Collapse
|
15
|
Farzan SF, Howe CG, Chen Y, Gilbert-Diamond D, Korrick S, Jackson BP, Weinstein AR, Karagas MR. Prenatal and postnatal mercury exposure and blood pressure in childhood. ENVIRONMENT INTERNATIONAL 2021; 146:106201. [PMID: 33129000 PMCID: PMC7775884 DOI: 10.1016/j.envint.2020.106201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 05/25/2023]
Abstract
Elevated blood pressure in childhood is an important risk factor for hypertension in adulthood. Environmental exposures have been associated with elevated blood pressure over the life course and exposure to mercury (Hg) has been linked to cardiovascular effects in adults. As subclinical vascular changes begin early in life, Hg may play a role in altered blood pressure in children. However, the evidence linking early life Hg exposure to altered blood pressure in childhood has been largely inconsistent. In the ongoing New Hampshire Birth Cohort Study, we investigated prenatal and childhood Hg exposure at multiple time points and associations with blood pressure measurements in 395 young children (mean age 5.5 years, SD 0.4). Hg exposure was measured in children's toenail clippings at age 3 and in urine at age 5-6 years, as well as in maternal toenail samples collected at ∼28 weeks gestation and 6 weeks postpartum, the latter two samples reflecting early prenatal and mid-gestation exposures, respectively. Five measurements of systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) were averaged for each child using a standardized technique. In covariate-adjusted linear regression analyses, we observed that a 0.1 μg/g increase in child toenail Hg at age 3 or a 0.1 μg/L urine Hg at age 5-6 were individually associated with greater DBP (toenail β: 0.53 mmHg; 95% CI: -0.02, 1.07; urine β: 0.48 mmHg; 95% CI: 0.10, 0.86) and MAP (toenail β: 0.67 mmHg; 95% CI: 0.002, 1.33; urine β: 0.55 mmHg; 95% CI: 0.10, 1.01). Neither early prenatal nor mid-gestation Hg exposure, as measured by maternal toenails, were related to any changes to child BP. Simultaneous inclusion of both child urine Hg and child toenail Hg in models suggested a potentially stronger relationship of urine Hg at age 5-6 with DBP and MAP, as compared to toenail Hg at age 3. Our findings suggest that Hg exposure during childhood is associated with alterations in BP. Childhood may be an important window of opportunity to reduce the impacts of Hg exposure on children's blood pressure, and in turn, long-term health.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Adam R Weinstein
- Department of Medical Education and Pediatrics, Geisel School of Medicine, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| |
Collapse
|
16
|
Predictors of patterns of weight change 1 year after delivery in a cohort of Mexican women. Public Health Nutr 2020; 24:4113-4123. [PMID: 33000714 DOI: 10.1017/s1368980020002803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate the associations of pregestational BMI, gestational weight gain (GWG) and breast-feeding at 1 month postpartum with four patterns of weight change during the first year after delivery: postpartum weight retention (PPWR), postpartum weight gain (PPWG), postpartum weight retention + gain (PPWR + WG) and return to pregestational weight. DESIGN In this secondary analysis of a prospective study, we categorised postpartum weight change into four patterns using pregestational weight and weights at 1, 6 and 12 months postpartum. We evaluated their associations with pregestational BMI, GWG and breast-feeding using multinomial logistic regression. Results are presented as relative risk ratios (RRR) and 95 % CI. SETTING Mexico City. PARTICIPANTS Women participating in the Programming Research in Obesity, Growth, Environment and Social Stressors pregnancy cohort. RESULTS Five hundred women were included (53 % of the cohort). Most women returned to their pregestational weight by 1 year postpartum (57 %); 8 % experienced PPWR, 14 % PPWG and 21 % PPWR + WG. Compared with normal weight, pregestational overweight (RRR 2·5, 95 % CI 1·3, 4·8) and obesity (RRR 2·2, 95 % CI 1·0, 4·7) were associated with a higher risk of PPWG. Exclusive breast-feeding, compared with no breast-feeding, was associated with a lower risk of PPWR (RRR 0·3, 95 % CI 0·1, 0·9). Excessive GWG, compared with adequate, was associated with a higher risk of PPWR (RRR 3·3, 95 % CI 1·6, 6·9) and PPWR + WG (RRR 2·4, 95 % CI 1·4, 4·2). CONCLUSIONS Targeting women with pregestational overweight or obesity and excessive GWG, as well as promoting breast-feeding, may impact the pattern of weight change after delivery and long-term women's health.
Collapse
|
17
|
Zeng X, Huo X, Xu X, Liu D, Wu W. E-waste lead exposure and children's health in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139286. [PMID: 32460072 DOI: 10.1016/j.scitotenv.2020.139286] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
China is one of the countries worldwide confronted with serious e-waste pollution and associated detrimental health effects, which has aroused public, academic and governmental concerns. Most local residents are exposed to hazardous substances such as lead (Pb) and other persistent organic pollutants because of informal e-waste recycling activities. This study reviews recent studies on children exposed to e-waste Pb in China focusing on health-related effects in children (e.g. growth and development, cardiovascular, immune, nervous, respiratory, reproductive, skeletal, and urinary systems) and evaluating the evidence for the association between e-waste Pb exposure and the children health outcomes in China. Children are one of most sensitive and vulnerable groups when facing e-waste Pb exposure. Previous data indicate that exposure to e-waste Pb has adverse effect on human health such as delayed and damaged physical and nervous development. It is the time to take effective measures, such as upgrading e-waste recycling technology, enhancing government policy guidance and support, and strengthening environmental protection and health awareness of the local inhabitants, to prevent the adverse effects of e-waste.
Collapse
Affiliation(s)
- Xiang Zeng
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China; Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China
| |
Collapse
|
18
|
Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. WATER 2020. [DOI: 10.3390/w12071946] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water pollution by heavy metals is one of the leading environmental concerns as a result of intense anthropogenic pressure on the aquatic environment. This constitutes a significant limitation to the human right of access to drinking water. In this context, the risk to humans from exposure to heavy metals and arsenic in water from rivers subject to mining influence in the Central Andes of Peru was assessed. Water samples were collected from seven rivers at 63 sampling sites, and concentrations of Cu, Fe, Pb, Zn, and As were determined using flame atomic absorption spectrophotometry. Cluster analysis was used to group 21 sampling sites into four groups with similar chemical characteristics, and principal component analysis was used to simplify the complex relationship between the toxic elements by generating two main components with a total percentage of variation of 86%. Fe, Zn, and As had higher percentages of contribution in the Mantaro, Cunas, and Chia rivers. The hazard quotient was highest for children and adults. The hazard index for ingestion of all the studied heavy metals and As was higher than the threshold value (HIing > 1). HIing in 43% of the rivers indicated that the adult population is at risk of non-carcinogenic effects, and HIing in 14% of the rivers revealed a very high health risk. The risk of cancer by ingestion for children varied from medium to high risk and for adults from low to high risk.
Collapse
|
19
|
Yang CC, Lin CI, Lee SS, Wang CL, Dai CY, Chuang HY. The association of blood lead levels and renal effects may be modified by genetic combinations of Metallothionein 1A 2A polymorphisms. Sci Rep 2020; 10:9603. [PMID: 32541800 PMCID: PMC7295782 DOI: 10.1038/s41598-020-66645-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
Metallothionein (MT) is a protein with function of heavy metal detoxification. However, studies about how single nucleotide polymorphisms (SNPs) of MT genes influence lead nephropathy are relatively scarce. Therefore, our aim is to investigate the association between blood lead levels and renal biomarkers and to study whether this association is influenced by the combination of MT1A and MT2A SNPs. Blood lead, urinary uric acid (UA), and urinary N-acetyl-beta-d-glucosaminidase (NAG) levels were analyzed from 485 participants. Genotyping were performed on MT1A SNPs (rs11640851 and rs8052394) and MT2A SNPs (rs10636 and rs28366003). The combined MT1A 2A SNPs were divided into 16 groups. Among renal biomarkers, urinary UA was negatively significant associated with the time-weighted index of cumulative blood lead (TWICL), while urinary NAG was positively significant with TWICL. Furthermore, the association between urinary UA and TWICL was significantly modified by group 6 of combined SNPs (MT1A 2 A SNPs combination were AAAGGGAA, ACAGGGAA, and ACGGGGAA). In conclusion, the negative association of urinary UA and TWICL is modified by group 6, which means participants of group 6 are more susceptible to lead nephrotoxicity.
Collapse
Affiliation(s)
- Chen-Cheng Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-I Lin
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Health Management Center, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Su-Shin Lee
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ling Wang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Liu SH, Liu B, Sanders AP, Saland J, Wilson KM. Secondhand smoke exposure and higher blood pressure in children and adolescents participating in NHANES. Prev Med 2020; 134:106052. [PMID: 32165119 PMCID: PMC8025403 DOI: 10.1016/j.ypmed.2020.106052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022]
Abstract
We assessed the relationship between acute and intermittent secondhand tobacco smoke (SHS) exposure with child and adolescent blood pressure (BP). We analyzed cross-sectional data from 3579 children and adolescents aged 8-17 years participating in the National Health and Nutrition Examination Survey (NHANES) collected between 2007 and 2012, with SHS exposure assessed via serum cotinine (a biomarker for acute exposures) and urine NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, a biomarker for intermittent exposures). BP percentiles and z-scores were calculated according to the 2017 guidelines established by the American Academy of Pediatrics. We used weighted linear regression accounting for the complex sampling weights from NHANES and adjusting for socio-demographic and clinical characteristics. Overall, 56% of the children were non-Hispanic white with a mean age of 12.6 years. There was approximately equal representation of boys and girls. Approximately 15.9% of participants lived in homes where smoking was present. In adjusted models, an interquartile range (IQR) increase in urinary NNAL was associated with 0.099 (95% CI: 0.033, 0.16) higher diastolic blood pressure (DBP) z-score, and with a 0.094 (95% CI: 0.011, 0.18) higher systolic blood pressure (SBP) z-score. The odds of being in the hypertensive range was 1.966 (95% CI: 1.31, 2.951) times greater among children with high NNAL exposures compared to those with undetectable NNAL. For serum cotinine, an IQR increase was associated with 0.097 (95% CI: 0.020, 0.17) higher DBP z-scores, but was not significantly associated with SBP z-scores. The associations of cotinine and NNAL with BP also differed by sex. Our findings provide the first characterization of the relationship between a major tobacco-specific metabolite, NNAL, and BP z-scores in a nationally representative population of US children.
Collapse
Affiliation(s)
- Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States of America.
| | - Bian Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States of America; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Alison P Sanders
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, United States of America; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Jeffrey Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, United States of America
| | - Karen M Wilson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, United States of America
| |
Collapse
|
21
|
Rosa MJ, Hair GM, Just AC, Kloog I, Svensson K, Pizano-Zárate ML, Pantic I, Schnaas L, Tamayo-Ortiz M, Baccarelli AA, Tellez-Rojo MM, Wright RO, Sanders AP. Identifying critical windows of prenatal particulate matter (PM 2.5) exposure and early childhood blood pressure. ENVIRONMENTAL RESEARCH 2020; 182:109073. [PMID: 31881529 PMCID: PMC7024649 DOI: 10.1016/j.envres.2019.109073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with increased blood pressure (BP) in adults and children. Some evidence suggests that air pollution exposure during the prenatal period may contribute to adverse cardiorenal health later in life. Here we apply a distributed lag model (DLM) approach to identify critical windows that may underlie the association between prenatal particulate matter ≤ 2.5 μm in diameter (PM2.5) exposure and children's BP at ages 4-6 years. METHODS Participants included 537 mother-child dyads enrolled in the Programming Research in Obesity, GRowth Environment, and Social Stress (PROGRESS) longitudinal birth cohort study based in Mexico City. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model and BP was measured using the automated Spacelabs system with a sized cuff. We used distributed lag models (DLMs) to examine associations between daily PM2.5 exposure and systolic and diastolic BP (SBP and DBP), adjusting for child's age, sex and BMI, as well as maternal education, preeclampsia and indoor smoking report during the second and third trimester, seasonality and average postnatal year 1 PM2.5 exposure. RESULTS We found that PM2.5 exposure between weeks 11-32 of gestation (days 80-226) was significantly associated with children's increased SBP. Similarly, PM2.5 exposure between weeks 9-25 of gestation (days 63-176) was significantly associated with increased DBP. To place this into context, a constant 10 μg/m3 increase in PM2.5 sustained throughout this critical window would predict a cumulative increase of 2.6 mmHg (CI: 0.5, 4.6) in SBP and 0.88 mmHg (CI: 0.1, 1.6) in DBP at ages 4-6 years. In a stratified analysis by sex, this association persisted in boys but not in girls. CONCLUSIONS Second and third trimester PM2.5 exposure may increase children's BP in early life. Further work investigating PM2.5 exposure with BP trajectories later in childhood will be important to understanding cardiorenal trajectories that may predict adult disease. Our results underscore the importance of reducing air pollution exposure among susceptible populations, including pregnant women.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gleicy Macedo Hair
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B., Beer Sheva, Israel
| | | | - María Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- National Council of Science and Technology (CONACYT), National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico; Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
22
|
Campbell RK, Tamayo-Ortiz M, Cantoral A, Schnaas L, Osorio-Valencia E, Wright RJ, Téllez-Rojo MM, Wright RO. Maternal Prenatal Psychosocial Stress and Prepregnancy BMI Associations with Fetal Iron Status. Curr Dev Nutr 2020; 4:nzaa018. [PMID: 32099952 PMCID: PMC7026381 DOI: 10.1093/cdn/nzaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron accrued in utero is critical for fetal and infant neurocognitive development. Psychosocial stress and obesity can each suppress fetal iron accrual. Their combined effects and differences by fetal sex are not known. In an observational pregnancy cohort study in Mexico City, we investigated associations of maternal prenatal life stressors, psychological dysfunction, and prepregnancy BMI with fetal iron status at delivery. OBJECTIVES We hypothesized that greater maternal prenatal psychosocial stress and prepregnancy overweight and obesity are associated with lower cord blood ferritin and hemoglobin (Hb), with stronger associations in boys than girls. METHODS Psychosocial stress in multiple domains of life stress (negative life events, perceived stress, exposure to violence) and psychological dysfunction symptoms (depression, generalized anxiety, and pregnancy-specific anxiety) were assessed with validated questionnaires during pregnancy. Prepregnancy BMI was predicted with a validated equation and categorized as normal/overweight/obese. Cord blood ferritin and Hb associations with prenatal psychosocial stress and BMI were modeled in multivariable linear regressions adjusted for maternal age, socioeconomic status, child sex, and prenatal iron supplementation. Interactions with child sex and 3-way stress-overweight/obesity-sex interactions were tested with product terms and likelihood ratio tests. RESULTS In 493 dyads, median (IQR) cord blood ferritin and Hb concentrations were 185 µg/L (126-263 g/dL) and 16 g/dL (14.7-17.1 g/dL), respectively. Ferritin was lower in infants of mothers with higher prenatal perceived stress (-23%; 95% CI: -35%, -9%), violence exposure (-28%; 95% CI: -42%, -12%), anxiety symptoms (-16%; 95% CI: -27%, -4%), and obesity (-17%; 95% CI: -31%, 0.2%). Interaction models suggested sex differences and synergism between maternal stress and overweight/obesity. No associations were observed between stress or BMI and Hb. CONCLUSIONS Multiple prenatal psychosocial stressors and excess prepregnancy BMI were each inversely associated with fetal iron status at birth. Pregnancies and infants at elevated risk of impaired fetal iron accrual may be identifiable according to observed synergism between maternal stress and obesity and differential associations with fetal iron status by infant sex.
Collapse
Affiliation(s)
- Rebecca K Campbell
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council for Science and Technology, Mexico City, Mexico
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council for Science and Technology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Research in Community Interventions, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Erika Osorio-Valencia
- Division of Research in Community Interventions, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Jáuregui A, Salvo D, García-Olvera A, Villa U, Téllez-Rojo MM, Schnaas LM, Svensson K, Oken E, Wright RO, Baccarelli AA, Cantoral A. Physical activity, sedentary time and cardiometabolic health indicators among Mexican children. Clin Obes 2020; 10:e12346. [PMID: 31696670 PMCID: PMC7375025 DOI: 10.1111/cob.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
We examined the independent associations of moderate to vigorous physical activity (MVPA) and sedentary time (ST) with cardiometabolic indicators in Mexican children (4-6 years of age). We conducted a cross-sectional study (n = 400) using the measures of MVPA and ST (7-day accelerometry) and the following indicators: % body fat, waist circumference, body mass index (BMI) z-score, glycated haemoglobin, blood glucose, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, leptin, adiponectin and resting blood pressure. We examined the independent associations of MVPA and ST with cardiometabolic indicators through confounder-adjusted and mutually adjusted (including both MVPA and ST) linear regression models. Confounder-adjusted models showed that MVPA was associated with higher BMI z-scores and lower adiponectin levels in girls and lower body fat among boys. ST was associated with higher body fat, in the full sample, and lower LDL cholesterol among boys. After mutually adjusting for MVPA and ST, MVPA (10-minute increase) remained significantly associated with BMI z-score in girls (β = 0.187, 95% CI: 0.019, 0.356) and ST (60-minute increase) remained significantly associated with higher body fat (β = 1.11%, 95% CI: 0.019, 2.203) among boys and higher glycated haemoglobin (β = 0.047% points, 95% CI: 0.000, 0.094) in the full sample. In preschool-aged children, the objective measures of ST and MVPA were associated with small differences in cardiometabolic health indicators. ST was unfavourably associated with some cardiometabolic indicators even after adjusting for MVPA, and thus appeared to have a more significant role than MVPA, especially in boys. Future longitudinal studies should confirm these results.
Collapse
Affiliation(s)
- Alejandra Jáuregui
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Mexico
| | - Deborah Salvo
- Prevention Research Center in St. Louis & Center for Diabetes Translation Research, Brown School, Washington University in St. Louis
| | - Armando García-Olvera
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Mexico
| | - Umberto Villa
- Department of Electrical & Systems Engineering, School of Engineering & Applied Sciences, Washington University in St. Louis
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Mexico
| | - Lourdes M. Schnaas
- Instituto Nacional de Perinatología “Isidro Espinoza de los Reyes”, Mexico
| | | | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, New York
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Mexico
| |
Collapse
|
24
|
Patterns of Weight Change One Year after Delivery Are Associated with Cardiometabolic Risk Factors at Six Years Postpartum in Mexican Women. Nutrients 2020; 12:nu12010170. [PMID: 31936138 PMCID: PMC7019329 DOI: 10.3390/nu12010170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a contributor to the obesity epidemic in women, probably through postpartum weight retention (PPWR), weight gain (PPWG), or a combination of both (PPWR + WG). The contribution of these patterns of postpartum weight change to long-term maternal health remains understudied. In a secondary analysis of 361 women from the prospective cohort PROGRESS, we evaluated the associations between patterns of weight change one year after delivery and cardiometabolic risk factors at six years postpartum. Using principal component analysis, we grouped cardiometabolic risk factors into: (1) body mass index (BMI), waist circumference (WC), homeostatic model assessment of insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), and glucose; (2) systolic (SBP) and diastolic blood pressure (DBP); and (3) low-density lipoprotein cholesterol and total cholesterol. Using path analysis, we studied direct (patterns of weight change-outcomes) and indirect associations through BMI at six years postpartum. Around 60% of women returned to their pregestational weight (reference) by one year postpartum, 6.6% experienced PPWR, 13.9% PPWG, and 19.9% PPWR + WG. Women with PPWR + WG, vs. the reference, had higher BMI and WC at six years (2.30 kg/m2, 95% CI [1.67, 2.93]; 3.38 cm [1.14, 5.62]). This was also observed in women with PPWR (1.80 kg/m2 [0.80, 2.79]; 3.15 cm [−0.35, 6.65]) and PPWG (1.22 kg/m2 [0.53, 1.92]; 3.32 cm [0.85, 5.78]). PPWR + WG had a direct association with HOMA-IR (0.21 units [0.04, 0.39]). The three patterns of weight change, vs. the reference, had significant indirect associations with HOMA-IR, glucose, TG, HDL-c, SBP, and DBP through BMI at six years. In conclusion, women with PPWR + WG are at high-risk for obesity and insulin resistance. Interventions targeting women during pregnancy and the first year postpartum may have implications for their long-term risk of obesity and cardiovascular disease.
Collapse
|
25
|
Liu Y, Téllez-Rojo M, Sánchez BN, Ettinger AS, Osorio-Yáñez C, Solano M, Hu H, Peterson KE. Association between fluoride exposure and cardiometabolic risk in peripubertal Mexican children. ENVIRONMENT INTERNATIONAL 2020; 134:105302. [PMID: 31726363 PMCID: PMC6904509 DOI: 10.1016/j.envint.2019.105302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Several animal studies have suggested that fluoride exposure may increase the levels of cardiometabolic risk factors, but little is known about whether fluoride exposure is associated with such risk in humans. OBJECTIVES We examined the cross-sectional association between peripubertal exposure to fluoride and markers of cardiometabolic risk in 280 girls and 256 boys at age 10-18 years living in Mexico City. METHODS We measured plasma fluoride concentration using a microdiffusion method. We collected data on anthropometry including BMI, waist circumference (WC) and trunk fat percentage. We measured serum markers of cardiometabolic risk, including fasting glucose, insulin and lipids. All the indicators of outcome were converted to age- and sex-specific z-scores. We also calculated a summary cardiometabolic risk score for each participant. Multivariable linear regression models were used to examine these associations. RESULTS The geometric mean (95% confidence interval (CI)) of plasma fluoride was 0.21 μmol/L (0.20, 0.23 μmol/L) in the total sample. In girls, plasma fluoride concentrations were associated with higher z-scores for all the individual markers (except for lipids) and for the combined cardiometabolic risk score (risk score: β = 1.28, 95% CI: 0.57-2.00, p-sex interaction = 0.02)), adjusting for covariates. No associations were found in boys. CONCLUSIONS We found that higher peripubertal fluoride exposure at the levels observed in this study population was significantly associated with increased levels of cardiometabolic risk factors in Mexican girls but not boys. Future studies with a longitudinal design are needed to confirm our findings and further elucidate the role of fluoride in cardiometabolic risk.
Collapse
Affiliation(s)
- Yun Liu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Téllez-Rojo
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico.
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adrienne S Ettinger
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Citlalli Osorio-Yáñez
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maritsa Solano
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Howard Hu
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Levin-Schwartz Y, Gennings C, Schnaas L, Del Carmen Hernández Chávez M, Bellinger DC, Téllez-Rojo MM, Baccarelli AA, Wright RO. Time-varying associations between prenatal metal mixtures and rapid visual processing in children. Environ Health 2019; 18:92. [PMID: 31666078 PMCID: PMC6822453 DOI: 10.1186/s12940-019-0526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Humans are exposed to mixtures of chemicals across their lifetimes, a concept sometimes called the "exposome." Mixtures likely have temporal "critical windows" of susceptibility like single agents and measuring them repeatedly might help to define such windows. Common approaches to evaluate the effects of chemical mixtures have focused on their effects at a single time point. Our goal is to expand upon these previous techniques and examine the time-varying critical windows for metal mixtures on subsequent neurobehavior in children. METHODS We propose two methods, joint weighted quantile sum regression (JWQS) and meta-weighted quantile sum regression (MWQS), to estimate the effects of chemical mixtures measured across multiple time points, while providing data on their critical windows of exposure. We compare the performance of both methods using simulations. We also applied both techniques to assess second and third trimester metal mixture effects in predicting performance in the Rapid Visual Processing (RVP) task from the Cambridge Neuropsychological Test Automated Battery (CANTAB) assessed at 6-9 years in children who are part of the PROGRESS (Programming Research in Obesity, GRowth, Environment and Social Stressors) longitudinal cohort study. The metals, arsenic, cadmium (Cd), cesium, chromium, lead (Pb) and antimony (Sb) were selected based on their toxicological profile. RESULTS In simulations, JWQS and MWQS had over 80% accuracy in classifying exposures as either strongly or weakly contributing to an association. In real data, both JWQS and MWQS consistently found that Pb and Cd exposure jointly predicted longer latency in the RVP and that second trimester exposure better predicted the results than the third trimester. Additionally, both JWQS and MWQS highlighted the strong association Cd and Sb had with lower accuracy in the RVP and that third trimester exposure was a better predictor than second trimester exposure. CONCLUSIONS Our results indicate that metal mixtures effects vary across time, have distinct critical windows and that both JWQS and MWQS can determine longitudinal mixture effects including the cumulative contribution of each exposure and critical windows of effect.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | | | | | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
27
|
Sanders AP, Mazzella MJ, Malin AJ, Hair GM, Busgang SA, Saland JM, Curtin P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014. ENVIRONMENT INTERNATIONAL 2019; 131:104993. [PMID: 31326826 PMCID: PMC6750805 DOI: 10.1016/j.envint.2019.104993] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Occupational and environmental exposures to toxic metals are established risk factors for the development of hypertension and kidney disease in adults. There is some evidence of developmental metal nephrotoxicity in children and from animal studies; however, to our knowledge no previous studies have examined associations between co-exposure to nephrotoxic environmental metals and children's kidney health. OBJECTIVE The objective of this study was to assess the association between co-exposure to lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As), measured in urine and blood, and kidney parameters in US adolescents. METHODS We performed a cross-sectional analysis of a subsample of 2709 children aged 12-19 participating in the National Health and Nutrition Examination Survey (NHANES) between 2009 and 2014. We analyzed urine levels of 4 nephrotoxic metals selected a priori (As, Cd, Pb and Hg), Umix, and 3 nephrotoxic metals in blood (Cd, Pb, and Hg), Bmix, using a weighted quantile sum (WQS) approach. We applied WQS regression to analyze the association of Bmix and Umix with estimated glomerular filtration rate (eGFR), serum uric acid (SUA), urine albumin, blood urea nitrogen (BUN), and systolic blood pressure (SBP), adjusting for sex, race/ethnicity, age, head of household's education level, height, BMI, serum cotinine, and NHANES cohort year. Umix and urine albumin models were also adjusted for urine creatinine, and Bmix models were also adjusted for fish consumption. Subanalyses included stratification by sex and an arsenic-only model including six speciated forms of As measured in urine. RESULTS In WQS regression models, each decile increase of Umix was associated with 1.6% (95% CI: 0.5, 2.8) higher BUN, 1.4% (95% CI: 0.7, 2.0) higher eGFR, and 7.6% (95% CI: 2.4, 13.1) higher urine albumin. The association between Umix and BUN was primarily driven by As (72%), while the association with eGFR was driven by Hg (61%), and Cd (17%), and the association with urine albumin was driven by Cd (37%), Hg (33%), and Pb (25%). There was no significant relationship between Umix and SUA or SBP. In WQS models using the combined blood metals, Bmix, each decile increase of Bmix was associated with 0.6% (95% CI: 0.0, 1.3) higher SUA; this association was driven by Pb (43%), Hg (33%), and Cd (24%) and was marginally significant (p = 0.05). No associations were observed between Bmix and urine albumin, eGFR, BUN, or SBP. CONCLUSIONS The findings suggest metals including As, Pb, Hg, Cd and their combinations may affect renal parameters, although potential reverse causation cannot be ruled out due to the cross-sectional study design. Implications of early life low-level exposure to multiple metals on kidney function may have far-reaching consequences later in life in the development of hypertension, kidney disease, and renal dysfunction. Longitudinal studies should further evaluate these relationships.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew J Mazzella
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley J Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gleicy M Hair
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefanie A Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Mullin AM, Amarasiriwardena C, Cantoral-Preciado A, Claus Henn B, Leon Hsu HH, Sanders AP, Svensson K, Tamayo-Ortiz M, Téllez-Rojo MM, Wright RO, Burris HH. Maternal blood arsenic levels and associations with birth weight-for-gestational age. ENVIRONMENTAL RESEARCH 2019; 177:108603. [PMID: 31357156 PMCID: PMC6737536 DOI: 10.1016/j.envres.2019.108603] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Among highly exposed populations, arsenic exposure in utero may be associated with decreased birth weight, however less is known about potential effects of arsenic exposure in urban communities without contaminated sources such as drinking water. OBJECTIVE Investigate the association of blood arsenic levels with birth weight-for-gestational age categories within a prospective birth cohort study. DESIGN/METHODS We analyzed 730 mother-infant dyads within the Programming Research in Obesity, GRowth, Environment and Social Stressors (PROGRESS) cohort in Mexico City. Total arsenic was measured in maternal blood samples from the 2nd and 3rd trimesters, at delivery, as well as from infant umbilical cord blood samples. Multivariable, multinomial logistic regression models adjusting for maternal age at enrollment, pre-pregnancy body mass index, parity, infant sex, socioeconomic position, and prenatal environmental tobacco smoke exposure were used to calculate odds ratios of small-for-gestational age (<10th percentile, SGA) and large-for-gestational age (>90th percentile, LGA) compared to appropriate-for-gestational age (AGA) per unit increase of log-transformed arsenic. RESULTS Median (IQR) blood arsenic levels for maternal second trimester were 0.72 (0.33) μg/L, maternal third trimester 0.75 (0.41) μg/L, maternal at delivery 0.85 (0.70) μg/L, and infant cord 0.78 (0.65) μg/L. Maternal delivery and infant cord blood samples were most strongly correlated (spearman r = 0.65, p < 0.0001). Maternal arsenic levels at delivery were associated with significantly higher odds of both SGA (adj. OR = 1.44, 95% CI: 1.08-1.93) and LGA (adj. OR = 2.03, 95% CI: 1.12-3.67) compared to AGA. Results were similar for cord blood. There were 130 SGA infants and 22 LGA infants. Earlier in pregnancy, there were no significant associations of arsenic and birth weight-for-gestational age. However, we observed non-significantly higher odds of LGA among women with higher arsenic levels in the 3rd trimester (adj. OR = 1.46, 95% CI: 0.67-3.12). CONCLUSION We found that in a Mexico City birth cohort, higher maternal blood arsenic levels at delivery were associated with higher odds of both SGA and LGA. However, sources and species of arsenic were not known and the number of LGA infants was small, limiting the interpretation of this finding and highlighting the importance of future large studies to incorporate arsenic speciation. If our findings were confirmed in studies that addressed these limitations, determining modifiable factors that could be mitigated, such as sources of arsenic exposure, may be important for optimizing fetal growth to improve long-term health of children.
Collapse
Affiliation(s)
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, United States
| | | | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, United States
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Katherine Svensson
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Marcela Tamayo-Ortiz
- National Institute of Public Health, Cuernavaca, Mexico; National Council of Science and Technology, Mexico
| | - Martha M Téllez-Rojo
- National Institute of Public Health, Cuernavaca, Mexico; National Council of Science and Technology, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Heather H Burris
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at Univ. of Pennsylvania, PA, United States.
| |
Collapse
|
29
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Moody EC, Coca SG, Sanders AP. Toxic Metals and Chronic Kidney Disease: a Systematic Review of Recent Literature. Curr Environ Health Rep 2019; 5:453-463. [PMID: 30338443 DOI: 10.1007/s40572-018-0212-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Arsenic (As), cadmium (Cd), and lead (Pb) are ubiquitous toxicants with evidence of adverse kidney impacts at high exposure levels. There is less evidence whether environmental exposure to As, Cd, or Pb plays a role in development of chronic kidney disease (CKD). We conducted a systematic review to summarize the recent epidemiologic literature examining the relationship between As, Cd, or Pb with CKD. RECENT FINDINGS We included peer-reviewed studies published in English between January 2013 and April 2018 for As and Cd, and all dates prior to April 2018 for Pb. We imposed temporality requirements for both the definition of CKD (as per NKF-KDOQI guidelines) and environmental exposures prior to disease diagnosis. Our assessment included cohort, case-control or cross-sectional study designs that satisfied 5 inclusion criteria. We included a total of eight articles of which three, two, and four studies examined the effects of As, Cd, or Pb, respectively. Studies of As exposure consistently reported positive association with CKD incidence; studies of Pb exposure were mixed. We found little evidence of association between Cd exposure and CKD. Additional well-designed prospective cohort studies are needed and we present recommendations for future studies.
Collapse
Affiliation(s)
- Emily C Moody
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven G Coca
- Department of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Departments of Pediatrics & Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| |
Collapse
|