1
|
Wen T, Cheng Y, Yuan Y, Sun R. Quantitative analysis and risk assessment of heavy metal pollution in an intensive industrial and agricultural region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117634. [PMID: 39756178 DOI: 10.1016/j.ecoenv.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent decades, the study of heavy metal pollution has garnered significant attention owing to the advancement of industrialization. To explore the contamination of heavy metals in an intensive industrial and agricultural region in Shandong province, China, 101 surface soil samples and 80 samples of edible crop parts were collected from the vicinity of an industrial park. A positive matrix factorization-multilayer perceptron model (PMF-MLP) was established to identify the sources of heavy metals and quantify the complex relationships between pollution sources, crop types, and pollution status. Index and human health-risk methods were used to assess the heavy metal pollution. The results show that (1) lead (Pb) and cadmium (Cd) in the soil may originate from industrial-traffic mixed pollution sources in the surrounding industrial park, whereas copper (Cu) is derived from agricultural pollution sources in the southern farmland. (2) Pollution is primarily concentrated in the central and northern regions of the study area. The analysis of the PMF-MLP model indicates that human activities account for the majority (79.6 %) of the risk of associated with heavy metal pollution. Among them, industrial, traffic, and agricultural mixed pollution sources, agricultural pollution sources associated with northern livestock farms, and crop types contribute to 49.3, 24.5, and 5.80 % of the total risk, respectively. (3) The oral intake of heavy metals represents the primary route of entry into the human body. Cd and Cu are the most significant elements associated with adverse human health, with Cd and Cu contributing the most to carcinogenic and non-carcinogenic risks in both adults and children, respectively. The results will provide references for the formulation of control strategies to curb heavy metal pollution.
Collapse
Affiliation(s)
- Tao Wen
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yibo Cheng
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yali Yuan
- Environment Research Institute, Shandong University, Qingdao, China
| | - Ruilian Sun
- Environment Research Institute, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Ye Z, Yang Y, Zhou Q, Zhou X, He L, Meng R, Huang L. Analysis of Toxic Elements Pollution Sources and Crop Health Risks in Soil of Typical Thallium Mining Area. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025:10.1007/s00244-024-01108-3. [PMID: 39751661 DOI: 10.1007/s00244-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The investigation focused on Tl, Hg, As, and Sb as the targeted contaminants in the soil surrounding a thallium mining region in southwestern China. Potential sources of toxic elements were identified using correlation analysis and principal component analysis. By interpreting the results of correlation and principal component analysis, the potential sources of Tl, Hg, As, and Sb were identified to include the mining and smelting industry. Additionally, Tl, Hg, and As are influenced by agricultural activities, while Sb is also associated with the soil parent material. Various analytical methods including the Nemerow comprehensive pollution index, Hakanson potential ecological risk index and hazard quotient assessment were employed to evaluate the sources of heavy metal pollution and associated health risks to crops. Results indicated elevated exceedance rates of Tl, Hg, and Sb in the farmland soil. Approximately 37.9% and 16.7% of the sampling locations were classified as highly and moderately polluted, respectively. Furthermore, toxic elements posed significant ecological risks to the soil, particularly with substantial contributions from Hg and Tl toward the overall risk index. Crop samples collected showed elevated levels of Tl, Hg, and As, particularly in leafy vegetables compared to cereals. Notably, the hazard quotient (HQ) values for Tl in cabbage and Lotus were 1.462 and 5.511, respectively, whereas the HQ value for Hg in Allium chinense was 1.773, posing a significant threat to human health. These findings offer valuable data and theoretical foundation for further investigations into the sources and risks associated with toxic elements in farmland near thallium mining sites.
Collapse
Affiliation(s)
- Zhihao Ye
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Yanmei Yang
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China
| | - Qiang Zhou
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Xin Zhou
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China.
| | - Liansheng He
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China.
| | - Rui Meng
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Longhao Huang
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China
- Institute of Aquatic Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wu Y, Wang S, Xu J, Zang F, Long S, Wu Y, Wang Y, Nan Z. Simultaneous immobilization of multiple heavy metal(loid)s in contaminated water and alkaline soil inoculated Fe/Mn oxidizing bacterium. J Environ Sci (China) 2025; 147:370-381. [PMID: 39003055 DOI: 10.1016/j.jes.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.
Collapse
Affiliation(s)
- Yi Wu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jun Xu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Zang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Song Long
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yining Wu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuqing Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhongren Nan
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35660-1. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
5
|
van den Broek S, Nybom I, Hartmann M, Doetterl S, Garland G. Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177306. [PMID: 39515389 DOI: 10.1016/j.scitotenv.2024.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Human excreta-derived fertilizers (HEDFs) are organic fertilizers made from human excreta sources such as urine and feces. HEDFs can contribute to a sustainable and circular agriculture by reuse of valuable nutrients that would otherwise be discarded. However, HEDFs may contain contaminants such as pharmaceuticals, persistent organic compounds, heavy metals and pathogens which can negatively affect plant, water and soil quality. Moreover, consumer prejudice, farmer hesitance and strict regulations can discourage utilization of HEDFs. Here, we conducted a thorough review of published literature to explore the opportunities and challenges of using HEDFs in agricultural systems by evaluating the suitability of human excreta as a nutrient source, their typical contaminant composition, how they affect the quality of crops, soils and water and their societal impact and acceptance. We found that HEDFs are suitable nutrient-rich fertilizers, but may contain contaminants. Processing treatments increase the fertilizer quality by reducing these contaminants, but they do not remove all contaminants completely. Regarding the environmental impacts of these fertilizers, we found overall positive effects on crop yield, soil nutrients, plant-soil-microbe interactions and plant pathogen suppression. The use of HEDFs reduces water contamination from sewage waste dumping, but nutrient leaching dependent on soil type may still affect water quality. We found no increased risks with human pathogens compared to inorganic fertilizers but identified processing treatment as well as crop and soil type significantly affect these risks. Lastly, we found that public acceptance is possible with clear regulations and outreach to inform consumers and farmers of their multi-faceted benefits and safe usage after processing treatments. In summary, this review emphasizes the great potential of HEDFs and its positive impacts on society, especially in regions where conventional fertilizers are scarce, while also stressing the need for adaptation to specific soils and crops.
Collapse
Affiliation(s)
- Sarah van den Broek
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| | - Inna Nybom
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Environmental Analytics, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Sebastian Doetterl
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gina Garland
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Soil Quality and Soil Use, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
6
|
Wang X, Zheng WL, Wu CL, Han JJ, Xiang YP, Yang ML, He P, Yu FH, Li MH. Interactive effects of rhizospheric soil microbes and litter on the growth of the invasive hyperaccumulator Bidens pilosa in cadmium-contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1507089. [PMID: 39726418 PMCID: PMC11670255 DOI: 10.3389/fpls.2024.1507089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, Bidens pilosa, in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from B. pilosa in soil with low (5 mg kg-1) or high (10 mg kg-1) concentrations of Cd. The total, shoot, and root biomass of B. pilosa increased significantly with litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of B. pilosa was significantly lower in unsterilized rhizosphere soil than in sterilized rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root, respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on biomass did not vary in sterilized rhizosphere soils but significantly varied in unsterilized rhizosphere soils, showing that the biomass was significantly lower with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively. Tissue Cd concentrations were significantly higher in highly Cd-contaminated soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils; however, higher tissue Cd concentrations did not cause a significant decrease in the biomass of B. pilosa. Soil fungal communities, particularly the dominant phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the effects of rhizosphere soil microbes and litter on the growth of B. pilosa. Our results suggest that rhizosphere soil microbes and litter interact and affect the growth of B. pilosa: litter addition promoted growth by increasing the abundance of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in plant tissues, and rhizosphere soil inhibition was associated with a decreased abundance of Basidiomycota. Our findings highlight the importance of the interactive effects of rhizospheric soil microbes and litter on plant growth in Cd-contaminated soils.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Wei-Long Zheng
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Chun-Lan Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Jing-Jing Han
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Peng Xiang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ming-Lang Yang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
8
|
Senila M, Cadar O. Composites Based on Natural Zeolites and Green Materials for the Immobilization of Toxic Elements in Contaminated Soils: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5977. [PMID: 39685413 DOI: 10.3390/ma17235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Soil contamination by toxic elements is a global problem, and the remediation of contaminated soils requires complex and time-consuming technology. Conventional methods of soil remediation are often inapplicable, so an intensive search is underway for innovative and environmentally friendly ways to clean up ecosystems. The use of amendments that stabilize the toxic elements in soil by reducing their mobility and bioavailability is one of the simplest and most cost-effective ways to remediate soil. This paper provides a summary of studies related to the use of composites based on natural zeolites and green materials for the immobilization of toxic elements in contaminated soils and highlights positive examples of returning land to agricultural use. The published literature on natural zeolites and their composites has shown that combinations of zeolite with biochar, chitosan and other clay minerals have beneficial synergistic effects on toxic element immobilization and soil quality. The effects of zeolite properties, different combinations, application rates, or incubation periods on toxic elements immobilization were tested in laboratory scale or field experiments, whereas the mobility of toxic elements in soil was evaluated by chemical extractions of toxic elements transferred to the plants. This review highlights the excellent potential of natural zeolites to be used as single or combined sustainable green materials to solve environmental pollution problems related to the presence of toxic elements.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Huang L, Meng Y, Pan B, Pan B, Wei J, Ding J, Deng Y, Su X, Yuan Z, Zhang M. Multidimensional effects of green waste vermicomposting on cadmium contaminated soil ecosystems: From physicochemical properties to microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136429. [PMID: 39522223 DOI: 10.1016/j.jhazmat.2024.136429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Soil heavy metal pollution and green waste accumulation have emerged as two major environmental challenges, necessitating the development of sustainable remediation and management technologies. This study investigated the remediation effects of vermicomposted green waste (JE) on cadmium (Cd)-polluted soil. Batch adsorption tests and soil microcosm experiments were conducted to examine the impact of JE on soil quality, microbial community structure, and Cd biotransformation. Results demonstrated that, compared with untreated green waste, JE significantly increased the Cd2+ adsorption capacity by 55.94 %. This enhancement was attributed primarily to increased surface functional groups and altered crystal structure through vermicomposting. JE treatment effectively improved the soil physicochemical properties, increased the nutrient content and elemental exchangeability, and increased soil enzyme activities. At the microbial level, JE drove the assembly and modification of soil microbial communities, increasing their diversity and abundance, particularly those of beneficial bacterial groups. Environmental matrix analysis revealed complex interactions among soil properties, enzyme activities, and soil microbial communities in terms of Cd biotransformation. Overall, vermicomposted green waste rapidly improved the Cd adsorption efficiency and, upon its soil application, effectively enhanced the Cd-polluted soil quality while optimizing soil microbial community structure and function. This ultimately led to Cd immobilization and inert transformation in the soil. This study provides a solid theoretical and practical foundation for the safe utilization and sustainable remediation of heavy metal-polluted agricultural soils, as well as the resource utilization of green waste.
Collapse
Affiliation(s)
- Li Huang
- Dongguan Polytechnic, Dongguan 523808, China; College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yurui Meng
- Dongguan Polytechnic, Dongguan 523808, China
| | - Boyou Pan
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Junyu Wei
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinhua Ding
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Xianglan Su
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Ziwei Yuan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Menghao Zhang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| |
Collapse
|
10
|
Li Y, Lin J, Wu Y, Jiang S, Huo C, Liu T, Yang Y, Ma Y. Transformation of exogenous hexavalent chromium in soil: Factors and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135799. [PMID: 39293171 DOI: 10.1016/j.jhazmat.2024.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
There is a great need, but not yet available, for quantitative transformation models and influencing factors of exogenous hexavalent chromium (Cr(VI)) in soil for environmental risk assessment and regulation. Therefore, the transformation processes of exogenous Cr(VI) in 13 soils across China were investigated. The changes in Cr forms in soils spiked with 100 mg kg-1 of Cr(VI) over 90-120 days indicate that both the reduction and immobilization of Cr(VI) occurred with the decrease in availability of Cr(VI) and its reduced counterpart Cr(III). In these processes, soil pH is the controlling factor and pH 6.5 is a critical inflection, where pH < 6.5 promoted the Cr(VI) transformation and decreased the Cr availability. A two-parameter model with a complementary error function for the reduction of Cr(VI) to Cr(III) using soil pH and incubation time was developed with the regression coefficient (R2) of 0.98 and root-mean-square-error (RMSE) of 7.94 %, which was validated using data from other independent literature. This semi-mechanistic model suggests that diffusion process of electrons controlled the Cr(VI) reduction. These results are helpful for understanding the Cr(VI) evolution in soil in a long term and complementing the risk assessment of redox-sensitive metal contaminated soils.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Jiaping Lin
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Song Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Chaoran Huo
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| |
Collapse
|
11
|
Li R, Yao J, Liu J, Jiang S, Sunahara G, Duran R, Li M, Liu H, Tang C, Li H, Ma B, Liu B, Xi B. Impact of steel slag, gypsum, and coal gangue on microbial immobilization of metal(loid)s in non-ferrous mine waste dumps. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135750. [PMID: 39276730 DOI: 10.1016/j.jhazmat.2024.135750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Non-ferrous mine waste dumps globally generate soil pollution characterized by low pH and high metal(loid)s content. In this study, the steel slag (SS), gypsum (G), and coal gangue (CG) combined with functional bacteria consortium (FB23) were used for immobilizing metal(loid)s in the soil. The result shown that FB23 can effectively decrease As, Pb, and Zn concentrations within 10 d in an aqueous medium experiment. In a 310-day field column experiment, solid waste including SS, G, and CG combined with FB23 decreased As, Cd, Cu, and Pb concentrations in the aqueous phase. Optimized treatment was obtained by combining FB23 with 1% SS, 1% G, and 1.5% CG. Furthermore, the application of solid waste (SS, G, and CG) increased the top 20 functional bacterial consortium (FB23) abundance at the genus level from 1% to 21% over 50 days in the soil waste dump. Moreover, dissolved organic carbon (DOC) and pH were identified as the main factors influencing the reduction in bioavailable As, Cd, Cu, and Pb in the combination remediation. Additionally, the reduction of Fe and sulfur S was crucial for decreasing the mobilization of the metal(loid)s. This study provides valuable insights into the remediation of metal contamination on a larger scale.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shun Jiang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Houquan Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chuiyun Tang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Nahum ABR, Pereira WVDS, Martins GC, Dias YN, Ribeiro PG, Salomão GN, Gastauer M, Caldeira CF, Fernandes AR, Souza ESD, Dall'Agnol R, Ramos SJ. Properties and environmental quality of the overburden and tailings of manganese mining in the Eastern Amazon. ENVIRONMENTAL RESEARCH 2024; 262:119965. [PMID: 39265760 DOI: 10.1016/j.envres.2024.119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Knowledge about the characteristics of overburden and tailings from manganese (Mn) mining is essential for defining their levels of potentially toxic elements (PTEs) and appropriate environmental management. This study aimed to assess the total and bioavailable contents of PTEs in Mn mining areas in the Eastern Amazon, as well as the associated environmental risks. The samples were collected in areas of overburden and tailings deposition, in addition to forest soils in the Azul mine, Carajás Mineral Province, Brazil. These samples were characterized in terms of fertility, granulometry, and total and bioavailable PTE contents. The pH values of the forest soil were more acidic than those of the overburden and tailings, and the organic matter contents were considerably higher in the forest soil. All PTEs, especially Mn, Ba, Cu, Zn, and Pb, presented higher contents in the overburden and tailings. However, chemical fractionation revealed that PTEs were predominantly in the residual fraction, with percentage contents above 60% of the total content. These results suggest a low risk of environmental contamination. The findings of this study may support more efficient environmental rehabilitation in Mn mining areas in the Amazon.
Collapse
Affiliation(s)
| | - Wendel Valter da Silveira Pereira
- Universidade Federal Rural da Amazônia, Belém, Pará, Brazil; Instituto Tecnológico Vale - Desenvolvimento Sustentável, Belém, Pará, Brazil
| | | | - Yan Nunes Dias
- Instituto Tecnológico Vale - Desenvolvimento Sustentável, Belém, Pará, Brazil
| | | | | | - Markus Gastauer
- Instituto Tecnológico Vale - Desenvolvimento Sustentável, Belém, Pará, Brazil
| | | | | | | | - Roberto Dall'Agnol
- Instituto Tecnológico Vale - Desenvolvimento Sustentável, Belém, Pará, Brazil
| | - Sílvio Junio Ramos
- Instituto Tecnológico Vale - Desenvolvimento Sustentável, Belém, Pará, Brazil.
| |
Collapse
|
13
|
Lu T, Ge W, Li A, Deng S, Min T, Qiu G. Endogenous silicon-activated rice husk biochar prepared for the remediation of cadmium-contaminated soils: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125030. [PMID: 39332799 DOI: 10.1016/j.envpol.2024.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Biochar is widely used for the remediation of heavy metal-contaminated soils. However, pristine biochar generally has limited active functional groups and adsorption sites, thereby exhibiting low immobilization performance for heavy metals. In addition to carbon (C), silicon (Si) is another common macro-element present in rice husk biochar, but it often exists in the form of amorphous oxide and therefore contributes little to the adsorption performance for heavy metals. The transformation of amorphous Si oxide to dissolved silicate through a precipitation effect can significantly improve its heavy metal immobilization capability. Herein, the amorphous Si oxide in rice husk biochar was activated by sodium hydroxide and then the dissolved silicate was immobilized by calcium salt. The as-synthetized Si-activated biochar was used to remediate cadmium (Cd)-contaminated soils. The results indicated that Si-activated rice husk biochar could reduce Cd migration and environmental risks by the transformation from exchangeable Cd into carbonate-bound and residual Cd. With increasing Ca: Si molar ratio, the content of CaCl2 and H2O-extractable Cd exhibited a decreasing trend. Moreover, a higher addition amount of Si-activated biochar improved the Cd immobilization efficiency. The application of 1.0% Ca/Si molar ratio of 2: 2 Si-activated rice husk biochar decreased the CaCl2-Cd and H2O-Cd concentration by a maximum of 83.7% and 90.5% compared with pristine rice husk biochar, respectively. The present work proposes an approach for highly efficient remediation of Cd-polluted soils by biochar.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shengjun Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Min
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
14
|
Geng J, Fang W, Liu M, Yang J, Ma Z, Bi J. Advances and future directions of environmental risk research: A bibliometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176246. [PMID: 39293305 DOI: 10.1016/j.scitotenv.2024.176246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Environmental risk is one of the world's most significant threats, projected to be the leading risk over the next decade. It has garnered global attention due to increasingly severe environmental issues, such as climate change and ecosystem degradation. Research and technology on environmental risks are gradually developing, and the scope of environmental risk study is also expanding. Here, we developed a tailored bibliometric method, incorporating co-occurrence network analysis, cluster analysis, trend factor analysis, patent primary path analysis, and patent map methods, to explore the status, hotspots, and trends of environment risk research over the past three decades. According to the bibliometric results, the publications and patents related to environmental risk have reached explosive growth since 2018. The primary topics in environmental risk research mainly involve (a) ecotoxicology risk of emerging contaminants (ECs), (b) environmental risk induced by climate change, (c) air pollution and health risk assessment, (d) soil contamination and risk prevention, and (e) environmental risk of heavy metal. Recently, the hotspots of this field have shifted into artificial intelligence (AI) based techniques and environmental risk of climate change and ECs. More research is needed to assess ecological and health risk of ECs, to formulize mitigation and adaptation strategies for climate change risks, and to develop AI-based environmental risk assessment and control technology. This study provides the first comprehensive overview of recent advances in environmental risk research, suggesting future research directions based on current understanding and limitations.
Collapse
Affiliation(s)
- Jinghua Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China.
| | - Miaomiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Jianxun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China; Basic Science Center for Energy and Climate Change, Beijing 100081, China
| |
Collapse
|
15
|
Wang Z, Zhang Z, Peng J, Zhang Y, Zhou F, Yu J, Chi R, Xiao C. Magnesium polypeptide combined with microbially induced calcite precipitation for remediation of lead contamination in phosphate mining wasteland soil. ENVIRONMENTAL RESEARCH 2024; 262:119945. [PMID: 39276836 DOI: 10.1016/j.envres.2024.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Soil Pb contamination is inevitable, as a result of phosphate mining. It is essential to explore more effective Pb remediation approaches in phosphate mining wasteland soil to ensure their viability for a gradual return of soil quality for cultivation. In this study, a Pb-resistant urease-producing bacterium, Serratia marcescens W1Z1, was screened for remediation using microbially induced carbonate precipitation (MICP). Magnesium polypeptide (MP) was prepared from soybean meal residue, and the combined remediation of Pb contamination with MP and MICP in phosphate mining wasteland soil was studied. Remediation of Pb using a combination of MP with MICP strain W1Z1 (WM treatment) was the most effective, with the least exchangeable Pb at 30.37% and the most carbonate-bound Pb at 40.82%, compared to the other treatments, with a pH increase of 8.38. According to the community analysis, MP moderated the damage to microbial abundance and diversity caused by MICP. Total nitrogen (TN) was positively correlated with Firmicutes, pH, and carbonate-bound Pb. Serratia inoculated with strain W1Z1 were positively correlated with bacteria belonging to the Firmicutes phylum and negatively correlated with bacteria belonging to Proteobacteria. The available phosphate (AP) in the phosphate mining wasteland soil could encapsulate the precipitated Pb by ion exchange with carbonate, making it more stable. Combined MP-MICP remediation of Pb contamination in phosphate mining wasteland soil was effective and improved the soil microenvironment.
Collapse
Affiliation(s)
- Ziwei Wang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ziyue Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jun Peng
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuxin Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fang Zhou
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junxia Yu
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruan Chi
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
16
|
Li X, Wang L, Huang C, Hou R, Hou D. Long-term soil remediation using layered double hydroxides: Field evidence for simultaneous immobilization of both cations and oxyanions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125417. [PMID: 39615565 DOI: 10.1016/j.envpol.2024.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Layered double hydroxides (LDHs) have great potential for immobilizing potentially toxic elements in soil. Nevertheless, their practical effectiveness under field conditions remains largely unknown. In this study, we conducted a 2.5-year field trial using pristine Mg-Al LDHs, Ca-Al LDHs, and iron (Fe)-modified LDHs to simultaneously immobilize both oxyanions (including As and Sb) and cations (including Cd and Pb) in historically contaminated soil affected by mining activities since the 1950s. The immobilization performance of LDHs was examined using various batch tests, including water and DTPA extraction, and by measuring metal(loid) concentrations in Coriandrum sativum (coriander). We found that both pristine and Fe-modified LDHs showed promising initial immobilization performance 7 days after application, achieving significant reductions in DTPA-extractable concentrations of As, Sb, Cd, and Pb by 45.6%-68.3%, 55.4%-94.2%, 11.2%-50.9%, and 62.9%-64.9%, respectively, compared to the control soil without amendment. Notably, pristine LDHs showed diminished immobilization performance in the long term, while Fe-modified LDHs exhibited long-term stability over 2.5 years. A conditional probability-based model was used to depict long-term metal(loid) leaching characteristics in LDH-amended soils. Temporal changes in metal(loid) concentrations in the aboveground edible parts (namely, stems and leaves) of coriander corroborated well with DTPA extraction results. Coriander grown in Fe-modified LDH-amended soils had much lower metal(loid) concentrations compared to those grown in pristine LDH-amended soils. As a result, reductions of 35.1%-42.2% for As, 54.4%-66.2% for Sb, 8.5%-22.8% for Cd, and 56.0%-62.7% for Pb concentrations in coriander were still observed 2.5 years after soil amendment with Fe-modified LDHs. To the best of our knowledge, this is the first field-based evidence using LDHs to simultaneously stabilize both cations and oxyanions in soil. The findings support the potential of LDHs for long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Caide Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Zhang X, Zhao X, Gu C, Huang Z, Gan T, Li B, Elçin E, He L. Whole-cell bioreporter technology: a promising approach for environmental risk assessment of As contamination in soil. Front Microbiol 2024; 15:1494872. [PMID: 39640857 PMCID: PMC11617546 DOI: 10.3389/fmicb.2024.1494872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Xiaokai Zhang
- School of Environment and Ecology, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Xinyu Zhao
- School of Environment and Ecology, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Caiwen Gu
- School of Environment and Ecology, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Zefeng Huang
- School of Environment and Ecology, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Tao Gan
- School of Environment and Ecology, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
- Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, United States
| | - Evrim Elçin
- Division of Enzyme and Microbial Biotechnology, Department of Agricultural Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Lizhi He
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
18
|
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce ( Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3222. [PMID: 39599431 PMCID: PMC11598719 DOI: 10.3390/plants13223222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study focuses on the physiological response of lettuce grown on Technosols designed for the remediation of soils polluted by potentially harmful elements (PHEs: As, Cd, Cu, Fe, Pb, and Zn). Lettuce plants were grown in five treatments: recovered (RS) and polluted soil (PS) as controls, and three Technosols (TO, TS, and TV) consisting of 60% PS mixed with 2% iron sludge, 20% marble sludge, and 18% organic wastes (TO: composted olive waste, TS: composted sewage sludge, and TV: vermicompost of garden waste). The main soil properties and PHE solubility were measured, together with physiological parameters related to phytotoxicity in lettuce such as growth, photosynthetic capacity, oxidative stress, and antioxidant defence. All Technosols improved unfavourable conditions of PS (i.e., neutralised acidity and enhanced OC content), leading to a significant decrease in Cd, Cu, and Zn mobility. Nevertheless, TV was the most effective as the reduction in PHEs mobility was higher. Furthermore, lettuce grown on TV and TO showed higher growth (+90% and +41%) than PS, while no increase in TS. However, lower oxidative stress and impact on photosynthetic rate occurred in all Technosols compared to PS (+344% TV, +157% TO, and +194% TS). This physiological response of lettuce proves that PHE phytotoxicity is reduced by Technosols. Thus, this ecotechnology constitutes a potential solution for soil remediation, with effectiveness of Technosols depending largely on its components.
Collapse
Affiliation(s)
- Mateo González-Quero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Antonio Aguilar-Garrido
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Mario Paniagua-López
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Manuel Sierra-Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Wu A. Design and construction of magnetic nanomaterials and their remediation mechanisms for heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175369. [PMID: 39122020 DOI: 10.1016/j.scitotenv.2024.175369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Soil heavy metal pollution poses huge threat to ecosystem and human health. In-situ chemical remediation aims to immobilize free heavy metals in soil through adding passivators, thereby greatly reducing the mobility and bioavailability of heavy metals. Magnetic nanomaterials (MaN) have strong adsorption and immobilization capabilities for heavy metals due to their significant surface effects, small size effects and interfacial effects. Compared with traditional remediation materials, MaN can be recovered and reused using external magnetic fields. These advantages give MaN broad application prospects in the field of soil remediation. This work provides a comprehensive review of the application of MaN in heavy metal contaminated soil, including the design and application effect of various types of MaN, the influence of MaN on soil properties, environmental toxicity, and microbial composition, the in-situ remediation mechanism of MaN on heavy metal contaminated soil. On the other hand, there are potential risks associated with the remediation of heavy metal contaminated soil using MaN, including their impact on the soil ecosystem and biosafety concerns, requiring further research. Finally, this review proposes the future prospects for the application of MaN in the remediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
20
|
Escot-Espinoza VM, Rodríguez-Márquez S, Briseño-Bugarín J, López-Luna MA, Flores de la Torre JA. Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies. TOXICS 2024; 12:813. [PMID: 39590994 PMCID: PMC11598068 DOI: 10.3390/toxics12110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
This paper provides an overview of the impacts of mining-related environmental liabilities on humans, soils, sediments, surface water and groundwater across various mining districts in Zacatecas, Mexico. An analysis has been carried out on the areas of the state most affected by the presence of potentially toxic elements (PTEs) such as arsenic, lead, cadmium, copper, chromium and zinc, identifying priority areas for environmental assessment and remediation. Likewise, a review of the concentrations of PTEs reported in different environmental matrices of the state's mining areas with the presence of environmental liabilities was carried out, most of which exceed the maximum permissible limits established by Mexican and international regulations, generating an environmental risk for the populations near these districts due to their potential incorporation into the food chain. Additionally, this study explores research focused on the biostabilization of PTEs using microorganisms with specific metabolic activities. Phytoremediation is presented as a viable tool for the stabilization and elimination of PTEs, in which endemic plants from arid-semi-arid climates have shown favorable results in terms of the phytostabilization and phytoextraction processes of the PTEs present in mining waste.
Collapse
Affiliation(s)
- Victor Manuel Escot-Espinoza
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Susana Rodríguez-Márquez
- Secretary of Water and Environment of the State of Zacatecas, Building F, Cerro del Gato Circuit, Administrative City, Zacatecas 99160, Mexico;
| | - Jorge Briseño-Bugarín
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Maria Argelia López-Luna
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Juan Armando Flores de la Torre
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| |
Collapse
|
21
|
Zhu Y, Hou K, Liu J, Zhang L, Yang K, Li Y, Yuan B, Li R, Xue Y, Li H, Chang Y, Li X. Multimodel-based quantitative source apportionment and risk assessment of soil heavy metals: A reliable method to achieve regional pollution traceability and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177368. [PMID: 39500451 DOI: 10.1016/j.scitotenv.2024.177368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
To strengthen the control of pollution sources and promote soil pollution management of agricultural land, this study constructed a comprehensive source apportionment framework, which significantly improved the reliability of potential source analysis compared with the traditional single model. The spatial distribution pattern of agricultural soil heavy metals (SHMs) content in Lintong, a typical river valley city in China, was determined and the degree of contamination was evaluated. A scientific source apportionment methodological framework was constructed through correlation analysis methods together with multiple source apportionment receptor models. Finally, the Monte Carlo simulation method was used to derive the results of the human health risk assessment (HHRA). The results revealed the following: (1) Agricultural soils were moderately and mildly polluted, accounting for 28.8 % and 71.2 % of the total number of sampling points, respectively. (2) The overall correlation of heavy metals (HMs) was strong according to the coupling analysis of the SHMs, in which a strong correlation (0.8-1) was reached among Cu, Ni, Pb, Cr and Zn, indicating that these HMs were most likely homologous or composite. (3) Multimodel analysis of the SHMs sources revealed that the first and second principal components were agricultural (41.36 %) and industrial (19.69 %) sources, respectively, and the remaining principal components were road traffic, natural factors, and atmospheric deposition or surface runoff, respectively. (4) The average comprehensive noncarcinogenic health risk indices for adults and children were 4.2259E-02 and 1.4194E-01, respectively, which were within the slight risk range, indicating that the risk caused by SHMs to the human body can be almost negligible. This study adopted a mixed method to reveal the risk of SHMs pollution and its sources, which provides some reference and technical support for traceability analysis, zoning control, and health risk studies of regional pollutants and is helpful for formulating scientific management measures and targeting control policies.
Collapse
Affiliation(s)
- Yujie Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Kang Hou
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China.
| | - Jiawei Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Liyuan Zhang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, China
| | - Kexin Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Yaxin Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Bing Yuan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Ruoxi Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Yuxiang Xue
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Haihong Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China
| | - Yue Chang
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Zhu G, Zhu G, Tong B, Zhang D, Wu J, Zhai Y, Chen H. Spatial heterogeneity: Necessary and feasible for revealing soil trace elements pollution, sources, risks, and their links. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135698. [PMID: 39217934 DOI: 10.1016/j.jhazmat.2024.135698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The source diversity and health risk of trace elements (TEs) in soil make it necessary to reveal the relationship between pollution, source, and risk. However, neglect of spatial heterogeneity restricts the reliability of existing identification methods. In this study, spatial heterogeneity is proposed as a necessary and feasible factor for accurately dissecting the pollution-source-risk link of soil TEs. A comprehensive framework is developed by integrating positive matrix factorization, Geodetector, and risk evaluation tools, and successfully applied in a mining-intensive city in northern China. Overall, the TEs are derived from natural background (28.5 %), atmospheric deposition (25.6 %), coal mining (21.8 %), and metal industry (24.1 %). The formation mechanism of heterogeneity for high-variance TEs (Se, Hg, Cd) is first systematically deciphered by revealing the heterogeneous source-sink relationship. Specifically, Se is dominated (76.5 %) by heterogeneous coal mining (q=0.187), Hg is determined (92.6 %) by the heterogeneity of metal mining (q=0.183) and smelting (q=0.363), and Cd is caused (50.9 %) by heterogeneous atmospheric deposition (q>0.254) co-influenced by the terrains and soil properties. Highly heterogeneous sources are also noteworthy for their potential to pose extreme risks (THI=1.122) in local areas. This study highlights the necessity of integrating spatial heterogeneity in pollution and risk assessment of soil TEs.
Collapse
Affiliation(s)
- Guanhua Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Baocai Tong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dasheng Zhang
- Hebei Institute of Water Science, Shijiazhuang 050051, China
| | - Jin Wu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
23
|
Islam MR, Sanderson P, Payne TE, Naidu R. Potential amendments of coal fly ash-derived zeolite to beryllium contaminated soil at a legacy waste disposal site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123043. [PMID: 39461155 DOI: 10.1016/j.jenvman.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Management of Be contamination using industrial solid waste or solid waste-derived amendments is not well understood. This study investigated the potential of Australian coal fly ash (CFA), derived synthesized zeolite (SynZ) and chitosan-modified zeolite (ModZ), for Be immobilization at the Little Forest Legacy Waste Site (LFLS), a low-level radioactive waste disposal site near Sydney, Australia. In laboratory simulation experiments, the SynZ and ModZ were separately applied as an amendment to both naturally contaminated soil and simulated contaminated (spiked) soil. Different techniques, including pore water (PW), batch desorption, and microbial activities were assessed to provide insight into immobilization mechanisms. Results revealed that amendment of 2% ModZ in soils, substantially decreased Be concentrations in PW (PWBe) ranging from 13.3% to 99.5% across all concentrations of Be. In contrast, PWBe increased while using SynZ, which could be attributed to the increased solubility of different organic-inorganic elements in PW. Moreover, batch desorption using Milli-Q water, simulated acid rainwater [H2SO4/HNO3 = 60/40, (v/v), and 0.11 M acetic acid solution also revealed similar patterns of Be immobilization as found in PWBe analysis. Soil amendments boosted microbial biomass carbon, and phosphorous (MBC,P), along with basal respiration (BRCO2). This indicates increased microbial activities, which are linked with environmental eco-friendliness. This effect was substantially noticed in ModZ-amended soils, exhibiting up to 22 times higher in BRCO2 values compared to unamended soil. Additionally, reduced PWBe was correlated with soluble organic-inorganic elements, desorbed Be in the batch study, and soil MBc. The differences in behavior between SynZ and ModZ underline the importance of carefully studying the various potential amendment materials and the need to evaluate their performance before application in field situations. This study highlights ModZ's effectiveness in eco-friendly Be immobilization, underlining the role of organic functional groups in zeolite architecture, a key factor in controlling Be in soils.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia.
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia.
| |
Collapse
|
24
|
Elamraoui L, Elghali A, Fashae OA, Benzaazoua M. Harnessing phosphate limestone waste as a cost-effective solution for acid mine drainage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175188. [PMID: 39089376 DOI: 10.1016/j.scitotenv.2024.175188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Mining mineral ores like pyrrhotite often generates positive and negative outcomes for the community. On the one hand these valuable minerals are explored to provide economic opportunities. On the other, mining pyrrhotite presents adverse environmental and health effects that relates to acid mine drainage (AMD) formation in abandoned mines. This suggest that the sustainable mining of valuable minerals in Pyrrhotite requires cost and environmentally friendly approaches. In this research, we simulate in-situ neutralisation effect of phosphate limestone waste (PLW) on AMD from two mining sites in Morocco under continuous oxic conditions. To this end, we conducted batch tests to assess the effectiveness of PLW in mitigating AMD and releasing contaminants. These tests involved reacting limestone particles (at two sizes: <2 cm and < 4 cm) with AMD leachates over a five-day period The results indicated that the AMD is characterised by a pH of 2.5 and an electrical conductivity of 11.8 mS/cm. The inductively coupled plasma optical emission spectroscopy (ICP-OES) analyses showed a high sulfate concentration of 3668.83 mg/L and the presence of some metals, notably copper, aluminium, and iron. The neutralisation process of the AMD using PLW under oxic conditions was highlighted by the variation in pH while the water was in contact with the PLW. The pH rose from 2.5 to 5.25 while the electrical conductivity decreased from 11.8 to 7.03 mS/cm. During the treatment of the AMD with PLW, the percentage of sulfate removal from the effluent was 35 %. In addition, iron and aluminium were significantly removed from the AMD with a percentage of 99 % in the leachate. Therefore, these results indicate that neutralising AMD using this passive treatment approach is effective and may serve as a cost-effective mitigation for AMD, since no excessive grinding is required for the PLW.
Collapse
Affiliation(s)
- Loubna Elamraoui
- Pan African University Life and Earth Sciences Institute (including Health and Agriculture), Ibadan, Nigeria; Geology and Sustainable Mining Institute, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| | - Abdellatif Elghali
- Geology and Sustainable Mining Institute, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| | | | - Mostafa Benzaazoua
- Geology and Sustainable Mining Institute, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
25
|
Hou R, Wang Y, Deng Y, Zhu B, Zhang J, Zhou Y, Huang W. Engineered biochars for simultaneous immobilization of as and Cd in soil: Field evidence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122764. [PMID: 39383747 DOI: 10.1016/j.jenvman.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Agricultural soil contamination by potentially toxic elements (PTEs) such as arsenic (As) and cadmium (Cd) poses a serious threat to food security. Immobilization serves as a widely used approach for the remediation of PTEs contaminated soils, nevertheless, the long-term effectiveness for the simultaneous immobilization of both cations and oxyanions remains a challenge. In order to effectively enhance the synergistic immobilization effect of soil As and Cd contaminated by multiple elements and improve the ecological environment of farmland. In this study, a typical polluted tailings area farmland was selected for situ immobilization experiments, and biochar was prepared from cow manure (CMB), rice straw (RSB), and pine wood (PWB) as raw materials. On this basis, the pristine biochar was modified with ferric chloride (F), potassium permanganate (K), magnesium chloride (M), and aluminum chloride (A), respectively. Furthermore, the immobilization effect of modified biochar on As-Cd and the stress effect on soil respiration were investigated. The results showed that CMB and RSB reduced the bioavailability of heavy metals, potassium permanganate has strong oxidizing properties, and the strong oxidability of potassium permanganate stimulated the generation of more oxygen-containing functional groups on the surface of biochar, thereby enhancing the adsorption and complexation effect of modified materials on As and Cd. Among them, the extracted Cd concentration of Diethylenetriamine pentaacetic acid (DTPA) in KCMB and KRSB in 2020 decreased by 8.23-43.12% and 9.67-35.29% compared to other treatments, respectively. Meanwhile, the KCMB and KRSB treatments also reduced the enrichment of As and Cd in plant tissues. In addition, the dissolved organic carbon (DOC) content in KCMB treatment was relatively high, and the carbon stability of the material was weakened. Simultaneously, the soil respiration emission of KCMB treatment was increased by 5.63% and 11.93% compared to KRSB and KPWB treatments, respectively. In addition, the structural equation also shows that DOC has a large positive effect on soil respiration. In summary, the KRSB treatment effectively achieve synergistic immobilization of As-Cd and provide important guiding significance for green and low-carbon remediation of polluted farmland.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuxuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanling Deng
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yulu Zhou
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| | - Wei Huang
- Guizhou Institute of Water Resources Science, Guiyang, Guizhou 550002, China
| |
Collapse
|
26
|
Wu Y, Deng S, Hao P, Tang H, Xu Y, Zhang Y, Zhao Q, Jiang J, Li Y. Roxarsone reduces earthworm-mediated nutrient cycling by suppressing aggregate formation and enzymic activity in soil with manure application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124777. [PMID: 39173866 DOI: 10.1016/j.envpol.2024.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The application of manure and earthworms are frequently used in fertilization practices to improve C, N, and P cycling in soil, which may be adversely affected by roxarsone (ROX), as an organoarsenical pollutant. To effectively address this issue, in this work, the interactive impacts of ROX and earthworm Eisenia foetida on the aggregate formation, input of organic carbon (OC), and changes in the available N and P following 56-day cultivation were systematically investigated. Compared to the control, earthworms increased the mean weight diameter (MWD) of the soil aggregates from 0.6 to 1.1 mm. Thereby, they activated soil enzymes including catalase (CAT), sucrase (SC), urease (UE), and neutral phosphatase (NP), with the soil's pH decreased to 7.1. Consequently, the values of OC, soluble nitrite (NO3-N), and Olsen-P content were respectively increased by 0.78-, 1.69-, and 0.87- folds in the E treatment (14.3 vs. 25.5 g/kg, 12.8 vs. 33.3 mg/kg, and 7.8 vs. 14.6 mg/kg). Although the changes in the R treatment were slight, ROX reduced the earthworm-mediated improvements of soil fertility during the application of the RE treatment compared to the E treatment, i.e., the values of MWD, OC, NO3-N, and Olsen-P were reduced to 0.9 mm, 20.4 g/kg, 25.4 mg/kg, and 11.6 mg/kg, respectively. From the well-fitted structural equation models, it was demonstrated that earthworms enhanced the aggregate formation and nutrient cycling of OC, NO3-N, and Olsen-P, which were inhibited by ROX. Overall, these adverse effects can be offset by earthworm addition, which can play the dual role of monitor and driver for the soil properties. Our work provides insightful strategies for ROX-bearing manure management.
Collapse
Affiliation(s)
- Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Songge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Puguo Hao
- Department of Biotechnology, Ordos Vocational College of Eco-environment, Ordos, 017010, China
| | - Hao Tang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yunxiang Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, 200240, China.
| |
Collapse
|
27
|
Zhang T, Yang X, Zeng Z, Li Q, Yu J, Deng H, Shi Y, Zhang H, Gerson AR, Pi K. Combined Remediation Effects of Sewage Sludge and Phosphate Fertilizer on Pb-Polluted Soil from a Pb-Acid Battery Plant. ENVIRONMENTAL MANAGEMENT 2024; 74:928-941. [PMID: 38376512 DOI: 10.1007/s00267-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Pb soil pollution poses a serious health risk to both the environment and humans. Immobilization is the most common strategy for remediation of heavy metal polluted soil. In this study, municipal sewage sludge was used as an amendment for rehabilitation of Pb-contaminated soils, for agricultural use, near a lead-acid battery factory. The passivation effect was further improved by the addition of phosphate fertilizer. It was found that the leachable Pb content in soils was decreased from 49.6 mg kg-1 to 16.1-36.6 mg kg-1 after remediation of sludge for 45 d at applied dosage of municipal sewage sludge of 4-16 wt%, and further decreased to 14.3-34.3 mg kg-1 upon extension of the remediation period to 180 d. The addition of phosphate fertilizer greatly enhanced the Pb immobilization, with leachable Pb content decreased to 2.0-23.6 mg kg-1 with increasing dosage of phosphate fertilizer in range of 0.8-16 wt% after 180 d remediation. Plant assays showed that the bioavailability of Pb was significantly reduced by the soil remediation, with the content of absorbed Pb in mung bean roots decreased by as much as 87.0%. The decrease in mobility and biotoxicity of the soil Pb is mainly attributed to the speciation transformation of carbonate, Fe-Mn oxides and organic matter bound Pb to residue Pb under the synergism of reduction effect of sludge and acid dissolution and precipitation effect of phosphate fertilizer. This study suggests a new method for remediation of Pb-contaminated soil and utilization of municipal sewage sludge resources.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Zhijia Zeng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qiang Li
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiahai Yu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiling Deng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiqin Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, 7109, TAS, Australia
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
28
|
Rehman H, Khan AHA, Butt TA, Toqeer M, Bilal M, Ahmad M, Al-Naghi AAA, Latifee ER, Algassem OAS, Iqbal M. Synergistic biochar and Serratia marcescens tackle toxic metal contamination: A multifaceted machine learning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122575. [PMID: 39303596 DOI: 10.1016/j.jenvman.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Metal contamination in soil poses environmental and health risks requiring effective remediation strategies. This study introduces an innovative approach of synergistically employing biochar and bacterial inoculum of Serratia marcescens to address toxic metal (TM) contamination. Physicochemical, enzymatic, and microbial analyses were conducted, employing integrated biomarker response (IBR) and machine-learning approaches for toxicity estimation. The combined application significantly reduced the Cd, Cr, and Pb concentrations by 71.6, 31.2, and 57.1%, respectively, while the Cu concentration increased by 85% in the individual Serratia marcescens treatment. Biochar enhanced microbial biomass by 33-44% after 25 days. Noteworthy physicochemical improvements included a 44.7% increase in organic content and a decrease in pH and electrical conductivity. The K⁺ and Ca2⁺ concentrations increased by 196.9 and 21.6%, respectively, while the Mg2⁺ content decreased by 86.4%. Network analysis revealed intricate relationships, displaying direct and indirect negative correlations between metals and soil physicochemical parameters. The IBR index values indicated effective mitigation of TM toxicity in Serratia marcescens and biochar with individual and combined treatments. Binary classification demonstrated high sensitivity (80.1%) and specificity (80.5%) in identifying TM-contaminated soil. These findings indicate significant biochar- and Serratia marcescens-induced impacts on toxic metal availability, physicochemical properties, and enzymatic activities in metal-contaminated soil, suggesting that blending soil with biochar and microorganisms is an effective remediation strategy.
Collapse
Affiliation(s)
- Hamid Rehman
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Muhammad Toqeer
- Department of Earth Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22066 KP, Pakistan
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Enamur Rahim Latifee
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Omar Ali Saad Algassem
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
29
|
Rahim HU, Allevato E, Stazi SR. Sulfur-functionalized biochar: Synthesis, characterization, and utilization for contaminated soil and water remediation-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122670. [PMID: 39366224 DOI: 10.1016/j.jenvman.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The development of innovative, eco-friendly, and cost-effective adsorbents is crucial for addressing the widespread issue of organic and inorganic pollutants in soil and water. Recent advancements in sulfur reagents-based materials, such as FeS, MoS2, MnS, S0, CS2, Na2S, Na2S2O32-, H2S, S-nZVI, and sulfidated Fe0, have shown potential in enhancing the functional properties and elemental composition of biochar for pollutant removal. This review explores the synthesis and characterization of sulfur reagents/species functionalized biochar (S-biochar), focusing on factors like waste biomass attributes, pyrolysis conditions, reagent adjustments, and experimental parameters. S-biochar is enriched with unique sulfur functional groups (e.g., C-S, -C-S-C, C=S, thiophene, sulfone, sulfate, sulfide, sulfite, elemental S) and various active sites (Fe, Mn, Mo, C, OH, H), which significantly enhance its adsorption efficiency for both organic pollutants (e.g., dyes, antibiotics) and inorganic pollutants (e.g., metal and metalloid ions). The literature analysis reveals that the choice of feedstock, influenced by its lignocellulosic content and xylem structure, critically impacts the effectiveness of pollutant removal in soil and water. Pyrolysis parameters, including temperature (200-600 °C), duration (2-10 h), carbon-to-hydrogen (C:H) and oxygen-to-hydrogen (O:H) ratios in biochar, as well as the biochar-to-sulfur reagent modification ratio, play key roles in determining adsorption performance. Additionally, solution pH (2-8) and temperature (288, 298, and 308 K) affect the efficiency of pollutant removal, though optimal dosages for adsorbents remain inconsistent. The primary removal mechanisms involve physisorption and chemisorption, encompassing adsorption, reduction, degradation, surface complexation, ion exchange, electrostatic interactions, π-π interactions, and hydrogen bonding. This review highlights the need for further research to optimize synthesis protocols and to better understand the long-term stability and optimal dosage of S-biochar for practical environmental applications.
Collapse
Affiliation(s)
- Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
30
|
Asemaninejad A, Mackinnon T, Langley S. Biogeochemical stability of organic covers and mine wastes under climate change simulated mesocosms. Can J Microbiol 2024; 70:470-481. [PMID: 39212212 DOI: 10.1139/cjm-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mine environments in boreal and sub-boreal zones are expected to experience extreme weather events, increases in temperature, and shifts in precipitation patterns. Climate change impacts on geochemical stability of tailings contaminants and reclamation structures have been identified as important climate-related challenges to Canadian mining sector. Adapting current reclamation strategies for climate change will improve long-term efficiency and viability of mine tailings remediation/restoration strategies under a changing climate. Accordingly, mesocosm experiments were conducted to investigate associations of climate-driven shifts in microbial communities and functions with changes in the geochemistry of organic covers and underlying tailings. Our results show that warming appears to significantly reduce C:N of organic cover and promote infiltration of nitrogen into deeper, unoxidized strata of underlying tailings. We also observed an increase in the abundance of some nitrate reducers and sulfide oxidizers in microbial communities in underlying tailings. These results raise the concern that warming might trigger oxidation of sulfide minerals (linked to nitrate reduction) in deeper unoxidized strata where the oxygen has been eliminated. Therefore, it would be necessary to have monitoring programs to track functionality of covers in response to climate change conditions. These findings have implications for development of climate resilient mine tailings remediation/restoration strategies.
Collapse
Affiliation(s)
- Asma Asemaninejad
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, ON K1A 0G1, Canada
| | - Ted Mackinnon
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, ON K1A 0G1, Canada
| | - Sean Langley
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, ON K1A 0G1, Canada
| |
Collapse
|
31
|
Kara Z. Assessment of heavy metal pollution in soil-parent material relationship across ecosystems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1131. [PMID: 39476266 DOI: 10.1007/s10661-024-13312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/25/2024] [Indexed: 11/14/2024]
Abstract
The works of assessing the pollution posed by metals in agricultural areas in developing countries are limited. This study aims to assess metal concentrations and pollution indices of parent materials and soils representing the mantle and oceanic crust units of the ophiolite in the Eastern Mediterranean region, specifically in Kahramanmaraş Province. A total of 88 samples, comprising 44 soil (0-30 cm) and 44 parent material (90 + cm), were collected from the study area. Arsenic (As), mercury (Hg), selenium (Se), uranium (U), molybdenum (Mo), tin (Sn), and cesium (Cs) concentrations were analyzed in these samples, along with the reference metal, iron (Fe). Pollution levels were assessed using enrichment factor (EF) and contamination factor (CF) calculations. Results showed that elemental concentrations (Hg, Se, U, Mo, Sn, and Cs) in soils from the mantle and oceanic crust generally reflected those of the parent material. However, the average As concentration in soils from oceanic crust and mantle units was notably elevated, showing a 3 to fourfold increase compared to the parent material. Based on pollution index values, soils from these units demonstrated a moderate level of enrichment (2 < EF < 5) for As, while other elements (Hg, Se, U, Mo, Sn, and Cs) fell into the low enrichment class (EF < 2). Furthermore, the CF index indicated significant contamination (3 < CF < 6) for As. These findings suggest As contamination in soils from different units of the ophiolite (mantle and oceanic crust), potentially resulting from agricultural chemicals like pesticides and fertilizers.
Collapse
Affiliation(s)
- Zekeriya Kara
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Kahramanmaras Sütçü İmam University, 46100, Kahramanmaraş, Turkey.
| |
Collapse
|
32
|
Qi H, Zhuang Z, Liu J, Huang S, Wang Q, Wang Q, Li H, Wan Y. Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2935. [PMID: 39458882 PMCID: PMC11511237 DOI: 10.3390/plants13202935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Organic fertilizers are widely used to improve soil quality. However, their potential for ensuring the safe production of vegetables in soils with varying levels of heavy metals pollution remains inadequately explored. Here, we conducted a pot experiment to investigate the effects of substituting chemical fertilizers with organic fertilizer on the HMs accumulation in water spinach by simulating soils with different levels of HMs pollution. The results showed that the organic fertilizer significantly increased the soil pH, cation exchange capacity (CEC), and organic matter (OM). Furthermore, it led to a reduction in the soil DTPA-Cd and DTPA-Pb levels by 3.3-20.6% and 22.4-47.3%, respectively, whereas the DTPA-As levels increased by 0.07-7.7 times. The organic fertilizer effectively reduced the Cd and Pb content in water spinach below the safety limits when the added Cd content in the soil was less than 2 mg/kg and the Pb content was equal to or less than 90 mg/kg. However, its efficacy in reducing As accumulation in water spinach was limited, emphasizing the need for caution when using organic fertilizers in As-contaminated soils. Our results provide valuable insights for the scientific and precise utilization of organic fertilizers, thereby contributing to the safe production of vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.Q.); (Z.Z.); (J.L.); (S.H.); (Q.W.); (Q.W.); (H.L.)
| |
Collapse
|
33
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
34
|
Nieder R, Benbi DK. Potentially toxic elements in the environment - a review of sources, sinks, pathways and mitigation measures. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:561-575. [PMID: 37118984 DOI: 10.1515/reveh-2022-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Pollution of ecosystems with potentially toxic elements (PTEs) has become a global problem with serious consequences for public health. The PTEs are hazardous to humans owing to their longevity, toxicity, and ability to accumulate in the biotic environment. As most PTEs cannot be degraded microbially or chemically, they can persist in soils for a long time. Besides posing a threat to landsphere, they may be transported to surrounding environmental spheres through movement of water, atmospheric circulation, and biological transmission. This can severely affect the ecological equilibrium. Accumulation of PTEs in soils pose serious health hazards to higher organisms leading to various diseases and disorders and significant relationships exist between the occurrence of PTEs and the toxic effects in humans. In natural soils, PTEs accumulate due to weathering of rocks and ores. Furthermore, locally or regionally significant accumulation of PTEs in soils may occur from industrial goods, pesticides and paints, municipal and industrial waste, fertilizer application, mining activities and atmospheric deposition. In response to the growing need to address PTE contamination, remediation methods have been developed employing mechanical, physico-chemical or biological based technologies. In this review, we discuss sources, sinks, pathways and mitigation measures related to natural and anthropogenic PTEs. We focus on As, Cd, Cr, Hg and Pb which are highly toxic and perform no physiological functions in biota. Further, these are the most widely studied PTEs.
Collapse
Affiliation(s)
- Rolf Nieder
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dinesh K Benbi
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
35
|
Irshad MK, Lee JC, Aqeel M, Javed W, Noman A, Lam SS, Naggar AE, Niazi NK, Lee HH, Ibrahim M, Lee SS. Efficacy of Fe-Mg-bimetallic biochar in stabilization of multiple heavy metals-contaminated soil and attenuation of toxicity in spinach (Spinacia oleracea L.). CHEMOSPHERE 2024; 364:143184. [PMID: 39197684 DOI: 10.1016/j.chemosphere.2024.143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Globally, soil contamination with heavy metals (HMs) pose serious threats to soil health, crop productivity, and human health. The present investigation involved synthesis and analysis of biochar with bimetallic combination of iron and magnesium (Fe-Mg-BC). Our study evaluated how Fe-Mg-BC affects the absorption of cadmium (Cd), lead (Pb), and copper (Cu) in spinach (Spinacia oleracea L.) and remediation of soil contaminated with multiple HMs. Results demonstrated the successful loading of iron (Fe) and magnesium (Mg) onto pristine biochar (BC) derived from peanut shells. The addition of Fe-Mg-BC (3%) notably increased spinach biomass, enhancing photosynthesis, transpiration, stomatal conductance, and intercellular CO2 levels by 22%, 21%, 103%, and 15.3%, respectively. Compared to control, Fe-Mg-BC (3%) suppressed metal-induced oxidative stress by boosting levels of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in roots by 40.9%, 57%, 54.8 %, and in shoots by 55.5%, 65.5%, and 37.4% in shoots, respectively. The Fe-Mg-BC effectively reduced the uptake of Cd, Pb, and Cu in spinach tissues by transforming their bioavailable fractions to non-bioavailable forms. The Fe-Mg-BC (3%) significantly reduced the mobility of Cd, Pb and Cu in soil and limited the concentration of Cd, Pb, and Cu in plant roots by 34.1%, 79.2%, 47%, and shoots by 56.3%, 43.3%, and 54.1%, respectively, compared to control. These findings underscore the potential of Fe-Mg-BC as a promising amendment for reclaiming soils contaminated with variety of HMs, thereby making a significant contribution to the promotion of safer food production.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Wasim Javed
- Water Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Ali El Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hun Ho Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
36
|
Wang Y, Wang K, Wang T, Liang T, Liu J, Chen X, Xu C, Cao W, Fan H. Joint utilization of Chinese milk vetch and lime materials mitigates soil cadmium risk and improves soil health in a double-cropping rice system. CHEMOSPHERE 2024; 363:142784. [PMID: 38971447 DOI: 10.1016/j.chemosphere.2024.142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cadmium (Cd) in paddy soil poses significant risks to humans due to its strong biological migration and toxicity. Chinese milk vetch (MV) is commonly used as green manure in the paddy fields of southern China and its potential to decrease the availability of Cd has been identified. Nevertheless, the effects of MV combined with lime materials (lime, L; limestone, LS) on Cd availability, soil properties, enzyme activity and comprehensive benefits are still not fully understood in double-cropping rice system. A field study was conducted to investigate these changes. The results indicated that all treatments notably decreased soil available Cd (Avail-Cd) by 19.3-44.3% and 14.9-43.1% during early and late rice, compared with CK. Moreover, the Cd fractions transformed to more stable forms. Compared to CK, all treatments reduced brown rice Cd content by 34.6-64.2% and 12.7-52.5% during the two periods. Furthermore, the translocation factors root to shoot, as well as shoot to brown rice, decreased. The combination led to improvements in soil properties, soil enzyme activity. Meantime, Cd in iron-manganese plaque (IMP) decreased by 31.9-51.1% and 29.0-42.7% respectively during two periods in amendments treatments. Soil pH and DOC were more important factors for Cd bioavailability than other properties. Additionally, rice Cd uptake was positively correlated with Cd in IMP. Enzyme activity exhibited a negative correlation with soil active Cd. Partial Least Squares Path Model (PLS-PM) indicated that the mitigation of Cd pollution helped to improve soil enzyme activity. Grey correlation analysis (GRA) indicated that MVLS showed the best comprehensive benefits in soil-plant system. Overall, the combination of MV and lime materials could reduce Cd availability, enhance soil properties and enzyme activity. And this could be strengthened by the combination. These findings will provide valuable insights for Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Yikun Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kai Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Xiaofen Chen
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Changxu Xu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongli Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
37
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
38
|
Zheng S, Wu B, Yang P, Li J, Shangguan Y, Hu J. Mercapto-functionalized palygorskite modified the growth of Ligusticum Chuanxiong and restrained the Cd migration in the soil-plant system. CHEMOSPHERE 2024; 362:142510. [PMID: 38908445 DOI: 10.1016/j.chemosphere.2024.142510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Ligusticum Chuanxiong is an essential medicinal and edible plant, but it is highly susceptible to the enrichment of soil Cadmium (Cd), which seriously affects its medical safety. However, the control of Cd uptake by Ligusticum Chuanxiong is little reported. In this study, we reported that a green Mercapto-functionalized palygorskite (MPAL) effectively promoted Ligusticum Chuanxiong growth, and restrained the Cd uptake by Ligusticum Chuanxiong both in the mildly contaminated soil (M-Soil) and severely contaminated soil (S-Soil). The experimental results demonstrated that the application of MPAL significantly increased the biomass and antioxidant enzyme activity of Ligusticum Chuanxiong. In the M-Soil, the Cd content in the roots, stems, and leaves of Ligusticum Chuanxiong decreased markedly by 82.46-86.66%, 64.17-71.73%, and 64.94-76.66%, respectively, after the MPAL treatment. In the S-Soil, MPAL application decreased the Cd content in roots, stems, and leaves by 89.43-98.92%, 24.19-86.22%, and 67.14-77.90%, respectively. Based on Diethylenetriamine Pentaacetic Acid (DTPA) extraction, the immobilization efficiency of MPAL for Cd in soils ranged from 22.01% to 77.04%. Additionally, the HOAc extractable Cd was transformed into reducible and oxidizable fractions. Furthermore, MPAL enhanced the activities of soil alkaline phosphatase, and urease, but decreased sucrase activity. Environmental toxicological analysis indicated that MPAL reduced the potential ecological risk of Cd in the soil. These findings revealed that MPAL can effectively reduce Cd accumulation in Ligusticum Chuanxiong and promote plant growth, suggesting its potential as a viable amendment for remediating Cd-contaminated soils.
Collapse
Affiliation(s)
- Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China; Agricultural Quality Standards and Testing Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, 850000, PR China.
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
| | - Junqi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
39
|
Haider FU, Zulfiqar U, Ain NU, Mehmood T, Ali U, Ramos Aguila LC, Li Y, Siddique KHM, Farooq M. Managing antimony pollution: Insights into Soil-Plant system dynamics and remediation Strategies. CHEMOSPHERE 2024; 362:142694. [PMID: 38925521 DOI: 10.1016/j.chemosphere.2024.142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Umed Ali
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi 82000, Balochistan, Pakistan
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
40
|
Madsen J, Dascalos Z, Ramsey K, Mayer F, Wong C, Raposo Z, Hunter R, Reinhart M, Carlson A, Catlin A, Mihelic T, Pfahler Z, Carroll A, Angelich K, Stubler C, Sun D, Betts A, Appel C. Impacts of phosphorus amendments on legacy soil contamination from lead-based paint on a California, USA university campus. CHEMOSPHERE 2024; 362:142645. [PMID: 38897327 PMCID: PMC11441423 DOI: 10.1016/j.chemosphere.2024.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Lead (Pb) is one of the most common heavy metal urban soil contaminants with well-known toxicity to humans. This incubation study (2-159 d) compared the ability of bone meal (BM), potassium hydrogen phosphate (KP), and triple superphosphate (TSP), at phosphorus:lead (P:Pb) molar ratios of 7.5:1, 15:1, and 22.5:1, to reduce bioaccessible Pb in soil contaminated by Pb-based paint relative to control soil to which no P amendment was added. Soil pH and Mehlich 3 bioaccessible Pb and P were measured as a function of incubation time and amount and type of P amendment. XAS assessed Pb speciation after 30 and 159 d of incubation. The greatest reductions in bioaccessible Pb at 159 d were measured for TSP at the 7.5:1 and 15:1 P:Pb molar ratios. The 7.5:1 KP treatment was the only other treatment with significant reductions in bioaccessible Pb compared to the control soil. It is unclear why greater reductions of bioaccessible Pb occurred with lower P additions, but it strongly suggests that the amount of P added was not a controlling factor in reducing bioaccessible Pb. This was further supported because Pb-phosphates were not detected in any samples using XAS. The most notable difference in the effect of TSP versus other amendments was the reduction in pH. However, the relationship between increasing TSP additions, resulting in decreasing pH and decreasing Pb bioaccessibility was not consistent. The 22.5:1 P:Pb TSP treatment had the lowest pH but did not significantly reduce bioaccessible Pb compared to the control soil. The 7.5:1 and 15:1 P:Pb TSP treatments significantly reduced bioaccessible Pb relative to the control and had significantly higher pH than the 22.5:1 P:Pb treatment. Clearly, impacts of P additions and soil pH on Pb bioaccessibility require further investigation to decipher mechanisms governing Pb speciation in Pb-based paint contaminated soils.
Collapse
Affiliation(s)
- Julia Madsen
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Dascalos
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Ramsey
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Freddie Mayer
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Connie Wong
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zach Raposo
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Rachel Hunter
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mac Reinhart
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alexandra Carlson
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Austin Catlin
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Tanner Mihelic
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Zoe Pfahler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Alec Carroll
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kyle Angelich
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Craig Stubler
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Dennis Sun
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Aaron Betts
- U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Chip Appel
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
41
|
Wang J, Zhang T, Gao J, Li B, Han L, Ge W, Wang Z. The accumulation of cadmium and lead in wheat grains is primarily determined by the soil-reducible cadmium level during wheat tillering. CHEMOSPHERE 2024; 361:142509. [PMID: 38830466 DOI: 10.1016/j.chemosphere.2024.142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The significant increase in cadmium (Cd) and lead (Pb) pollution in agricultural soil has greatly heightened environmental contamination issues and the risk of human diseases. However, the mechanisms underlying the transformation of Cd and Pb in soil as well as the influencing factors during their accumulation in crop grains remain unclear. Based on the analysis of the distribution trend of Cd and Pb in soil during the growth and development stages of wheat (tillering, filling, and maturity) in alkaline heavy metal-polluted farmland in northern China, this study investigated the response mechanism of soil heavy metal form transformation to soil physicochemical properties, and elucidated the main determining periods and influencing factors for Cd and Pb enrichment in wheat grains. The results showed that an increase in CEC and SOM levels, along with a decrease in pH level, contributed to enhancing the bioavailability of Cd in the soil. This effect was particularly evident during the tillering stage and grain filling stage of wheat. Nevertheless, the effects of soil physicochemical properties on bioavailable Pb was opposite to that on bioavailable Cd. The enrichment of Cd and Pb in grain was significantly influenced by soil pH (r = -0.786, p < 0.01), SOM (r = 0.807, p < 0.01), K (r = -0.730, p < 0.01), AK (r = 0.474, p = 0.019), and AP (r = -0.487, p = 0.016). The reducible form of Cd in soil during the wheat tillering stage was identified as the primary factor contributing to the accumulation of Cd and Pb in wheat grains, with a significant contribution rate of 84.5%. This study provides a greater scientific evidence for the management and risk control of heavy metal pollution in alkaline farmland.
Collapse
Affiliation(s)
- Jing Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| | - Tengyun Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bei Li
- Henan Ecological Environment Monitoring and Safety Center, Zhengzhou, Henan, 450000, PR China
| | - Long Han
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wenjing Ge
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Hebi Renyuan Biotechnology Development Co., LTD, Hebi, Henan, 458030, PR China.
| | - Zongyao Wang
- Henan Yuanguang Technology Co., LTD, Puyang, Henan, 457000, PR China
| |
Collapse
|
42
|
Rashid MS, Wang Y, Yin Y, Yousaf B, Jiang S, Mirza AF, Chen B, Li X, Liu Z. Quantitative Soil Characterization for Biochar-Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization. TOXICS 2024; 12:535. [PMID: 39195637 PMCID: PMC11359006 DOI: 10.3390/toxics12080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model's predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yanhong Wang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yilong Yin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Shaojun Jiang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Adeel Feroz Mirza
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| |
Collapse
|
43
|
Radziemska M, Blazejczyk A, Gusiatin MZ, Cydzik-Kwiatkowska A, Majewski G, Brtnický M. Compost-diatomite-based phytostabilization course under extreme environmental conditions in terms of high pollutant contents and low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174917. [PMID: 39034003 DOI: 10.1016/j.scitotenv.2024.174917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The effects of changes in environmental temperatures on the immobilization or removal of cationic potentially toxic elements (PTE) in heavily polluted soils are often poorly understood, although both are widely studied in the context of phytostabilization. To address this issue, a novel compost-diatomite hybrid (CDH) amendment was developed and applied for assisted phytostabilization at two external temperature regimes. (Cd/Ni/Cu/Zn)-extremely polluted soils (unenriched and CDH-enriched) were cultivated with perennial ryegrass and native soil microbiome under greenhouse conditions and then transferred to freeze-thaw conditions (FTC). The decrease in metal potential toxicity in soils subjected to phytostabilization following both temperature treatments was characterized by a combination of sequential extraction and atomic absorption measurements. The soil microbiome was characterized by high-throughput sequencing. In a relative comparison, the greatest decrease in the content of all PTEs in CDH-enriched soil (compared to unenriched soil) appeared in FTC. Furthermore, under the influence of FTC, in the relative comparison between two CDH-enriched soils (exposed-, and not-exposed- to FTC) and two unenriched soils (exposed-, and not-exposed- to FTC), the content of all PTEs decreased more sharply in the CDH-enriched series than in the unenriched series. The largest redistribution into four sequentially extracted fractions in CDH-enriched soil was found for Zn. Based on the distribution pattern, Zn immobilization was greater in CDH-enriched soil in FTC. CDH increased species richness in the soil, while FTC stimulated the growth of Bacteroidia, Alphaproteobacteria, Theromomicrobia, and Gammaproteobacteria. The analysis of the functionalities of the microbiome indicated enhanced metal transportation and defense systems in samples exposed to FTC. The current research is crucial for understanding how extreme environmental conditions in both cases high pollutant levels and low temperatures affect the movement and transformation of PTEs in polluted soils during phytostabilization.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
44
|
Wyszkowski M, Kordala N. Mineral and Organic Materials as Factors Reducing the Effect of Petrol on Heavy Metal Content in Soil. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3528. [PMID: 39063820 PMCID: PMC11278834 DOI: 10.3390/ma17143528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
As industrial production increases worldwide, so does the demand for fuels. The transport of fuels from the point of production to the end user poses a risk of environmental pollution, both during transport and during combustion in internal combustion engines. The soil is a part of the environment which is particularly sensitive to contamination by petroleum substances. For this reason, research has been carried out into the possibility of reducing the impact of petrol on the content of heavy metals in the soil using various materials, both mineral (bentonite, calcium oxide) and organic (compost). These played an important role in the in situ remediation of contaminated soils. Petrol contamination increased the content of some heavy metals (Pb, Cd, or Ni), while it decreased the content of other metals (Cr, Zn, Co, and Cu) in the soil. The materials used in this study significantly altered the levels of heavy metals in the soil. The strength of the effect varied and the direction of the effect depended on the element. Bentonite was the most effective, while calcium oxide and especially compost were less effective. The most beneficial (limiting) effect of calcium oxide was shown on the soil content of cadmium, cobalt, and chromium, while the bentonite effects were on the content of chromium. The application of the abovementioned materials seems to be effective in reducing low level soil contamination by petrol.
Collapse
Affiliation(s)
- Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland;
| | | |
Collapse
|
45
|
Dissanayake PD, Alessi DS, Yang X, Kim JY, Yeom KM, Roh SW, Noh JH, Shaheen SM, Ok YS, Rinklebe J. Redox-mediated changes in the release dynamics of lead (Pb) and bacterial community composition in a biochar amended soil contaminated with metal halide perovskite solar panel waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173296. [PMID: 38761950 DOI: 10.1016/j.scitotenv.2024.173296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This study explored the redox-mediated changes in a lead (Pb) contaminated soil (900 mg/kg) due to the addition of solar cell powder (SC) and investigated the impact of biochar derived from soft wood pellet (SWP) and oil seed rape straw (OSR) (5% w/w) on Pb immobilization using an automated biogeochemical microcosm system. The redox potential (Eh) of the untreated (control; SC) and biochar treated soils (SC + SWP and SC + OSR) ranged from -151 mV to +493 mV. In SC, the dissolved Pb concentrations were higher under oxic (up to 2.29 mg L-1) conditions than reducing (0.13 mg L-1) conditions. The addition of SWP and OSR to soil immobilized Pb, decreased dissolved concentration, which could be possibly due to the increase of pH, co-precipitation of Pb with FeMn (hydro)oxides and pyromorphite, and complexation with biochar surface functional groups. The ability and efficiency of OSR for Pb immobilization were higher than SWP, owing to the higher pH and density of surface functional groups of OSR than SWP. Biochar enhanced the relative abundance of Proteobacteria irrespective of Eh changes, while the relative abundance of Bacteroidota increased under oxidizing conditions. Overall, we found that both OSR and SWP immobilized Pb in solar panel waste contaminated soil under both oxidizing and reducing redox conditions which may mitigate the potential risk of Pb contamination.
Collapse
Affiliation(s)
- Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstrasse 7, 42285 Wuppertal, Germany; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila 61150, Sri Lanka
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Xing Yang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstrasse 7, 42285 Wuppertal, Germany; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Joon Yong Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Kyung Mun Yeom
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstrasse 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstrasse 7, 42285 Wuppertal, Germany.
| |
Collapse
|
46
|
Li X, Wang L, Hou D. Layered double hydroxides for simultaneous and long-term immobilization of metal(loid)s in soil under simulated aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174777. [PMID: 39009152 DOI: 10.1016/j.scitotenv.2024.174777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Soil contamination by toxic metals and metalloids poses a grave threat to food security and human well-being. Immobilization serves as an effective method for the remediation of soils contaminated by metal(loid)s. Nevertheless, the ability of soil amendments for simultaneous immobilization of cations and oxyanions, and the long-term effectiveness of immobilization need substantial improvements. In this study, we used a series of layered double hydroxides (LDHs), including Mg-Al LDH and Ca-Al LDH fabricated from pure chemicals, and one waste-derived LDH synthesized using granulated ground blast furnace slag (GGBS), for the immobilization of Cu, Zn, As, and Sb in a historically contaminated soil obscured from a mining-affected region. The LDHs were first subjected to iron (Fe) modification to enhance their short-term immobilization performances toward metal(loid)s. Furthermore, the long-term effectiveness of Fe-modified LDHs was examined via two sets of experiments, including column experiments simulating 2-year water leaching, and accelerated aging experiments simulating 100-year proton attack. It was observed that Fe-modified LDHs, either made from pure chemicals or GGBS, demonstrated promising long-term immobilization performances toward metal(loid)s. Results from this study are encouraging for the future use of LDHs for simultaneous and long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Anaman R, Peng C, Jiang Z, Amanze C, Fosua BA. Distinguishing the contributions of different smelting emissions to the spatial risk footprints of toxic elements in soil using PMF, Bayesian isotope mixing models, and distance-based regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173153. [PMID: 38735332 DOI: 10.1016/j.scitotenv.2024.173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
48
|
Song X, Li C, Qiu Z, Wang C, Zeng Q. Ecotoxicological effects of polyethylene microplastics and lead (Pb) on the biomass, activity, and community diversity of soil microbes. ENVIRONMENTAL RESEARCH 2024; 252:119012. [PMID: 38704010 DOI: 10.1016/j.envres.2024.119012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Changjiang Li
- School of Environment Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Zhennan Qiu
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
49
|
Zeng G, Ping Y, Xu H, Yang Z, Tang C, Yang W, Si M, Arinzechi C, Liu L, He F, Zhang X, Liao Q. Transformation of As and Cd associated with Fe-Mn-modified biochar during simultaneous remediation on the contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47408-47419. [PMID: 38997602 DOI: 10.1007/s11356-024-34384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Here, Fe- and Mn-modified biochar (BC-Fe-Mn) was applied to simultaneously stabilize As and Cd in the contaminated soil. The removal efficiencies for NaHCO3-extractable As and DTPA-extractable Cd by BC-Fe-Mn were 60.8% and 49.6%, respectively. The speciation analyses showed that the transformation to low-crystallinity Fe-bound (F3) As, Fe-Mn oxide-bound (OX) of Cd, and residual As and Cd was primarily attributed to stabilizing the two metal(loid)s. Moreover, the correlation analyses showed that the increase of As in F3 fraction was significantly and positively associated with the increase of OX fraction Mn (r = 0.64). Similarly, OX fraction Cd was increased notably with increasing OX fraction Fe (r = 0.91) and OX fraction Mn (r = 0.76). In addition, a novel dialysis experiment was performed to separate the reacted BC-Fe-Mn from the soil for intensively investigating the stabilization mechanisms for As and Cd by BC-Fe-Mn. The characteristic crystalline compounds of (Fe0.67Mn0.33)OOH and Fe2O3 on the surface of BC-Fe-Mn were revealed by SEM-EDS and XRD. And FTIR analyses showed that α-FeOOH, R-COOFe/Mn+, and O-H on BC-Fe-Mn potentially served as the reaction sites for As and Cd. A crystalline compound of MnAsO4 was found in the soil treated by BC-Fe-Mn in the dialysis experiment. Thus, our results are beneficial to deeper understand the mechanisms of simultaneous stabilization of As and Cd by BC-Fe-Mn in soil and support the application of the materials on a large scale.
Collapse
Affiliation(s)
- Gai Zeng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Yang Ping
- POWERCHINA Eco-Environmental Group Co., LTD., Shenzhen, 518102, People's Republic of China
| | - Hao Xu
- POWERCHINA Eco-Environmental Group Co., LTD., Shenzhen, 518102, People's Republic of China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chongjian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chukwuma Arinzechi
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Lin Liu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Fangshu He
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
50
|
Jaffar MT, Chang W, Zhang J, Mukhtar A, Mushtaq Z, Ahmed M, Zahir ZA, Siddique KHM. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121418. [PMID: 38852408 DOI: 10.1016/j.jenvman.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.
Collapse
Affiliation(s)
| | - Wenqian Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zain Mushtaq
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|