1
|
Wang S, Zhang X, Tian D, Zhao J, Rabiee H, Cai F, Xie M, Virdis B, Guo J, Yuan Z, Zhang R, Hu S. Anaerobic oxidation of methane coupled to reductive immobilization of hexavalent chromium by "Candidatus Methanoperedens". JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136020. [PMID: 39383693 DOI: 10.1016/j.jhazmat.2024.136020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME) plays an important role in mitigating methane emissions from aqueous environments and has applications in bioremediation and wastewater treatment. Previous studies showed that AOM could be coupled to chromate reduction. However, the specific responsible microorganisms and the biochemical mechanisms are unclear. Herein, we showed that a consortium dominated by ANME "Candidatus Methanoperedens" was able to couple AOM to the reduction of Cr(VI) to Cr(III) at a stoichiometry close to the theoretical ratio. Quantitative distribution analysis of Cr(III) products suggested Cr(VI) was predominantly reduced via the extracellular respiratory pathways. Further Cr(III)-targeted fluorescent visualization combined with single-cell electron microscopic imaging suggested that Cr(VI) was reduced by "Ca. Methanoperedens" independently. Biochemical mechanism investigation via proteomic analysis showed proteins for nitrate reduction under nitrate-reducing conditions were significantly downregulated in Cr(VI)-reducing incubation. Instead, many multiheme cytochrome c (MHCs) were among the most upregulated proteins during the Cr(VI) reduction process, suggesting MHC-governed pathways for extracellular Cr(VI) reduction. The significant upregulation of a formate-dependent nitrite reductase during Cr(VI) reduction indicated its potential contribution to the small proportion of Cr(VI) reduction inside cells.
Collapse
Affiliation(s)
- Suicao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhao
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, Australia
| | - Fangrui Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mengying Xie
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Wang Y, Huang F, Liu J, Rao X, Liu Q, Xiao R, Huang M, Li H, Bai J, Wang P, Zhou X. Ferric citrate enhanced bioreduction of Cr(VI) by Bacillus cereus RCr in aqueous solutions: reduction performance and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34394-4. [PMID: 39042195 DOI: 10.1007/s11356-024-34394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
The bioreduction characteristics and mechanisms of Cr(VI) onto Bacillus cereus RCr enhanced by ferric citrate were investigated. The optimum conditions were initial pH 9, temperature 40 °C, inoculation amount 4%, and glucose 3 g/L, respectively. The addition of 1.5 g/L ferric citrate increased the average reduction rate from 120.43 to 220.61 mg/(L∙h) compared with the control (without ferric citrate). The binding capacity of Cr(III) on the cell surface increased to 21%, in which the precipitates were mainly CrO(OH), Cr2O3, and FeCr2O4. Cell membrane was the main site of reduction, related important functional groups: - COOH, C-H, - NH2, C = C, and P-O. Fe(III) increased the yield of NADH and cytochrome c by approximately 48.51% and 68.63%, which significantly facilitated the electron generation and electron transfer, thus increasing the amount of electrons in the bioreduction of heavy metals by an average of 110%. Among the electrons obtained by Cr(VI), the proportion of indirect reduction mediated by Fe(III)/Fe(II) shuttle was 62% on average, whereas direct reduction mediated by reductase was 38%. These results may provide insights into the bioreduction process by bacteria enhanced by Fe(III) for detoxification of heavy metals with multiple valences, as an important step towards improving microbial remediation.
Collapse
Affiliation(s)
- Yishuo Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Fei Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
| | - Jiaxin Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xin Rao
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, 510420, P.R. China
| | - Qianjun Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Rongbo Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, P.R. China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou, 362300, P.R. China
| | - Haolin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jinjing Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Peng Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
3
|
Li Z, Cui E, Gu N, Ma W, Guo Q, Li X, Jin J, Wang Q, Ding C. Unveiling the biointerfaces characteristics and removal pathways of Cr(Ⅵ) in Bacillus cereus FNXJ1-2-3 for the Cr(Ⅵ)-to-Cr(0) conversion. ENVIRONMENTAL RESEARCH 2024; 251:118663. [PMID: 38460667 DOI: 10.1016/j.envres.2024.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Entian Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Naipeng Gu
- UNHO (China) BioPharmaceutical Co., Ltd., Nanjing, Jiangsu, 210046, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Xuan Li
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jianxiang Jin
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qun Wang
- Jiangsu YIDA Testing Technology Co., Ltd. , Building A-15, Big Data Industrial Park, Chengnan New District, Yancheng, Jiangsu, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
4
|
Zhang L, Fu Y, Xu Q, Chen X, Xie Y, Zhang B, Lin X. Quantitative proteomics reveals the complex regulatory networks of LTTR-type regulators in pleiotropic functions of Aeromonas hydrophila. Int J Biol Macromol 2024; 270:132315. [PMID: 38740149 DOI: 10.1016/j.ijbiomac.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.
Collapse
Affiliation(s)
- Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, Fujian Province 350007, China
| | - Qiaozhen Xu
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Chen
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghui Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou 350003, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Feng L, Liu B, Yao J, Li M, Zhu J, Zhao Y, Wu Y. Extracellular bioreduction is the main Cr(VI) detoxification strategy of Bacillus sp. HL1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120870. [PMID: 38640757 DOI: 10.1016/j.jenvman.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.
Collapse
Affiliation(s)
- Lingyun Feng
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Bang Liu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Jun Yao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Miaomiao Li
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Junjie Zhu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yan Zhao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yingjian Wu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| |
Collapse
|
6
|
Augustynowicz J, Kowalczyk A, Latowski D, Kołton A, Sitek E, Kostecka-Gugała A. Do chromium-resistant bacterial symbionts of hyperaccumulator Callitriche cophocarpa support their host in phytobial remediation of water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171327. [PMID: 38428606 DOI: 10.1016/j.scitotenv.2024.171327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Callitriche cophocarpa Sendtn. is a macrophyte widely distributed in aquatic systems of the temperate climate zone and a known hyperaccumulator of chromium. Ten pure symbiotic bacterial isolates of C. cophocarpa were obtained and identified. Three of the isolates showed the highest resistance to Cr(VI): Microbacterium sp. (Ct1), Aeromonas sp. (Ct3) and Acinetobacter sp. (Ct6). Acinetobacter sp. (Ct6) was able to survive up to a concentration of 104 mg/L (2 mM). The isolates were also able to effectively detoxify Cr(VI) by reducing it to Cr(III). We tested whether inoculation of plants with a consortium consisting of Ct1, Ct3 and Ct6 affects: (1) the phytoextraction of chromium from leachates, (2) the physiological state of plants after Cr(VI) treatment. The solutions were landfill leachates and contained 10.7 mg/L of Cr(VI) - an amount 530 times exceeding the legal limits. We influenced the plants with Cr in two steps, each lasting for 10 days, first using mature shoots and then apical ones. The highest Cr content concomitant with the highest bioconcentration factor (BCF) were found in the inoculated plants: 1274 and 119 mg/kg dry mass (d.m.), respectively. The physiological status of the plants was assessed by biometric tests and advanced chlorophyll fluorescence analyses. The photosynthetic activity of mature shoots was influenced by Cr(VI) more negatively than that of young apical shoots. The inoculation with the bacterial consortium significantly reduced the negative effect of Cr(VI) on mature organs. In some cases the inoculated mature plants exhibited photosynthetic activity that was even higher than in the control plants. The results unequivocally show a beneficial effect of C. cophocarpa inoculation with the tested isolates resulting in a significant improvement of the phytoremediation properties of this aquatic chromium hyperaccumulator.
Collapse
Affiliation(s)
- Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - Anna Kowalczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Dariusz Latowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Kołton
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
7
|
Xiao W, Zhang Q, Huang M, Zhao S, Chen D, Gao N, Chu T, Ye X. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities. CHEMOSPHERE 2024; 353:141636. [PMID: 38447895 DOI: 10.1016/j.chemosphere.2024.141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Cr(VI) contamination is widely recognized as one of the major environmental hazards. To address the problem of remediation of soil Cr(VI) contamination and utilization of waste peanut shells, this study comprehensively investigated the effects of peanut shell-derived biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz on Cr(VI) reduction and microbial community succession in soil. This study confirmed that root exudate-loaded peanut shell biochar reduced soil pH while simultaneously increasing DOC, sulfide, and Fe(II) concentrations, thereby facilitating the reduction of Cr(VI), achieving a reduction efficiency of 81.8%. Based on XPS and SEM elemental mapping analyses, Cr(VI) reduction occurred concurrently with the Fe and S redox cycles. Furthermore, the microbial diversity, abundance of the functional genera (Geobacter, Arthrobacter, and Desulfococcus) and the metabolic functions associated with Cr(VI) reduction were enhanced by root exudate-loaded biochar. Root exudate-loaded biochar can promote both direct Cr(VI) reduction mediated by the Cr(VI)-reducing bacteria Arthrobacter, and indirect Cr(VI) reduction through Cr/S/Fe co-transformation mediated by the sulfate-reducing bacteria Desulfococcus and Fe(III)-reducing bacteria Geobacter. This study demonstrates the effectiveness of peanut shell biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz to promote soil Cr(VI) reduction, reveals the mechanism how root exudate-loaded biochar shapes functional microbial communities to facilitate Cr(VI) reduction, and proposes a viable strategy for Cr(VI) remediation and utilization of peanut shell.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Jasu A, Manna B, Das SC, Chakraborty B, Pramanik G, Ray RR. Docking assisted mechanistic elucidation of bio conversion of hexavalent chromium by Serratia marcescens AJRR-22 that is effective yet long term sustainable in bio-geosphere. BIORESOURCE TECHNOLOGY 2024; 393:130009. [PMID: 37952590 DOI: 10.1016/j.biortech.2023.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Environmental accumulation of hexavalent chromium [Cr(VI)] in the food chain can induce detrimental effects on plants and animals, which calls for effective remediation strategies using biological entities. The bacterium isolated from an iron mine in Odisha, India, is identified asSerratia marcescensAJRR-22. This multi-metal tolerant strain is capable of bio-converting up to 350 mg/L Cr(VI) within 72 h of incubation. Observable electron dense precipitates in transmission electron microscopic images, data patterns in fluorescence microscopy and flow cytometry clearly reveal the chromate reduction ability of the strain. The molecular study is depicted by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic analyses. Furthermore, a simulation study to estimate the interactions of chromium bound flavin reductasewith predicted docked complexes suggests significant negative Gibbs free energy and a low inhibition constant (Ki), signifying strong spontaneous binding of Cr(VI) to the enzyme, which makes the strain an efficient candidate for chromium bioremediation.
Collapse
Affiliation(s)
- Amrita Jasu
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India
| | - Bharat Manna
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Samir Chandra Das
- Department of Bio-medical Instrumentation, University of Calcutta, India
| | - Buddhadeb Chakraborty
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India
| | - Goutam Pramanik
- Chemical Division, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Rina Rani Ray
- Microbiology Research Laboratory, Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, W.B., Simhat, Haringhta, Nadia, West Bengal, India.
| |
Collapse
|
10
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
11
|
Yu Y, Liu C, Gu S, Wei Y, Li L, Qu Q. Upcycling spent palladium-based catalysts into high value-added catalysts via electronic regulation of Escherichia coli to high-efficiently reduce hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122660. [PMID: 37778189 DOI: 10.1016/j.envpol.2023.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Upgrading and recycling Palladium (Pd) from spent catalysts may address Pd resource shortages and environmental problems. In this paper, Escherichia coli (E. coli) was used as an electron transfer intermediate to upcycle spent Pd-based catalysts into high-perform hexavalent chromium bio-catalysts. The results showed that Pd (0) nanoparticles (NPs) combined with the bacterial surface changed the electron transfer by enhancing the cell conductivity, thus promoting the removal rate of Pd(II). The recovery efficiency of Pd exceeded 98.6%. Notably, E. coli heightened the adsorption of H• and HCOO• via electron transfer of the Pd NPs electron-rich centre, resulting in a higher catalytic performance of the recycled spent catalysed the reduction of 20 ppm Cr(VI) under mild conditions within 18 min, in which maintained above 98% catalytic activity after recycling five times. This efficiency was found to be higher than that of the reported Pd-based catalysts. Hence, an electron transfer mechanism for E. coli recovery Pd-based catalyst under electron donor adjusting is proposed. These findings provide an important method for recovering Pd NPs from spent catalysts and are crucial to effectively reuse Pd resources.
Collapse
Affiliation(s)
- Yang Yu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Shaojia Gu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yuhui Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650504, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Meng Y, Yuan Q, Luan F. Thermodynamic considerations on the combined effect of electron shuttles and iron(III)-bearing clay mineral on Cr(VI) reduction by Shewanella oneidensis MR-1. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132144. [PMID: 37517234 DOI: 10.1016/j.jhazmat.2023.132144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Electron shuttles (ESs) and Fe-bearing clay minerals are commonly found in subsurface environments and have shown potential in enhancing the bioreduction of Cr(VI). However, the synergistic effect of ESs at different redox potentials and Fe-bearing clay minerals on Cr(VI) bioreduction, as well as the fundamental principles governing this process, remain unclear. In our study, we investigated the role of ESs and Fe(III) in Cr(VI) bioreduction. We found that the acceleration of ESs and Fe(III) are crucial factors in this process. Interestingly, the promotion of ESs on Cr(VI) and Fe(III) showed opposite trends. Electrochemical methods confirmed the limited steps are the extent of reduced ESs and the redox potential difference between ESs and Fe(III), separately. Furthermore, we investigated the combined effect of ESs and NAu-2 on Cr(VI) bioreduction. Our results revealed two segments: in the first segment, the ES (5-HNQ) and NAu-2 did not synergistically enhance Cr(VI) reduction. However, in the second segment, ESs and NAu-2 demonstrated a synergistic effect, significantly increasing Cr(VI) reduction by MR-1. These bioreduction processes all follow linear free energy relationships (LFERs). Overall, our study highlights the fundamental principles governing multivariate systems and presents a promising approach for the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Xu Z, Chen Y, Wu Z, Li D, Li X, Feng X, Deng H, Chen H, Zhang B, Lin Z. Bacterial mineralization of chromium-copper spinel with highly performance in electroplating effluent. WATER RESEARCH 2023; 242:120229. [PMID: 37331227 DOI: 10.1016/j.watres.2023.120229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cr (VI) contamination has posed severe challenges to water quality, food safety, and land resources. Microbial reduction of Cr(VI) to Cr(III) has drawn considerable attention due to its low cost and environmental friendliness. However, recent reports have shown that Cr(VI) generates highly migratable organo-Cr(III) rather than stable inorganic chromium minerals during the biological reduction process. In this work, it was reported for the first time that spinel structure CuCr2O4 was formed by Bacillus cereus in Cr biomineralization process. Different from known biomineralization models (biologically controlled mineralization and biologically induced mineralization), the chromium-copper minerals here appeared as specialized minerals with extracellular distribution. In view of this, a possible mechanism of biologically secretory mineralization was proposed. In addition, Bacillus cereus demonstrated a high conversion ability in the treatment of electroplating wastewater. The Cr(VI) removal percentage reached 99.7%, which satisfied the Chinese emission standard of pollutants for electroplating (GB 21,900-2008), indicating its application potential. Altogether, our work elucidated a bacterial chromium spinel mineralization pathway and evaluated the potential of this system for application in actual wastewater, opening a new avenue in the field of chromium pollution treatment and control.
Collapse
Affiliation(s)
- Zhongxuan Xu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yuxi Chen
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhen Wu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Diandi Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xiaoqin Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xuezhen Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Deng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China.
| | - Hong Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
14
|
Huang Y, Tang J, Zhang B, Long ZE, Ni H, Fu X, Zou L. Influencing factors and mechanism of Cr(VI) reduction by facultative anaerobic Exiguobacterium sp. PY14. Front Microbiol 2023; 14:1242410. [PMID: 37637125 PMCID: PMC10449125 DOI: 10.3389/fmicb.2023.1242410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Microbial reduction is an effective way to deal with hexavalent chromium [Cr(VI)] contamination in the environment, which can significantly mitigate the biotoxicity and migration of this pollutant. The present study investigated the influence of environmental factors on aqueous Cr(VI) removal by a newly isolated facultative anaerobic bacterium, Exiguobacterium sp. PY14, and revealed the reduction mechanism. This strain with a minimum inhibitory concentration of 400 mg/L showed the strongest Cr(VI) removal capacity at pH 8.0 because of its basophilic nature, which was obviously depressed by increasing the Cr(VI) initial concentration under both aerobic and anaerobic conditions. In contrast, the removal rate constant for 50 mg/L of Cr(VI) under anaerobic conditions (1.82 × 10-2 h-1) was 3.3 times that under aerobic conditions. The co-existence of Fe(III) and Cu(II) significantly promoted the removal of Cr(VI), while Ag(I), Pb(II), Zn(II), and Cd(II) inhibited it. Electron-shuttling organics such as riboflavin, humic acid, and anthraquinone-2,6-disulfonate promoted the Cr(VI) removal to varying degrees, and the enhancement was more significant under anaerobic conditions. The removal of aqueous Cr(VI) by strain PY14 was demonstrated to be due to cytoplasmic rather than extracellular reduction by analyzing the contributions of different cell components, and the end products existed in the aqueous solution in the form of organo-Cr(III) complexes. Several possible genes involved in Cr(VI) metabolism, including chrR and chrA that encode well-known Chr family proteins responsible for chromate reduction and transport, respectively, were identified in the genome of PY14, which further clarified the Cr(VI) reduction pathway of this strain. The research progress in the influence of crucial environmental factors and biological reduction mechanisms will help promote the potential application of Exiguobacterium sp. PY14 with high adaptability to environmental stress in Cr(VI) removal in the actual environment.
Collapse
Affiliation(s)
- Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jie Tang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Bei Zhang
- College of Art and Design, Jiangxi Institute of Fashion Technology, Nanchang, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
15
|
Jiang C, Hu L, He N, Liu Y, Zhao H. Bioreduction and mineralization of Cr(VI) by Sporosarcina saromensis W5 induced carbonate precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89355-89368. [PMID: 37442938 DOI: 10.1007/s11356-023-28536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The microbial reduction of Cr(VI) to Cr(III) is widely applied, but most studies ignored the stability of reduction products. In this study, the Cr(VI)-reducing bacterium of Sporosarcina saromensis combined with microbially induced carbonate precipitation (MICP) was used to explore the reduction and mineralization mechanisms of Cr(VI). The results indicated that the high concentration of Ca2+ could significantly enhance the reduction and mineralization of Cr(VI). The highest reduction and mineralization efficiencies of 99.5% and 55.9% were achieved at 4 g/L Ca2+. Moreover, the urease activity of S. saromensis in the experimental group was up to 13.28 U/mg NH3-N. Besides, the characteristic results revealed that Cr(VI) and reduced Cr(III) were absorbed on the surface or got into the interspace of CaCO3, which produced a new stable phase (Ca10Cr6O24(CO3)). Overall, the combination of S. saromensis and MICP technology might be a high-efficiency and environmentally friendly strategy for further application in the Cr(VI)-containing groundwater.
Collapse
Affiliation(s)
- Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Lv Y, Wang L, Liu X, Chen B, Zhang M. Construction and function of a high-efficient synthetic bacterial consortium to degrade aromatic VOCs. Bioprocess Biosyst Eng 2023; 46:851-865. [PMID: 37032387 DOI: 10.1007/s00449-023-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
Aromatic volatile organic compounds (VOCs) are a type of common pollution form in chemical contaminated sites. In this study, seven aromatic VOCs such as benzene, toluene, ethylbenzene, chlorobenzene, m-xylene, p-chlorotoluene and p-chlorotrifluorotoluene were used as the only carbon source, and four strains of highly efficient degrading bacteria were screened from the soil of chemical contaminated sites, then the synthetic bacterial consortium was constructed after mixing with an existing functional strain (Bacillus benzoevorans) preserved in the laboratory. After that, the synthetic bacterial consortium was used to explore the degradation effect of simulated aromatic VOCs polluted wastewater. The results showed that the functional bacterium could metabolize with aromatic VOCs as the only carbon source and energy. Meanwhile, the growth of the synthetic bacterial consortium increased with the additional carbon resources and the alternative of organic nitrogen source. Ultimately, the applicability of the synthetic bacterial consortium in organic contaminated sites was explored through the study of broad-spectrum activity.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Liangshi Wang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China.
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
- Institute of Earth Science, China University of Geosciences, Beijing, 100083, China.
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd., Shenzhen, 518001, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| |
Collapse
|
17
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
18
|
Xie P, Liu Z, Li J, Ju D, Ding X, Wang Y, Hower JC. Pollution and health-risk assessments of Cr-contaminated soils from a tannery waste lagoon, Hebei, north China: With emphasis on Cr speciation. CHEMOSPHERE 2023; 317:137908. [PMID: 36681196 DOI: 10.1016/j.chemosphere.2023.137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In this paper, heavy metals (i.e., V, Cr, Co, Cu, Zn, Cd, Pb, and Sb) in soils from a tannery waste lagoon, Hebei, north China were investigated. Element concentrates were determined by a portable X-ray fluorescence in situ and an inductively coupled plasma mass spectrometry in the lab. Two sets of indexes, including geological accumulation index, contamination factor, and pollution load index, and hazard quotient and total carcinogenic risk were adopted to evaluate the pollution and health-risk of heavy metals. A scanning electron microscopy in conjunction with an energy dispersive X-ray spectroscopy and an X-ray photoelectron spectroscopy was used to observe chromium occurrence and speciation. With an average of 6493.11 mg/kg, chromium contents in the lagoon soils reached up to 12971.19 mg/kg, 211-times higher than the threshold of Chinese soils (61.00 mg/kg). Elevated Cr contents resulted in significantly high pollution and noncarcinogenic and carcinogenic risks in the studied area. Chromium in most soils occurred predominately as Cr3+ (60-74%), and to a lesser extent, Cr6+. The mechanism responsible for decreasing Cr6+ percentages in soils with increasing depth was summarized: Cr6+ favors aqueous environment; soil moisture decreased with increasing depth; in soils especially in the lower portion, Cr6+ was reduced by Fe0 and Fe2, transforming into Cr3+ and Fe3+. In addition, the alkaline condition promoted Cr3+ to precipitate, resulting more Cr3+ absorbing in soils. The intimate association of Cr and Fe in soils (i.e., Cr mainly occurred in Fe oxides and dolomite) further confirmed our assumptions. A combined application of microorganism (e.g., Aeromonas hydrophila) and biochar (prepared from maize stalk or peanut shells) were recommended to alleviate Cr pollution in the soils.
Collapse
Affiliation(s)
- Panpan Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, China.
| | - Zhenao Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jin Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Diandong Ju
- Sinohydro Foundation Engineering Co., Ltd, Tianjin, 301700, China
| | - Xiaoyong Ding
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yuze Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - James C Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40511, USA
| |
Collapse
|
19
|
Sevak P, Pushkar B, Mazumdar S. Mechanistic evaluation of chromium bioremediation in Acinetobacter junii strain b2w: A proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116978. [PMID: 36521220 DOI: 10.1016/j.jenvman.2022.116978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium. It was able to bioremediate 83.06% of total chromium and reduces 98.24% of Cr6+ to C3+ at a concentration of 10 ppm of chromium. The bacterial isolate could grow well at a wide pH range from 5 to 9, salinity of up to 3.5% and could also tolerate heavy metals such as Cd, Zn, As, Hg, Pb and Cu. Thus, indicating its possible on-ground applicability for bioremediation of chromium. Acinetobacter junii bioaccumulate chromium without disrupting the cell integrity and biosorption. However, chromium alters the functional groups on bacterial cell surface and led to decrease in sulfate-containing molecules. Further, the protein expression study has revealed that Cr significantly up-regulates proteins broadly classified under envelope stress responses, oxidative stress responses, energy metabolism and quorum sensing and growth regulator. The possible mechanisms of Cr detoxification in Acinetobacter junii strain b2w could be reduction, bioaccumulation and efflux along with neutralization of oxidative stress generated by Cr. Thus, based on bacterial bioremediation potential and its molecular response, it can be proposed that the isolated Acinetobacter junii has potential applicability for chromium bioremediation.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, Maharashtra, India
| |
Collapse
|
20
|
Shi Y, Wang Z, Li H, Yan Z, Meng Z, Liu C, Chen J, Duan C. Resistance mechanisms and remediation potential of hexavalent chromium in Pseudomonas sp. strain AN-B15. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114498. [PMID: 36608568 DOI: 10.1016/j.ecoenv.2023.114498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The understanding of bacterial resistance to hexavalent chromium [Cr(VI)] are crucial for the enhancement of Cr(VI)-polluted soil bioremediation. However, the mechanisms related to plant-associated bacteria remain largely unclear. In this study, we investigate the resistance mechanisms and remediation potential of Cr(VI) in a plant-associated strain, AN-B15. The results manifested that AN-B15 efficiently reduced Cr(VI) to soluble organo-Cr(III). Specifically, 84.3 % and 56.5 % of Cr(VI) was removed after 48 h in strain-inoculated solutions supplemented with 10 and 20 mg/L Cr(VI) concentrations, respectively. Transcriptome analyses revealed that multiple metabolic systems are responsible for Cr(VI) resistance at the transcriptional level. In response to Cr(VI) exposure, strain AN-B15 up-regulated the genes involved in central metabolism, providing the reducing power by which enzymes (ChrR and azoR) transformed Cr(VI) to Cr(III) in the cytoplasm. Genes involved in the alleviation of oxidative stress and DNA repair were significantly up-regulated to neutralize Cr(VI)-induced toxicity. Additionally, genes involved in organosulfur metabolism and certain ion transporters were up-regulated to counteract the starvation of sulfur, molybdate, iron, and manganese induced by Cr(VI) stress. Furthermore, a hydroponic culture experiment showed that toxicity and uptake of Cr(VI) by plants under Cr(VI) stress were reduced by strain AN-B15. Specifically, strain AN-B15 inoculation increased the fresh weights of the wheat root and shoot by 55.5 % and 18.8 %, respectively, under Cr(VI) stress (5 mg/L). The elucidation of bacterial resistance to Cr(VI) has an important implication for exploiting microorganism for the effective remediation of Cr(VI)-polluted soils.
Collapse
Affiliation(s)
- Yu Shi
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Huifen Li
- Qingdao Shangde Biotech Co Ltd,Qingdao 266111, China
| | - Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- Qingdao Shangde Biotech Co Ltd,Qingdao 266111, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China.
| |
Collapse
|
21
|
Yu C, Zhu X, Mohamed A, Dai K, Cai P, Liu S, Huang Q, Xing B. Enhanced Cr(VI) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129927. [PMID: 36152545 DOI: 10.1016/j.jhazmat.2022.129927] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 05/22/2023]
Abstract
Biochar can act as a shuttle to accelerate the extracellular electron transfer (EET) by exoelectrogens. However, it is poorly understood how the persistent free radicals (PFRs) in biochar affected EET and the redox reaction. Herein, the effects of the biochar and chitosan modified biochar (CBC) on the Cr(VI) bioreduction by Shewanella oneidensis MR-1 (MR-1) was investigated. Kinetic study indicated that the Cr(VI) bioreduction rate constant by MR-1 was increased by 1.8-33.7 folds in the presence of biochar, and by 2.7-60.2 folds in the presence of CBC, respectively. Moreover, Cr(VI) bioreduction rates increased with the decreasing pH. Results suggested that the electrostatic attraction between Cr(VI) and redox-active particles could accelerate the EET by c-cytochrome due to the promotion of the Cr(VI) migration from aqueous phase to biochar or CBC. Electron paramagnetic resonance analysis suggested that the PFRs affected the electron transfer from the ·O2- generated by MR-1 to Cr(VI) and accelerate the Cr(VI) bioreduction. Remarkably, in the presence of PFRs, this electron shuttling process was dependent on the non-metal-reducing respiratory pathway. Our results offer new insights that free radicals may be widely involved in the EET and strongly impact on the redox reaction in the environment.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoxi Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl 13759, Egypt
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
22
|
Aeromonas sobria as a potential candidate for bioremediation of heavy metal from contaminated environments. Sci Rep 2022; 12:21235. [PMID: 36481784 PMCID: PMC9732040 DOI: 10.1038/s41598-022-25781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The uncontrolled discharge of industrial wastes causes the accumulation of high heavy metal concentrations in soil and water, leading to many health issues. In the present study, a Gram-negative Aeromonas sobria was isolated from heavily contaminated soil in the Tanjaro area, southwest of Sulaymaniyah city in the Kurdistan Region of Iraq; then, we assessed its ability to uptake heavy metals. A. sobria was molecularly identified based on the partial amplification of 16S rRNA using novel primers. The sequence was aligned with 33 strains to analyze phylogenetic relationships by maximum likelihood. Based on maximum tolerance concentration (MTC), A. sobria could withstand Zn, Cu, and Ni at concentrations of 5, 6, and 8 mM, respectively. ICP-OES data confirmed that A. sobria reduced 54.89% (0.549 mM) of the Cu, 62.33% (0.623 mM) of the Ni, and 36.41% (0.364 mM) of the Zn after 72 h in the culture medium. Transmission electron microscopy (TEM) showed that A. sobria accumulated both Cu and Ni, whereas biosorption was suggested for the Zn. These findings suggest that metal-resistant A. sobria could be a promising candidate for heavy metal bioremediation in polluted areas. However, more broadly, research is required to assess the feasibility of exploiting A. sobria in situ.
Collapse
|
23
|
Murthy MK, Khandayataray P, Samal D. Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115620. [PMID: 35772275 DOI: 10.1016/j.jenvman.2022.115620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a crucial element for all life forms. Various anthropogenic activities have been responsible for environmental contamination with Cr (VI) in recent years. For this review, articles were collected using electronic databases such as Web of Science, Pubmed, ProQuest, and Google Scholar as per the guidelines of PRISMA-2015, applying the Boolean search methods. Chromium can cause severe health complications in humans and animals and threatens the surrounding environment, with negative impacts on crop yield, development, and quality. Hence, monitoring Cr contamination is essential, and various remediation technologies have emerged in the past 50 years to reduce the amount of Cr in the environment. This review focuses on chromium exposure and the associated environmental health risks. We also reviewed sustainable remediation processes, with emphasis on nanoparticle and endophytic remediation processes.
Collapse
Affiliation(s)
| | | | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, VidyaVihar, IID Center, Khordha, Odisha, India
| |
Collapse
|
24
|
Wang Y, Wang H, Jin H, Chen H. Performance and mechanisms of enhanced hydrolysis acidification by adding different iron scraps: Microbial characteristics and fate of iron scraps. Front Microbiol 2022; 13:980396. [PMID: 36090100 PMCID: PMC9449731 DOI: 10.3389/fmicb.2022.980396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
HA, as one of low-carbon pre-treatment technology could be enhanced by packing of iron or iron oxide powder for enhancing the transformation of large molecular weight to generate volatile fatty acids (VFAs) for fuel production. However, the controversy of iron strengthening the HA and inherent drawbacks of iron oxide, such as poor mass transfer, and difficult recovery, limit this pretreatment technology. Clean and rusty iron scraps were packed into an HA system to address these issues while focusing on the system performance and the response of core bacterial and fungal microbiomes to iron scrap exposure. Results showed that clean and rusty iron scraps can significantly improve the HA performance while considering hydrolysis efficiency (HE), acidification efficiency (AE) and VFAs production, given that VFAs ratios (Cacetate: Cpropionate: Cbutyrate) were changed from the 14:5:1 to 14:2:1 and 29:4:1, respectively, and the obtained VFAs ratios in iron scraps addition systems were more closely to the optimal VFAs ratio for lipids production. Redundant and molecular ecological network analyses indicated that iron scraps promote the system stability and acidogenesis capacity by boosting the complexity of microbes’ networks and enriching core functional microbes that show a positive response to HA performance, among which the relative abundance of related bacterial genera was promoted by 19.71 and 17.25% for RRusty and RClean systems. Moreover, except for the differences between the control and iron scraps addition systems, the findings confirmed that the RRusty system is slightly different from the RClean one, which was perhaps driven by the behavior of 6.20% of DIRB in RRusty system and only 1.16% of homoacetogens in RClean system when considering the microbial community and fate of iron scraps. Totally, the observed results highlight the application potential of the iron scrap-coupled HA process for the generation of VFAs and provide new insights into the response of different iron scraps in microbes communities.
Collapse
Affiliation(s)
- Yanqiong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Hongwu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- *Correspondence: Hongwu Wang,
| | - Hui Jin
- State Key Laboratory of Pollution Control and Resource Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Luo X, Zhou X, Peng C, Shao P, Wei F, Li S, Liu T, Yang L, Ding L, Luo X. Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128822. [PMID: 35390619 DOI: 10.1016/j.jhazmat.2022.128822] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Extracellular polymeric substances (EPS) have exhibited promising advantages in mitigating heavy metal contamination, e.g., single-valent silver (Ag(I)), trivalent gold (Au(III)), and hexavalent chromium (Cr(VI)). However, knowledge of the specific substrate in EPSs that supports Cr(VI) reduction has remained elusive. Here, we isolated a novel Cr(VI)-reducing strain with self-mediating properties in an aquatic environment with various pH values to investigate the mechanisms. After analysis by a batch assay coupled with X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) spectroscopic techniques, it was found that Cr(VI) was reduced by the strain and soluble-EPS (S-EPS), and then, organo-trivalent chromium (organo-Cr(III)) was successfully formed. In addition, compared with other components of the strain, the strain and S-EPS completely removed Cr(VI), and the S-EPS exhibited a positive effect on Cr(VI) reduction with a strong monotonic correlation (R2 = 0.999, p = 9.03 × 10-5), indicating that the reduction is an EPS-dependent process. Specifically, the Cr(VI) reduction efficiency was enhanced to 48.85% and 99.4% after EPS and EPS plus tryptophan were added; their respective efficiencies were 3.94 and 8.02 times higher than that of the control assay in which the reductant was depleted. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that the tryptophan concentration concomitantly decreased by 61.54%. These findings highlighted the importance of S-EPS and tryptophan and improved our understanding of EPS for Cr(VI) reduction, which might provide a novel strategy for decontaminating targeted heavy metals in future applications.
Collapse
Affiliation(s)
- Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoyu Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chengyi Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Feng Wei
- Jiangxi Hongcheng Environment Co., Ltd, Nanchang 330038, PR China
| | - Shujing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
26
|
Yi X, Liu S, Luo M, Li Q, Wang Y. An outer membrane photosensitized Geobacter sulfurreducens-CdS biohybrid for redox transformation of Cr(VI) and tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128633. [PMID: 35278941 DOI: 10.1016/j.jhazmat.2022.128633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microbe-photocatalyst biohybrids, integrating the optimal attributes of whole-cell catalysts and nanometer photocatalysts, have emerged as a promising strategy for environment-associated applications. However, few such biohybrids have been tested for complex pollution systems. Herein, we constructed an outer membrane photosensitized Geobacter sulfurreducens (G. sulfurreducens)-CdS biohybrid, which enabled to generate stronger photocurrent in response to irradiation and meanwhile achieved an significant promotion for the redox transformation of Cr(VI) and tetracycline compared with that of bare G. sulfurreducens or CdS counterparts. Further analysis revealed that the outer membrane played a significant role in photoelectron transfer. Differential pulse voltammetry (DPV) tests demonstrated that CdS enhanced the catalytic activity of C-type cytochromes on the outer membrane under irradiation, resulting in the increase of electron-hole pairs separation efficiency. The possible degradation pathway of tetracycline was proposed based on determined intermediates, whose toxicities were well evaluated. Importantly, the toxicity of the final detected intermediates was apparently decreased. Overall, this work aims to explore the working mechanisms of the novel G. sulfurreducens-CdS biohybrid system and opens up a new avenue to purifying combined wastewater by microbe-photocatalyst biohybrids.
Collapse
Affiliation(s)
- Xiaofeng Yi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Shurui Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Mingyu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China; College Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Geng N, Xia Y, Lu D, Bai Y, Zhao Y, Wang H, Ren L, Xu C, Hua E, Sun G, Chen X. The bacterial community structure in epiphytic biofilm on submerged macrophyte Potamogetom crispus L. and its contribution to heavy metal accumulation in an urban industrial area in Hangzhou. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128455. [PMID: 35739657 DOI: 10.1016/j.jhazmat.2022.128455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes and their epiphytic biofilms are important media for metal transport/transformation in aquatic environment. However, the bacterial community structure and the contribution of the epiphytic biofilm to the heavy metal accumulation remain unclear. Therefore, in this study, water, sediment, submerged macrophyte (Potamogeton crispus L.) and its epiphytic biofilm samples in three sites of the moat in the industrial area of Hangzhou were collected for analyzing. The bacterial community structure was significantly impacted by the TN concentrations, and Genus Aeromonas (24.5-41.8%), Acinetobacter (16.2-29.8%) and Pseudomonas (12.6-23.6%) dominated in all epiphytic biofilm samples, which had the heavy metal pollutant resistibility. The contents of Cr in biofilms (7.4-8.3 mg/kg, DW) were significantly higher than those in leaves (1.0-2.4 mg/kg, DW), while the contents of Cu (11.0-13.9 mg/kg, DW) in leaves were significantly higher than those in biofilms (0.7-3.9 mg/kg, DW) in all the three sites. The BCF values of metals in the biofilm were followed the order of YF < IC < ETS. The results indicated that the epiphytic biofilm had positive effects on the metal bioaccumulation, and the metal accumulation ability increased with the hydrodynamic forces. Bioaccumulation by the epiphytic biofilm may be an effective way for metal (especially Cr) remediation.
Collapse
Affiliation(s)
- Nan Geng
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Yinfeng Xia
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Debao Lu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Yu Bai
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Yufeng Zhao
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Hui Wang
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Lingxiao Ren
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Cundong Xu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Ertian Hua
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Guojin Sun
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Xiaoyang Chen
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| |
Collapse
|
28
|
Yu C, Yu L, Mohamed A, Fang J, Wu Y, Dai K, Cai P, Huang Q. Size-dependent visible-light-enhanced Cr(VI) bioreduction by hematite nanoparticles. CHEMOSPHERE 2022; 295:133633. [PMID: 35041817 DOI: 10.1016/j.chemosphere.2022.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Light irradiation would affect the electron transfer between dissimilatory metal-reducing bacteria (DMRB) and semiconducting minerals, which may impose a great influence on the biogeochemistry cycle of heavy metals. However, the size effect of semiconducting minerals on the its electron transfer with DMRB and microbial Cr(VI) reduction under visible light irradiation is little known. Herein, the Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) was investigated in the presence of hematite nanoparticles with average diameters of 10 nm and 50 nm in dark and under visible light irradiation. It is found that hematite nanoparticles adhered onto MR-1 cells to form the composites, leading to the decrease in surface sites and Zeta potential. Hematite mediated-Cr(VI) bioreduction rate under visible light irradiation was 0.342 h-1, which is 3.4 folds enhancement compared with that in dark and 4.4 folds compared with the MR-1 alone under visible light irradiation. Decreasing nanoparticle size of hematite from 50 nm to 10 nm promoted the Cr(VI) reduction under visible light irradiation but impeded it in dark. It was deduced that the bioelectrons from MR-1 could promote the separation of photoelectron-hole pairs of light-irradiated hematite, which consequently enhanced the Cr(VI) bioreduction by MR-1-hematite composites. Moreover, mutant strains experiments demonstrated the vital role of c-cytochrome for the conducting network actively established by MR-1 with hematite nanoparticles. Those findings expand the understanding of the electron transfer pathway for enhancing Cr(VI) reduction by hematite-MR-1 composites, and the impact of particle size on the interaction between semiconducting mineral and electroactive bacteria under light irradiation.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lu Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Soil and Water Res. Department, Nuclear Research Center, Atomic Energy Authority, Abou Zaabl, 13759, Egypt
| | - Jun Fang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yichao Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
29
|
Meng Y, Ma X, Luan F, Zhao Z, Li Y, Xiao X, Wang Q, Zhang J, Thandar SM. Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152433. [PMID: 34942251 DOI: 10.1016/j.scitotenv.2021.152433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site. All of them could reduce Cr(VI), and the greatest extent of Cr(VI) reduction (98%) was obtained by the isolated CRB6 strain. The isolated CRB6 was able to reduce structural Fe(III) in Nontronite NAu-2 to structural Fe(II). Compared with the slow bioreduction process, the produced structural Fe(II) can rapidly enhance Cr(VI) reduction. The resist dissolution characteristics of NAu-2 in the redox cycling may provide sustainable enhancement of Cr(VI) reduction. However, no enhancement on Cr(VI) bioreduction by the isolated CRB6 was observed in the presence of NAu-2, which was attributed to the inhibition of Cr(VI) on the electron transfer between the isolated CRB6 and NAu-2. AQDS can accelerate the electron transfer between the isolated CRB6 and NAu-2 as an electron shuttle in the presence of Cr(VI). Therefore, the combination of NAu-2 and AQDS generated a synergistic enhancement on Cr(VI) bioreduction compared with the enhancement obtained by NAu-2 and AQDS individually. Our results highlight that structural Fe(III) and electron shuttle can provide a sustainable enhancement of Cr(VI) reduction by Cr(VI)-reducing bacteria, which has great potential for the effective Cr(VI) in-situ remediation.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaoxu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Geological Exploration and Research Institute, CNACG, Beijing 100039, PR China
| | - Xiao Xiao
- New World Environmental Protection Group, ZhuZhou 412007, PR China
| | - Qianqian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Jianda Zhang
- School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China.
| | - Soe Myat Thandar
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biotechnology, Mandalay Technological University, Ministry of Education, Mandalay, Myanmar.
| |
Collapse
|
30
|
El-Wafai NA, Alharbi NK, Ezzat Ahmed A, El-Zamik FI, Mahgoub SA, Atia AM, Abdel-Hamid EA. Controlling of multidrug resistant Aeromonas hydrophila infected Nile tilapia (Oreochromis niloticus) using Ah03 and Ah04 virulent bacteriophages isolates. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Noori MT, Thatikayala D, Pant D, Min B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2022; 347:126589. [PMID: 34929327 DOI: 10.1016/j.biortech.2021.126589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Implicit interaction of electroactive microbes with solid electrodes is an interesting phenomenon in nature, which supported development of bioelectrochemical systems (BESs), especially the microbial fuel cell (MFCs) for valorization of low-value waste streams into bioelectricity. Intriguingly, the metabolism of interacted microbes with electrode is affected by the microenvironment at electrodes, which influences the current response. For instance, when heavy metal ions (HMIs) are imposed in the medium, the current production decreases due to their intrinsic toxic effect. This event provides an immense opportunity to utilize MFC as a sensor to selectively detect HMIs in the environment, which has been explored vastly in recent decade. In this review, we have concisely discussed the microbial interaction with electrodes and mechanism of detection of HMIs using an MFC. Recent advancement in sensing elements and their application is elaborated with a future perspective section for follow-up research and development in this field.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Dayakar Thatikayala
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
32
|
Zhang ZB, Cheng ZH, Wu JH, Yue ZB, Wang J, Liu DF. Engineering of salt-tolerant Shewanella aquimarina XMS-1 for enhanced pollutants transformation and electricity generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151009. [PMID: 34662622 DOI: 10.1016/j.scitotenv.2021.151009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Saline wastewater poses a challenge during bio-treatment process due to salinity affecting the physiological activity of microorganisms and inhibiting their growth and metabolism. Thus, screening and engineering the salt-tolerant strains with stronger performances are urgent. Shewanella aquimarina XMS-1, a salt-tolerant dissimilated metal reducing bacteria (DMRB), was isolated from seawater environment. Its ability for reducing pollutants and generating electricity was enhanced by overexpression of riboflavin synthesis pathway encoding genes from S. oneidensis MR-1 under salt stress. Furthermore, upon contact with graphene oxide (GO), the engineered strain XMS-1/pYYDT-rib with enhanced flavins synthesis could reduce GO and self-assemble to form a three-dimensional (3D) biohybrid system named XMS-1/flavins/rGO. This 3D biohybrid system significantly enhanced the EET efficiency of S. aquimarina XMS-1. Our findings provide a feasible strategy for treatment of salt-containing industrial wastewater contaminated by metal and organic pollutants.
Collapse
Affiliation(s)
- Zong-Bin Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Zheng-Bo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
John R, Rajan AP. Bioreactor level optimization of chromium(VI) reduction through Pseudomonas putida APRRJVITS11 and sustainable remediation of pathogenic DNA in water. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bioremediation is one of the indispensable features of Pseudomonas putida. The use of Pseudomonas has been proved to be an effective treatment of tannery released chromium (VI). The current study is the first attempt for the optimization of chromate reduction by Pseudomonas putida strain APRRJVITS11 in an optimized bench-scale bioreactor with successful thermo-pressure elimination of the strain thereby eliminating the health risk caused by antibiotic resistant genes (ARGs).
Results
The growth media, modified with optimized 1.0% nitrogen, 0.5% yeast extract and 0.3% sodium, showed enhanced bacterial growth for 72 h of incubation. The optimization of aeration (1.0 vvm) and agitation (150 rpm) rates enhanced the chromate reduction by about 40% at 72 h fermentation. Thermo-pressure pathogenic DNA degradation was achieved at 90 °C and 5868 Pa for 10 min.
Conclusions
Successful chromium reduction and total elimination of ARGs from effluent. A two-step treatment train was proposed for chromium reduction in the environment, which should be incorporated by the existing leather industries running on conventional treatment units.
Graphical Abstract
Collapse
|
34
|
Yang K, Ren S, Mei M, Jin Y, Xiang W, Shi Z, Ai Z, Yi L, Xie B. Removal of antibiotic thiamphenicol by bacterium Aeromonas hydrophila HS01. World J Microbiol Biotechnol 2022; 38:37. [PMID: 35018528 DOI: 10.1007/s11274-021-03223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Thiamphenicol (TAP) is an amphenicol antibiotic, which has a broad-spectrum inhibitory effect on both gram-positive and gram-negative bacteria. Since it is widely used in animals and aquaculture, its residues in environment may bring potential risk for human health and ecosystems. While TAP can be removed through conventional physical or chemical methods, its bioremediation using microorganisms is less studied. Here, we report the removal of TAP by a bacterial strain, Aeromonas hydrophila HS01, which can remove more than 90.0% of TAP in a living cell-dependent manner. Our results indicated that its removal efficiency can be greatly affected by the growth condition. Proteomics studies revealed a number of differentially expressed proteins of HS01 in the presence of TAP, which may play critical roles in the transportation and degradation of TAP. All these results indicate bacterial strain A. hydrophila HS01 is a new microbial resource for efficiently removing TAP, and may shed new insights in developing bioremediation approaches for TAP pollution.
Collapse
Affiliation(s)
- Kai Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Sanguo Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuanpei Jin
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Wei Xiang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Zunji Shi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Wu J, Liu DF, Li HH, Min D, Liu JQ, Xu P, Li WW, Yu HQ, Zhu YG. Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environ Microbiol 2021; 23:7578-7590. [PMID: 34837302 DOI: 10.1111/1462-2920.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial-resistant pathogens in the environment and wastewater treatment systems, many of which are also important pollutant degraders and are difficult to control by traditional disinfection approaches, have become an unprecedented treat to ecological security and human health. Here, we propose the adoption of genetic editing techniques as a highly targeted, efficient and simple tool to control the risks of environmental pathogens at the source. An 'all-in-one' plasmid system was constructed in Aeromonas hydrophila to accurately identify and selectively inactivate multiple key virulence factor genes and antibiotic resistance genes via base editing, enabling significantly suppressed bacterial virulence and resistance without impairing their normal phenotype and pollutant-degradation functions. Its safe application for bioaugmented treatment of synthetic textile wastewater was also demonstrated. This genetic-editing technique may offer a promising solution to control the health risks of environmental microorganisms via targeted gene inactivation, thereby facilitating safer application of water treatment biotechnologies.
Collapse
Affiliation(s)
- Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Hui-Hui Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong-Guan Zhu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Min D, Liu DF, Wu J, Cheng L, Zhang F, Cheng ZH, Li WW, Yu HQ. Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants. Biotechnol Bioeng 2021; 118:4760-4770. [PMID: 34546573 DOI: 10.1002/bit.27940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Collapse
Affiliation(s)
- Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Lei Cheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Yang X, Zhao Z, Nguyen BV, Hirayama S, Tian C, Lei Z, Shimizu K, Zhang Z. Cr(VI) bioremediation by active algal-bacterial aerobic granular sludge: Importance of microbial viability, contribution of microalgae and fractionation of loaded Cr. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126342. [PMID: 34329001 DOI: 10.1016/j.jhazmat.2021.126342] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, chromium (Cr) was used as an example of the most toxic heavy metals that threaten human health, and Cr(VI) bioremediation was implemented by using a new type of aerobic granular sludge (AGS), i.e., algal-bacterial AGS. Results showed that the total Cr removal efficiency by active algal-bacterial AGS was 85.1 ± 0.6% after 6 h biosorption at pH 6 and room temperature, which could be further improved to 93.8 ± 0.4% with external electron donor (glucose) supply. However, inactivation dramatically decreased the total Cr removal efficiency to 29.6 ± 3.5%, and no effect was noticed when external electron donor was provided. With an antibiotic (levofloxacin) or metabolic inhibitor (NaN3) addition, the total Cr removal efficiency of bacterial AGS was inhibited by 16.0% or 10.1%, but this efficiency was maintained in the case of algal-bacterial AGS. Analysis of extracellular polymeric substances (EPS) composition revealed that under Cr(VI) exposure, more loosely bound EPS were secreted by algal-bacterial AGS, favoring Cr(VI) reduction. Results from chemical fractionation indicated that 90.5 ± 4.2% of the loaded Cr on algal-bacterial AGS was in an immobile form, reflecting the low environmental risk of Cr-loaded algal-bacterial AGS after biosorption of hazardous heavy metals from wastewater.
Collapse
Affiliation(s)
- Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Bach Van Nguyen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shota Hirayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Caixing Tian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
38
|
Huang Y, Zeng Q, Hu L, Zhong H, He Z. Bioreduction performances and mechanisms of Cr(VI) by Sporosarcina saromensis W5, a novel Cr(VI)-reducing facultative anaerobic bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125411. [PMID: 33609863 DOI: 10.1016/j.jhazmat.2021.125411] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
This study reported a novel facultative anaerobic Cr(VI)-reducing bacteria (Sporosarcina saromensis W5) and investigated its Cr(VI) removal performances and removal mechanisms. The strain W5 was able to grow and reduce Cr(VI) under aerobic and anaerobic environment, and exhibited considerable Cr(VI) reduction capabilities under a wide range of pH (8.0-13.0), temperature (20-40 °C) and initial Cr(VI) concentration (50-800 mg/L). The addition of Cd2+ severely inhibited its growth and Cr(VI) removal, while Cu2+ and Fe3+ significantly enhanced the removal efficiencies. The strain W5 could utilize various electron donors and mediators to accelerate Cr(VI) reduction. Aerobic Cr(VI) reduction mainly occurred in cytoplasm and the final products were soluble organo-Cr(III) complexes. Anaerobic Cr(VI) reduction was located in both cytoplasm and membrane, and the reduction products were soluble organo-Cr(III) complexes and Cr(III) precipitates. The functional groups of hydroxyl, carboxyl and phosphoryl on cell surface participated in the combination with Cr(III). Due to its facultative anaerobic property, S. saromensis W5 offers itself as a promising engineering strain for the bioremediation of Cr(VI)-contaminated areas, especially in hypoxia environments.
Collapse
Affiliation(s)
- Yongji Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
39
|
Bashir MS, Jiang X, Yang X, Kong XZ. Porous Polyurea Supported Pd Catalyst: Easy Preparation, Full Characterization, and High Activity and Reusability in Reduction of Hexavalent Chromium in Aqueous System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xingjie Yang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
40
|
Pushkar B, Sevak P, Parab S, Nilkanth N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112279. [PMID: 33706095 DOI: 10.1016/j.jenvman.2021.112279] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is at its peak and is creating havoc for living beings. Industrial wastes containing toxic pollutants have contributed to a great extent in this disastrous environment pollution. Chromium (Cr3+/Cr6+) is highly toxic and one of the most common environmental pollutants because of its extensive use in industries especially tanneries. Lack of efficient treatment methods has resulted in extensive chromium pollution. Bioremediation of chromium using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. Bacteria possess numerous mechanisms such as biosorption, reduction, efflux or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the bacterial responses against chromium toxicity and scope for their application in bioremediation. The differences and similarities between Gram negative and positive bacteria against chromium are also highlighted. Further, the knowledge gap and future prospects are also discussed in order to fill these gaps and overcome the problem associated with real-time applicability of bacterial bioremediation.
Collapse
Affiliation(s)
- Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Global Biotech Forum, Maharashtra, India.
| | - Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Society for Innovations in Biosciences, Maharashtra, India
| | - Sejal Parab
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Nikita Nilkanth
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| |
Collapse
|
41
|
Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, Radwan N, Alam J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112174. [PMID: 33607566 DOI: 10.1016/j.jenvman.2021.112174] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chromium (Cr) is a trace element critical to human health and well-being. In the last few decades, its contamination, especially hexavalent chromium [Cr(VI)] form in both terrestrial and aquatic ecosystems, has amplified as a result of various anthropogenic activities. Chromium pollution is a significant environmental threat, severely impacting our environment and natural resources, especially water and soil. Excessive exposure could lead to higher levels of accumulation in human and animal tissues, leading to toxic and detrimental health effects. Several studies have shown that chromium is a toxic element that negatively affects plant metabolic activities, hampering crop growth and yield and reducing vegetable and grain quality. Thus, it must be monitored in water, soil, and crop production system. Various useful and practical remediation technologies have been emerging in regulating chromium in water, soil, and other resources. A sustainable remediation approach must be adopted to balance the environment and nature.
Collapse
Affiliation(s)
- Shiv Prasad
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India.
| | - Sandeep Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Neyara Radwan
- Faculty of Economics & Administration, King Abdulaziz University, Jeddah, Saudi Arabia; Mechanical Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
| | - Javed Alam
- Kind Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Yan X, Liu X, Zhang M, Wang J, Zhong J, Ma D, Tang C, Hu X. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22359-22371. [PMID: 33417128 DOI: 10.1007/s11356-020-11852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.
Collapse
Affiliation(s)
- Xiao Yan
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China.
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China.
- GRIMAT Engineering Institute Co., Ltd., Beijing, 101407, China.
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Jianlei Wang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Juan Zhong
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Daozhi Ma
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Chuiyun Tang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xuewu Hu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
43
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
44
|
Zheng C, Yang Z, Si M, Zhu F, Yang W, Zhao F, Shi Y. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124376. [PMID: 33144008 DOI: 10.1016/j.jhazmat.2020.124376] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Chromium (Cr) is one of the most toxic pollutants that has accumulated in terrestrial and aqueous systems, posing serious risks towards living beings on a worldwide scale. The immobilization, removal, and detoxification of active Cr from natural environment can be accomplished using multiple advanced materials. Biochar, a carbonaceous pyrolytic product made from biomass waste, is considered as a promising material for the elimination of Cr contamination. The preparation and properties of biochar as well as its remediation process for Cr ions have been well investigated. However, the distinct correlation of the manufacturing, characteristics, and mechanisms involved in the remediation of Cr contamination by various designed biochars is not summarized. Herein, this review provides information about the production, modification, and characteristics of biochars along with their corresponding effects on Cr stabilization. Biochar could be modified via physical, hybrid, chemical, and biological methods. The remediating mechanisms of Cr contamination using biochars involve adsorption, reduction, electron shuttle, and photocatalysis. Moreover, the coexisting ions and organic pollutants change the pattern of the remediating process of biochar in actual Cr contaminated water and soil. Finally, the present limitations and future perspectives are proposed.
Collapse
Affiliation(s)
- Chujing Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
45
|
Huang J, Shi B, Han W, Qiu S, Li H, Hou P, Wu W, Tang J. Effect of pH on hexavalent chromium removal driven by henna (Lawsonia inermis) fermentation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Niu A, Bian WP, Feng SL, Pu SY, Wei XY, Yang YF, Song LY, Pei DS. Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123604. [PMID: 32781281 DOI: 10.1016/j.jhazmat.2020.123604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III).
Collapse
Affiliation(s)
- Aping Niu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, China
| | - Wan-Ping Bian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuang-Long Feng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shi-Ya Pu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yi Wei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yi-Fan Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Li-Yan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Min D, Wu J, Cheng L, Liu DF, Lau TC, Yu HQ. Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123611. [PMID: 32768864 DOI: 10.1016/j.jhazmat.2020.123611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The high toxicity and prevalence of arsenic in the environment have aroused increasing research interest in understanding the mechanisms of microbial arsenic resistance. A wide spectrum of arsenic resistant microbes with ability of arsenic bio-transformation has been isolated from arsenic-contaminated environments. However, arsenic resistance processes and reduction abilities of microbes under various growth conditions remain poorly understood. In this work, a high correlation between the arsenic resistance and reduction ability of Aeromonas hydrophila and the carbon substrate was identified. Genome analysis suggests that the arsenic resistance system is widely present in Aeromonas genus, and the arsenic resistance was associated with the ars operon. The sensitivity of A. hydrophila to As(V) and As(III) depended heavily on the type of carbon substrate. The upregulated expression of arsA, arsB, arsD and/or downregulated expression of glpF might be responsible for the increased microbial tolerance to As(III). The As(V) reduction rate was also affected by the type of carbon substrate. Our results provide new insights into the impacts of carbon substrate on the arsenic biotoxicity as well as arsenic biotransformation processes.
Collapse
Affiliation(s)
- Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Tai-Chu Lau
- USTC-CityU Joint Advanced Research Center, Suzhou, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
48
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
49
|
Augustynowicz J, Sitek E, Latowski D, Wołowski K, Kowalczyk A, Przejczowski R. Unique biocenosis as a foundation to develop a phytobial consortium for effective bioremediation of Cr(VI)-polluted waters and sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116506. [PMID: 33493757 DOI: 10.1016/j.envpol.2021.116506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
This paper analyzes a unique, aquatic phytobial biocenosis that has been forming naturally for over 20 years and operating as a filter for Cr(VI)-polluted groundwater. Our study presents a thorough taxonomic analysis of the biocenosis, including filamentous algae, vascular plants, and microbiome, together with the analysis of Cr accumulation levels, bioconcentration factors and other environmentally-significant parameters: siderophore production by bacteria, biomass growth of the plants or winter hardiness. Among 67 species identified in the investigated reservoir, 13 species were indicated as particularly useful in the bioremediation of Cr(VI)-polluted water and sediment. Moreover, three species of filamentous algae, Tribonema sp., and three easily culturable bacterial species were for the first time shown as resistant to Cr concentration up to 123 mg/dm3, i.e. 6150 times over the permissible level. The work presents a modern holistic phytobial consortium indispensable for the remediation of Cr(VI)-contaminated aquatic environment in temperate zones worldwide.
Collapse
Affiliation(s)
- Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Konrad Wołowski
- Institute of Botany, Polish Academy of Sciences, Ul. Lubicz 46, 31-512, Kraków, Poland
| | - Anna Kowalczyk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Ul. Gronostajowa 7, 30-387, Kraków, Poland
| | | |
Collapse
|
50
|
Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111699. [PMID: 33396030 DOI: 10.1016/j.ecoenv.2020.111699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Extensive industrial activities have led to an increase of the content of chromium in the environment, which causes serious pollution to the surrounding water, soil and atmosphere. The enrichment of chromium in the environment through the food chain ultimately affects human health. Therefore, the remediation of chromium pollution is crucial to development of human society. A lot of scholars have paid attention to bioremediation technology owing to its environmentally friendly and low-cost. Previous reviews mostly involved pure culture of microorganisms and rarely discussed the optimization of bioreduction conditions. To make up for these shortcomings, we not only introduced in detail the conditions that affect microbial reduction but also innovatively introduced consortium which may be the cornerstone for future treatment of complex field environments. The aim of this study is to summary chromium toxicity, factors affecting microbial remediation, and methods for enhancing bioremediation. However, the actual application of bioremediation technology is still facing a major challenge. This study also put forward the current research problems and proposed future research directions, providing theoretical guidance and scientific basis for the application of bioremediation technology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Li Wang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng He
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|