1
|
Patier L, Bustamante P, McCoy KD, Guillou G, Hammouda A, Leray C, Martínez Salcedo GF, Payo-Payo A, Poiriez G, Ramos R, Sanz-Aguilar A, Selmi S, Tavecchia G, Vittecoq M, Fort J. Spatial variation of mercury contamination in yellow-legged gulls (Larus michahellis) in the Western Mediterranean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124992. [PMID: 39306071 DOI: 10.1016/j.envpol.2024.124992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Mercury (Hg) is a global pollutant of major concern in marine and coastal environments. In the Mediterranean Sea, Hg concentrations in biota are higher than in other seas, even when seawater concentrations are similar. Seabirds, as marine top predators, can reflect Hg contamination on a large spatial scale. By sampling seabirds at 17 different breeding colonies, we evaluated Hg concentrations of yellow-legged gulls (Larus michahellis) in the occidental Mediterranean basin in 2021 and 2022. More specifically, we investigated spatial variation of Hg contamination in both chicks and adults as well as associated toxicological risks through the use of blood and feathers, which reflect contamination over different periods of the year. The highest concentrations in chicks were found in Djerba (Tunisia) with blood Hg values of (mean ± SD) 1.69 ± 0.51 μg g-1 dry weight (dw). Adults were most contaminated in Djerba and Dragonera (Balearic Islands, Spain) with blood Hg concentrations of respectively 3.78 ± 2.54 and 5.25 ± 3.73 μg g-1 dw. Trophic ecology was investigated using stable isotope analyses (δ13C, δ15N and δ34S as proxies of feeding habitat and diet), and showed that spatial variation in Hg was mainly driven by foraging habitat in both chicks and adults. Low Hg concentrations were related to the use of anthropogenic food sources. An effect of colony location was also found, suggesting spatial differences in local environmental pollution transfer up to seabirds. Our results also supported the use of δ34S to discriminate between marine and continental foraging habitats in generalist seabirds. This study provides new insights onto the spatial distribution of Hg contamination in a widespread seabird, reporting some of the highest Hg values recorded for this species. Populations with highest concentrations are of potential concern regarding toxicological risks.
Collapse
Affiliation(s)
- Laura Patier
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Karen D McCoy
- MIVEGEC, Université de Montpellier, CNRS - IRD, Domaine La Valette - 900, rue Jean François Breton, 34090, Montpellier, France
| | - Gaël Guillou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Abdessalem Hammouda
- Ecology & Environment laboratory (LR24ES17), University of Gabès Zrig, Gabès, Tunisia
| | - Carole Leray
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | | | - Ana Payo-Payo
- Dpto. Biodiversidad, Biología y Evolución, Facultad Ciencias Biológicas, Universidad Complutense Madrid, C. de José Antonio Novais, 12, Moncloa - Aravaca, 28040, Madrid, Spain
| | - Gauthier Poiriez
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Raül Ramos
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Ana Sanz-Aguilar
- Animal Demography and Ecology Group, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Slaheddine Selmi
- Ecology & Environment laboratory (LR24ES17), University of Gabès Zrig, Gabès, Tunisia
| | - Giacomo Tavecchia
- Animal Demography and Ecology Group, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Marion Vittecoq
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| |
Collapse
|
2
|
Binkowski LJ, Fort J, Churlaud C, Gallien F, Le Guillou G, Bustamante P. Levels of trace elements in the blood of chick gulls from the English Channel: Spatial and trophic implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175891. [PMID: 39218093 DOI: 10.1016/j.scitotenv.2024.175891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activity has disturbed the natural distribution and circulation of trace elements in the environment. This has led to increased background levels of numerous elements, causing global pollution. In this context, seabirds are relevant bioindicators of environmental contamination. This study focuses on the ecological factors that influence the concentrations of 14 trace elements in the blood of the chicks of three sympatric gull species from the French coast of the English Channel. Between 2015 and 2017, 174 birds were sampled in the industrialised Seine Estuary (in the city of Le Havre and on Ratier Island) and in the remote Chausey Islands, 200 km to the west. We also considered the Se:Hg molar ratio using Hg concentrations in those birds. Ag and V concentrations were below the quantification limit in all cases, while the fraction of non-quantified samples was higher than 30 % for Cd, Cr and Ni. Among the elements quantified in the samples, the lowest concentrations were noted for Co and the highest for Fe, building the following order: Co < Cd < Ni < Mn ≤ Pb < Cr < Hg < Cu < Se < As < Zn < Fe. No unanimous scheme of concentrations among elements, species and sites existed. Similarly, different models were fitted and different factors were significant for different species and elements. We observed the biomagnification of As and the biodilution of Pb. Pb concentrations were also highest in the industrial site in the city of Le Havre. Despite the high proportion of non-quantified samples for Cd, Cr and Ni, we continued to notice higher concentrations in the marine environment of the Chausey Islands. Concentrations of some elements clearly revealed habitat dependence. In some cases the Se:Hg molar ratio was lower than 4, a threshold for diminishing Hg toxicity by Se.
Collapse
Affiliation(s)
- Lukasz J Binkowski
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorazych 2, 30-084 Krakow, Poland.
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fabrice Gallien
- Groupe Ornithologique Normand, 181 rue d'Auge, 14000 Caen, France
| | | | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
3
|
Lemesle P, Carravieri A, Poiriez G, Batard R, Blanck A, Deniau A, Faggio G, Fort J, Gallien F, Jouanneau W, le Guillou G, Leray C, McCoy KD, Provost P, Santoni MC, Sebastiano M, Scher O, Ward A, Chastel O, Bustamante P. Mercury contamination and potential health risk to French seabirds: A multi-species and multi-site study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175857. [PMID: 39209169 DOI: 10.1016/j.scitotenv.2024.175857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mercury (Hg) is a naturally occurring highly toxic element which circulation in ecosystems has been intensified by human activities. Hg is widely distributed, and marine environments act as its main final sink. Seabirds are relevant bioindicators of marine pollution and chicks are particularly suitable for biomonitoring pollutants as they reflect contamination at short spatiotemporal scales. This study aims to quantify blood Hg contamination and identify its drivers (trophic ecology inferred from stable isotopes of carbon (δ13C) and nitrogen (δ15N), geographical location, chick age and species) in chicks of eight seabird species from 32 French sites representing four marine subregions: the English Channel and the North Sea, the Celtic Sea, the Bay of Biscay and the Western Mediterranean. Hg concentrations in blood ranged from 0.04 μg g-1 dry weight (dw) in herring gulls to 6.15 μg g-1 dw in great black-backed gulls. Trophic position (δ15N values) was the main driver of interspecific differences, with species at higher trophic positions showing higher Hg concentrations. Feeding habitat (δ13C values) also contributed to variation in Hg contamination, with higher concentrations in generalist species relying on pelagic habitats. Conversely, colony location was a weak contributor, suggesting a relatively uniform Hg contamination along the French coastline. Most seabirds exhibited low Hg concentrations, with 74% of individuals categorized as no risk, and < 0.5% at moderate risk, according to toxicity thresholds. However, recent work has shown physiological and fitness impairments in seabirds bearing Hg burdens considered to be safe, calling for precautional use of toxicity thresholds, and for studies that evaluate the impact of Hg on chick development.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France.
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Gauthier Poiriez
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | - Romain Batard
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Aurélie Blanck
- Office Français de la Biodiversité (OFB), 94300 Vincennes, France
| | - Armel Deniau
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | - Gilles Faggio
- Office de l'Environnement de la Corse (OEC), 20250 Corte, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | | | - William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Carole Leray
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France
| | - Karen D McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier - CNRS - IRD, 34090 Montpellier, France
| | - Pascal Provost
- Ligue pour la Protection des Oiseaux (LPO), 17300 Rochefort, France
| | | | - Manrico Sebastiano
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Olivier Scher
- Conservatoire d'espaces naturels d'Occitanie (CEN Occitanie), 34000 Montpellier, France
| | - Alain Ward
- Groupe ornithologique et naturaliste (GON, agrément régional Hauts-de-France), 59000 Lille, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| |
Collapse
|
4
|
Dos Santos I, Paiva VH, Norte AC, Churlaud C, Ceia FR, Pais de Faria J, Pereira JM, Cerveira LR, Laranjeiro MI, Veríssimo SN, Ramos JA, Bustamante P. Assessing the impacts of trace element contamination on the physiology and health of seabirds breeding along the western and southern coasts of Portugal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124528. [PMID: 38992829 DOI: 10.1016/j.envpol.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Coastal seabirds serve as sentinels of ecosystem health due to their vulnerability to contamination from human activities. However, our understanding on how contaminant burdens affect the physiological and health condition of seabirds is still scarce, raising the uncertainty on the species' vulnerability vs tolerance to environmental contamination. Here, we quantified 15 Trace Elements (TE) in the blood of gull (yellow-legged gull Larus michahellis and Audouin's gull Ichthyaetus audouinii) and shearwater (Cory's shearwater Calonectris borealis) adults, breeding in five colonies along the Portuguese coastline. Additionally, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were quantified to elucidate foraging habitat and trophic ecology of adults, to identify potential patterns of TE contamination among colonies. We used immuno-haematological parameters as response variables to assess the influence of TE concentrations, stable isotope values, and breeding colony on adults' physiological and health condition. Remarkably, we found blood mercury (Hg) and lead (Pb) concentrations to exceed reported toxicity thresholds in 25% and 13% of individuals, respectively, raising ecotoxicological concerns for these populations. The breeding colony was the primary factor explaining variation in five out of six models, underlining the influence of inherent species needs on immuno-haematological parameters. Model selection indicated a negative relationship between erythrocyte sedimentation rate and both Hg and selenium (Se) concentrations, but a positive relationship with δ13C. The number of immature erythrocyte counts was positively related to Hg and Se, particularly in yellow-legged gulls from one colony, highlighting the colony-site context's influence on haematological parameters. Further research is needed to determine whether essential TE concentrations, particularly copper (Cu) and Se, are falling outside the normal range for seabirds or meet species-specific requirements. Continuous monitoring of non-essential TE concentrations like aluminium (Al), Hg, and Pb, is crucial due to their potential hazardous concentrations, as observed in our study colonies.
Collapse
Affiliation(s)
- Ivo Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Joana Pais de Faria
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Lara R Cerveira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria I Laranjeiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
5
|
Lemesle P, Jouanneau W, Cherel Y, Legroux N, Ward A, Bustamante P, Chastel O. Mercury exposure and trophic ecology of urban nesting black-legged kittiwakes from France. CHEMOSPHERE 2024; 363:142813. [PMID: 38986774 DOI: 10.1016/j.chemosphere.2024.142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Seabirds are increasingly used as bioindicators for assessing the chemical contamination of marine ecosystems, including by mercury (Hg) worldwide. However, some geographical areas are still poorly documented, as metropolitan France that is home to 28 seabird species including the black-legged kittiwake Rissa tridactyla, in the part of the southern limit of the North Atlantic range of the species. Here, we investigated Hg contamination and trophic ecology of black-legged kittiwakes breeding in the harbour of Boulogne-sur-Mer, Northern France. Mean blood Hg concentration was 4.81 ± 1.20 μg g-1 dw (dry weight), 3.66 ± 0.75 μg g-1 dw and 0.43 ± 0.07 μg g-1 dw for adult males, adult females, and chicks, respectively. According to Hg toxicity benchmarks for avian blood, 30% of the sampled adults were considered to be at moderate risk to Hg toxicity. Stable isotope and food analyses showed that highest δ15N values (reflecting a higher trophic position) were related to highest blood Hg concentrations in adult birds, and that Atlantic herring (Clupea harengus) and Atlantic mackerel (Scomber scombrus) were the main prey. Adult kittiwakes from Boulogne-sur-Mer showed Hg levels three times higher than those found in Arctic nesting kittiwakes, where sublethal effects have been documented. This study provides a first description of Hg contamination of black-legged kittiwakes breeding in France and calls for future ecotoxicological research to assess the vulnerability of this species in the southern part of its distribution range.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Nathan Legroux
- Groupe ornithologique et naturaliste (agréé Hauts-de-France), 5 rue Jules de Vicq, 59000 Lille, France
| | - Alain Ward
- Groupe ornithologique et naturaliste (agréé Hauts-de-France), 5 rue Jules de Vicq, 59000 Lille, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
6
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
7
|
Marchán-Moreno C, Louvat P, Bueno M, Berail S, Corns WT, Cherel Y, Bustamante P, Amouroux D, Pedrero Z. First-Time Isotopic Characterization of Seleno-Compounds in Biota: A Pilot Study of Selenium Isotopic Composition in Top Predator Seabirds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39018327 DOI: 10.1021/acs.est.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.
Collapse
Affiliation(s)
- Claudia Marchán-Moreno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Pascale Louvat
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Maite Bueno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Sylvain Berail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington BR5 3HP, Kent, U.K
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS─La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle 17000, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
8
|
Cammilleri G, Galluzzo FG, Randazzo V, La Russa F, Di Pasquale ML, Gambino D, Gargano V, Castronovo C, Bacchi E, Giarratana F, Ferrantelli V, Giangrosso G. Distribution of trace metals and metalloids in tissues of Eurasian Woodcock (Scolopax rusticola) from Southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174712. [PMID: 38997011 DOI: 10.1016/j.scitotenv.2024.174712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Heavy metals and metalloids in the environment are recognised as a threat to the health of organism. Terrestrial birds are ideal subjects for the examination of these pollutants because of their high mobility and high intra- and interspecific variation in trophic levels. We examined the contents of 6 trace metals (Cd, Pb, Cr, Sb and V) and metalloids (As) in the liver, kidney, muscle, and feathers of woodcocks (Scolopax rusticola) from Southern Italy by a validated ICP-MS method. Significant differences in trace elements were found in all the tissues examined (p < 0.05). The highest Sb and Cr levels were found in feathers samples with mean values of 0.019 mg/Kg and 0.085 mg/Kg, respectively. High Pb levels were found in muscle, with 23 % of the samples exceeding the limits set by the European Union. Cd was predominantly found in the kidney samples (0.76 mg/Kg). Vanadium was the less abundant trace metal, showing the highest concentrations in the liver (0.028 ± 0.011 mg/Kg). Higher As levels were found in muscle (0.02 ± 0.015 mg/Kg). No significant differences between sex and age classes (juveniles vs. adults) were found, nor were there correlations between morphometric parameters and trace metal/metalloid contents. Principal Component Analysis determined differences in metal accumulation between tissues. Feathers were confirmed as useful indicators of metal contamination. The results of this work confirmed that the accumulation of toxic elements in the tissues of woodcocks is primarily influenced by ecological traits such as feeding habits and migration status. Statistical analysis of the tissues would seem to exclude important accumulation phenomena of Pb. The high levels found in the muscle could be due to lead ammunition. This work provides the first data on the accumulation of As, Cr, Sb, and V in woodcocks tissue, providing a more comprehensive insight into the potential impact of these pollutants on birds.
Collapse
Affiliation(s)
- Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy.
| | - Vincenzo Randazzo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesco La Russa
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Maria Liliana Di Pasquale
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Delia Gambino
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Valeria Gargano
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Calogero Castronovo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Emanuela Bacchi
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Filippo Giarratana
- Università degli Studi di Messina, piazza Pugliatti 1, 98122 Messina, Italy
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Giuseppe Giangrosso
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| |
Collapse
|
9
|
Pollet IL, Acmc S, Kelly BG, Baak JE, Hanifen KE, Maddox ML, Provencher JF, Mallory ML. The relationship between plastic ingestion and trace element concentrations in Arctic seabirds. MARINE POLLUTION BULLETIN 2024; 203:116509. [PMID: 38788276 DOI: 10.1016/j.marpolbul.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Seabirds ingest contaminants linked to their prey's tissues, but also adsorbed to ingested plastic debris. To explore relationships between ingested plastics and trace elements concentrations, we analyzed 25 essential non-essential trace elements in liver tissue in relation to plastic content in the gastrointestinal tract in adults of four species of Arctic seabirds with different propensity to ingest plastic. Linear Discriminant Analysis (LDA) provided a clear separation between species based on element concentrations, but not among individuals with and without plastics. Molybdenum, copper, vanadium, and zinc were strong drivers of the LDA, separating northern fulmars (Fulmarus glacialis) from other species (60.4 % of explained between-group variance). Selenium, vanadium, zinc, and mercury were drivers separating black-legged kittiwakes (Rissa tridactyla) from the other species (19.3 % of explained between-group variance). This study suggests that ingestion of plastic particles has little influence on the burden of essential and non-essential trace elements in Arctic seabird species.
Collapse
Affiliation(s)
- Ingrid L Pollet
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada.
| | - Sululiit Acmc
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Brendan G Kelly
- Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | - Julia E Baak
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada; Sululiit ACMC - Environment and Climate Change Canada, P.O. Box 1870, Iqaluit, Nunavut X0A 0H0, Canada
| | | | - Mark L Maddox
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| | - Jennifer F Provencher
- National Wildlife Research Centre, Environment and Climate Change Canada, Raven Road, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Mark L Mallory
- Acadia University, Biology Department, Wolfville, NS, B4P 2R6, Canada
| |
Collapse
|
10
|
Serafini PP, Righetti BPH, Vanstreels RET, Bugoni L, Piazza CE, Lima D, Mattos JJ, Kolesnikovas CKM, Pereira A, Maraschin M, Piccinin I, Guilford T, Gallo L, Uhart MM, Lourenço RA, Bainy ACD, Lüchmann KH. Biochemical and molecular biomarkers and their association with anthropogenic chemicals in wintering Manx shearwaters (Puffinus puffinus). MARINE POLLUTION BULLETIN 2024; 203:116398. [PMID: 38723548 DOI: 10.1016/j.marpolbul.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024]
Abstract
Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.
Collapse
Affiliation(s)
- Patricia P Serafini
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio, Florianópolis, SC, Brazil
| | - Bárbara P H Righetti
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Ralph E T Vanstreels
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Leandro Bugoni
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Clei E Piazza
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Isadora Piccinin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Tim Guilford
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Luciana Gallo
- Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina; Coordinación Regional de Inocuidad y Calidad Agroalimentaria, Regional Patagonia Sur, Servicio Nacional de Sanidad y Calidad Agroalimentaria, Puerto Madryn, Chubut, Argentina
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Rafael A Lourenço
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Afonso C D Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Karim H Lüchmann
- Departamento de Educação Científica e Tecnológica, Universidade do Estado de Santa Catarina - UDESC, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Albert C, Moe B, Strøm H, Grémillet D, Brault-Favrou M, Tarroux A, Descamps S, Bråthen VS, Merkel B, Åström J, Amélineau F, Angelier F, Anker-Nilssen T, Chastel O, Christensen-Dalsgaard S, Danielsen J, Elliott K, Erikstad KE, Ezhov A, Fauchald P, Gabrielsen GW, Gavrilo M, Hanssen SA, Helgason HH, Johansen MK, Kolbeinsson Y, Krasnov Y, Langset M, Lemaire J, Lorentsen SH, Olsen B, Patterson A, Plumejeaud-Perreau C, Reiertsen TK, Systad GH, Thompson PM, Lindberg Thórarinsson T, Bustamante P, Fort J. Seabirds reveal mercury distribution across the North Atlantic. Proc Natl Acad Sci U S A 2024; 121:e2315513121. [PMID: 38739784 PMCID: PMC11126949 DOI: 10.1073/pnas.2315513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.
Collapse
Affiliation(s)
- Céline Albert
- Littoral, Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, La Rochelle17000, France
| | - Børge Moe
- Norwegian Institute for Nature Research, Trondheim7034, Norway
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Tromsø9296, Norway
| | - David Grémillet
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR5175, Univ Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier34293, France
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch7701, South Africa
| | - Maud Brault-Favrou
- Littoral, Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, La Rochelle17000, France
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research, Fram Centre, Tromsø9296, Norway
| | | | | | - Benjamin Merkel
- Norwegian Polar Institute, Fram Centre, Tromsø9296, Norway
- Akvaplan-niva, Fram Centre, TromsøNO-9007, Norway
| | - Jens Åström
- Norwegian Institute for Nature Research, Trondheim7034, Norway
| | - Françoise Amélineau
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR5175, Univ Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier34293, France
| | - Frédéric Angelier
- Centre d’Etudes Biologiques de Chizé, UMR 7372 CNRS La Rochelle Université, Villiers-en-Bois79360, France
| | | | - Olivier Chastel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 CNRS La Rochelle Université, Villiers-en-Bois79360, France
| | | | - Johannis Danielsen
- Seabird Ecology Department, Faroe Marine Research Institute, TórshavnFO-100, Faroe Islands
| | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QCH9X 3V9, Canada
| | | | - Alexey Ezhov
- Murmansk Marine Biological Institute, Murmansk183010, Russia
| | - Per Fauchald
- Norwegian Institute for Nature Research, Fram Centre, Tromsø9296, Norway
| | | | - Maria Gavrilo
- Association Maritime Heritage, Icebreaker “Krassin”, Saint-PetersburgRU–199106, Russia
- National Park Russian Arctic, ArchangelskRU-168000, Russia
| | - Sveinn Are Hanssen
- Norwegian Institute for Nature Research, Fram Centre, Tromsø9296, Norway
| | | | | | | | - Yuri Krasnov
- Murmansk Marine Biological Institute, Murmansk183010, Russia
| | | | - Jérémy Lemaire
- Littoral, Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, La Rochelle17000, France
| | | | - Bergur Olsen
- Seabird Ecology Department, Faroe Marine Research Institute, TórshavnFO-100, Faroe Islands
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QCH9X 3V9, Canada
| | | | - Tone K. Reiertsen
- Norwegian Institute for Nature Research, Fram Centre, Tromsø9296, Norway
| | | | - Paul M. Thompson
- University of Aberdeen, School of Biological Sciences, Lighthouse Field Station, Ross-shire, CromartyIV11 8YJ, Scotland
| | | | - Paco Bustamante
- Littoral, Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, La Rochelle17000, France
- Institut Universitaire de France, Paris75005, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, La Rochelle17000, France
| |
Collapse
|
12
|
Bauer ADB, Linhares BDA, Nunes GT, Costa PG, Zebral YD, Bianchini A, Bugoni L. Temporal changes in metal and arsenic concentrations in blood and feathers of tropical seabirds after one of the largest environmental disasters associated with mining. ENVIRONMENTAL RESEARCH 2024; 248:118240. [PMID: 38266903 DOI: 10.1016/j.envres.2024.118240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Monitoring of contaminant levels in wildlife over time is a tool for assessing the presence and persistence of environmental impacts at ecosystem, community and population levels. Tropical seabirds breeding in the Abrolhos Archipelago, 70 km off the Brazilian coast, forage in areas under the influence of the Doce River discharge. In 2015, the Fundão Dam collapsed and released ca 60 million tons of iron ore tailings into the ocean. In the present study, red-billed tropicbirds Phaethon aethereus and brown boobies Sula leucogaster breeding in Abrolhos were monitored over four years (2019-2022) for metal (Fe, Mn, Zn, Cu, Cr, Hg, Pb, Cd) and metalloid (As) concentrations in blood and feathers. Over six sampling events, metal (loid) concentrations showed strong temporal variation in both tissues. Overall, feathers showed greater element concentrations than blood, with stronger correlations between elements, especially Mn and the nonessential As, Cd, Hg and Pb. Mn is one of the major chemical markers of the Fundão Dam tailings. Metal (loid) concentrations in the tropical seabirds evaluated were above suggested threshold levels for most nonessential elements (As, Cd and Pb), especially in February 2021, when metal (loid) concentrations peaked in feathers. In this case, values were orders of magnitude higher than those observed in other sampling events. This occurred one year after a major rainy season in the Doce River basin, which increased river discharge of contaminated mud into the ocean, where contaminants are further remobilized by winds and currents, resulting in transference through the marine food web. This finding is consistent to what has been observed for other ecosystem compartments monitored in the region under the influence of the Doce River. Our findings highlight the utility of using tropical seabirds as sentinels of marine pollution, revealing strong temporal patterns in metal (loid) concentrations associated to bottom-up climatic processes.
Collapse
Affiliation(s)
- Arthur de Barros Bauer
- Programa de Pós-Graduação em Ciências Ambientais e Conservação, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro, 27965-045, Macaé, RJ, Brazil
| | - Bruno de Andrade Linhares
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil.
| | - Guilherme Tavares Nunes
- Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, 95625-000, Imbé, RS, Brazil
| | - Patricia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| | - Leandro Bugoni
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
13
|
Bustamante P, Le Verge T, Bost CA, Brault-Favrou M, Le Corre M, Weimerskirch H, Cherel Y. Mercury contamination in the tropical seabird community from Clipperton Island, eastern Pacific Ocean. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1050-1061. [PMID: 37615819 DOI: 10.1007/s10646-023-02691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat [δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood and feathers show relatively small variations (16-32 and 26-74%, respectively), suggesting that feeding ecology had low seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with 30% in the no risk category and 70% in the low risk category.
Collapse
Affiliation(s)
- Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France.
| | - Thibault Le Verge
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Matthieu Le Corre
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), Université de La Réunion, 15 Avenue René Cassin, CS92003, Saint Denis cedex, 997744, La Réunion, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
14
|
Quillfeldt P, Bedolla-Guzmán Y, Libertelli MM, Cherel Y, Massaro M, Bustamante P. Mercury in Ten Storm-Petrel Populations from the Antarctic to the Subtropics. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023:10.1007/s00244-023-01011-3. [PMID: 37438517 PMCID: PMC10374726 DOI: 10.1007/s00244-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 μg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 μg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 μg g-1 dw) and highest in Leach's Storm-petrels (3.6 μg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.
Collapse
Affiliation(s)
- Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Yuliana Bedolla-Guzmán
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
- Grupo de Ecología Y Conservación de Islas, A.C., Ensenada, 22800, Baja California, Mexico
| | - Marcela M Libertelli
- Departamento de Biología de los Predadores Tope, Coordinación Ciencias de la Vida, Instituto Antártico Argentino, Avenida 25 de Mayo 1143, B1650HML, Buenos Aires, Argentina
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
15
|
Padilha JA, Carvalho GO, Espejo W, Pessôa ARL, Cunha LST, Costa ES, Torres JPM, Lepoint G, Das K, Dorneles PR. Trace elements in migratory species arriving to Antarctica according to their migration range. MARINE POLLUTION BULLETIN 2023; 188:114693. [PMID: 36773589 DOI: 10.1016/j.marpolbul.2023.114693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The levels of eighteen trace elements (TEs) were evaluated in association with stable isotopes (δ15N, δ34S, and δ13C) in feathers and eggs of five migratory species breeding on the Antarctic Peninsula to test the factors that influence their exposure to contaminants. The feathers of seabirds migrating to the Northern Hemisphere (South polar skua) have concentrations (mean ± SD, μg. g-1) of Li (1.71 ± 2.08) and Mg (1169.5 ± 366.8) one order of magnitude higher than southern migrants, such as Snowy sheathbill Li (0.01 ± 0.005) and Mg (499.6 ± 111.9). Feathers had significantly higher concentrations for 11 of a total of 18 metals measured compared to eggs. South polar skua have higher concentrations of all TEs in eggs compared to antarctic tern. Therefore, the present study showed that migration and trophic ecology (δ15N, δ13C, and δ34S) influence Fe, Mn, Cu, and Se concentrations in feathers of Antarctic seabirds. The concentrations of Cu, Mn, Rb, Zn, Pb, Cd, Cr are higher than previously reported, which may be due to increased local and global human activities.
Collapse
Affiliation(s)
- J A Padilha
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; CBMA - Centre for Molecular and Environmental Biology/ARNET-Aquatic Research Network & IB-S, Institute of Science and Innovation for Bio-Sustainability, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - G O Carvalho
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - W Espejo
- Department of Soils and Natural Resources, Facultad de Agronomía, Universidad de Concepción, P.O. Box 537, Chillán, Chile
| | - A R L Pessôa
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L S T Cunha
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E S Costa
- Mestrado Profissional em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, Rua Assis Brasil, 842, Centro, São Francisco de Paula, Rio Grande do Sul, Brazil
| | - J P M Torres
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Lepoint
- Freshwater and Oceanic Sciences Unit of research (FOCUS), Laboratory of Oceanology, University of Liege, Belgium
| | - K Das
- Freshwater and Oceanic Sciences Unit of research (FOCUS), Laboratory of Oceanology, University of Liege, Belgium
| | - P R Dorneles
- Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Freshwater and Oceanic Sciences Unit of research (FOCUS), Laboratory of Oceanology, University of Liege, Belgium
| |
Collapse
|
16
|
Correia E, Granadeiro JP, Vale C, Catry T. Trace elements in relation to trophic ecology of long-distance migratory shorebirds and seabirds in West Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120674. [PMID: 36403880 DOI: 10.1016/j.envpol.2022.120674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Shorebirds and seabirds are abundant predators in coastal habitats worldwide, relying upon a high diversity of benthic invertebrates and fish, respectively. While occupying different trophic guilds, they are differently exposed to element contamination entering the coastal food web. Therefore, these birds have been used as bioindicators of environmental contamination in marine ecosystems. We analysed the concentration of trace elements in blood samples of 16 shorebird and seabird migratory species in a major non-breeding site, the Bijagós Archipelago, in regard to their trophic ecology. Overall, our study shows low exposure of this bird community to toxic elements, except for Hg. Most species presented Hg burdens within the moderate toxicity threshold, but one species (Dunlin) presented values at a potential high Hg toxicity risk. We found a positive relationship between Se and Ni concentrations and δ15N values (a proxy for trophic level). In addition, a positive relationship was found between δ13C (a proxy for habitat characteristics) and Hg, Fe, Cu and Mn, while the opposite pattern was recorded for As. Differences were also shown for several trace elements between the two studied trophic guilds: concentrations of As, Pb and Se were higher in pelagic fish consumers (seabirds), whereas Cr, Fe and Sr burdens were higher in benthic invertebrate consumers (shorebirds). Although previous studies in the same site revealed very high concentrations of Cd and Pb in some of the prey species of shorebirds and seabirds (bivalves and fishes), values found in birds for these two elements suggest no toxicological risk. Thus, exposure to toxic elements is not currently a threat to coastal bird populations, namely those facing apparent local declines in Guinea-Bissau, one of the most important non-breeding quarters for of West Africa. Still, Hg burdens were high in some species, deserving further monitoring.
Collapse
Affiliation(s)
- Edna Correia
- Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - José Pedro Granadeiro
- Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Vale
- IPMA - Divisão de Oceanografia e Ambiente Marinho, Instituto Português Do Mar da Atmosfera, I.P., Avenida Doutor Alfredo Magalhães Ramalho, 6 1495-165, Algés, Portugal
| | - Teresa Catry
- Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
17
|
Leistenschneider C, Le Bohec C, Eisen O, Houstin A, Neff S, Primpke S, Zitterbart DP, Burkhardt-Holm P, Gerdts G. No evidence of microplastic ingestion in emperor penguin chicks (Aptenodytes forsteri) from the Atka Bay colony (Dronning Maud Land, Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158314. [PMID: 36041615 DOI: 10.1016/j.scitotenv.2022.158314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (<5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP >500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.
Collapse
Affiliation(s)
- Clara Leistenschneider
- Department of Environmental Sciences, Man-Society-Environment Program, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany.
| | - Céline Le Bohec
- Centre National de la Recherche Scientifique, Université de Strasbourg, IPHC UMR, 7178 Strasbourg, France; Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco City, Monaco
| | - Olaf Eisen
- Glaciology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschung, Bremerhaven, Germany and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Aymeric Houstin
- Centre National de la Recherche Scientifique, Université de Strasbourg, IPHC UMR, 7178 Strasbourg, France; Centre Scientifique de Monaco, Département de Biologie Polaire, Monaco City, Monaco
| | - Simon Neff
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sebastian Primpke
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany
| | - Daniel P Zitterbart
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia Burkhardt-Holm
- Department of Environmental Sciences, Man-Society-Environment Program, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Kurpromenade, 27498 Helgoland, Germany
| |
Collapse
|
18
|
Lewis PJ, Lashko A, Chiaradia A, Allinson G, Shimeta J, Emmerson L. New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119734. [PMID: 35835279 DOI: 10.1016/j.envpol.2022.119734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Anna Lashko
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria, 3925, Australia
| | - Graeme Allinson
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| |
Collapse
|
19
|
Lemaire J, Brischoux F, Marquis O, Mangione R, Caut S, Brault-Favrou M, Churlaud C, Bustamante P. Relationships between stable isotopes and trace element concentrations in the crocodilian community of French Guiana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155846. [PMID: 35561901 DOI: 10.1016/j.scitotenv.2022.155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Oliver Marquis
- Muséum national d'Histoire naturelle, Parc Zoologique de Paris, 53 avenue de Saint Maurice, 75012 Paris, France
| | - Rosanna Mangione
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Stéphane Caut
- Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Etologia y Conservation de La Biodiversidad - Estacion Biologica de Doñana - C/Americo Vespucio, S/n (Isla de La Cartuja), E-41092 Sevilla, Spain; ANIMAVEG Conservation, 58 Avenue Du Président Salvador Allende, F-94800 Villejuif, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
20
|
Ibañez AE, Mills WF, Bustamante P, McGill RAR, Morales LM, Palacio FX, Torres DS, Haidr NS, Mariano-Jelicich R, Phillips RA, Montalti D. Variation in blood mercury concentrations in brown skuas (Stercorarius antarcticus) is related to trophic ecology but not breeding success or adult body condition. MARINE POLLUTION BULLETIN 2022; 181:113919. [PMID: 35816822 DOI: 10.1016/j.marpolbul.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Mercury is a pervasive environmental contaminant that can negatively impact seabirds. Here, we measure total mercury (THg) concentrations in red blood cells (RBCs) from breeding brown skuas (Stercorarius antarcticus) (n = 49) at Esperanza/Hope Bay, Antarctic Peninsula. The aims of this study were to: (i) analyse RBCs THg concentrations in relation to sex, year and stable isotope values of carbon (δ13C) and nitrogen (δ15N); and (ii) examine correlations between THg, body condition and breeding success. RBC THg concentrations were positively correlated with δ15N, which is a proxy of trophic position, and hence likely reflects the biomagnification process. Levels of Hg contamination differed between our study years, which is likely related to changes in diet and distribution. RBC THg concentrations were not related to body condition or breeding success, suggesting that Hg contamination is currently not a major conservation concern for this population.
Collapse
Affiliation(s)
- A E Ibañez
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina.
| | - W F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - P Bustamante
- Littoral Environnement et Societes (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - R A R McGill
- Stable Isotope Ecology Lab, Natural Environment Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK
| | - L M Morales
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - F X Palacio
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - D S Torres
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - N S Haidr
- Unidad Ejecutora Lillo (CONICET - FML), San Miguel de Tucumán, Tucumán, Argentina
| | - R Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - R A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - D Montalti
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina; Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina
| |
Collapse
|
21
|
Quillfeldt P, Cherel Y, Navarro J, Phillips RA, Masello JF, Suazo CG, Delord K, Bustamante P. Variation Among Species and Populations, and Carry-Over Effects of Winter Exposure on Mercury Accumulation in Small Petrels. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.915199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even in areas as remote as the Southern Ocean, marine organisms are exposed to contaminants that arrive through long-range atmospheric transport, such as mercury (Hg), a highly toxic metal. In previous studies in the Southern Ocean, inter-specific differences in Hg contamination in seabirds was generally related to their distribution and trophic position. However, the Blue Petrel (Halobaena caerulea) was a notable exception among small seabirds, with higher Hg levels than expected. In this study, we compared the Hg contamination of Blue Petrels and Thin-billed Prions (Pachyptila belcheri), which both spend the non-breeding season in polar waters, with that of Antarctic Prions (Pachyptila desolata), which spend the winter in subtropical waters. We collected body feathers and blood samples, representing exposure during different time-frames. Hg concentrations in feathers, which reflect contamination throughout the annual cycle, were related to δ13C values, and varied with ocean basin and species. Blue Petrels from breeding colonies in the southeast Pacific Ocean had much higher feather Hg concentrations than expected after accounting for latitude and their low trophic positions. Both Hg concentrations and δ15N in blood samples of Blue Petrels were much lower at the end than at the start of the breeding period, indicating a marked decline in Hg contamination and trophic positions, and the carry-over of Hg burdens between the wintering and breeding periods. Elevated Hg levels may reflect greater reliance on myctophids or foraging in sea-ice environments. Our study underlines that carry-over of Hg concentrations in prey consumed in winter may determine body Hg burdens well into the breeding season.
Collapse
|
22
|
Mills WF, Ibañez AE, Bustamante P, Carneiro APB, Bearhop S, Cherel Y, Mariano-Jelicich R, McGill RAR, Montalti D, Votier SC, Phillips RA. Spatial and sex differences in mercury contamination of skuas in the Southern Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118841. [PMID: 35026328 DOI: 10.1016/j.envpol.2022.118841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antarctic marine ecosystems are often considered to be pristine environments, yet wildlife in the polar regions may still be exposed to high levels of environmental contaminants. Here, we measured total mercury (THg) concentrations in blood samples from adult brown skuas Stercorarius antarcticus lonnbergi (n = 82) from three breeding colonies south of the Antarctic Polar Front in the Southern Ocean (southwest Atlantic region): (i) Bahía Esperanza/Hope Bay, Antarctic Peninsula; (ii) Signy Island, South Orkney Islands; and, (iii) Bird Island, South Georgia. Blood THg concentrations increased from the Antarctic Peninsula towards the Antarctic Polar Front, such that Hg contamination was lowest at Bahía Esperanza/Hope Bay (mean ± SD, 0.95 ± 0.45 μg g-1 dw), intermediate at Signy Island (3.42 ± 2.29 μg g-1 dw) and highest at Bird Island (4.47 ± 1.10 μg g-1 dw). Blood THg concentrations also showed a weak positive correlation with δ15N values, likely reflecting the biomagnification process. Males had higher Hg burdens than females, which may reflect deposition of Hg into eggs by females or potentially differences in their trophic ecology. These data provide important insights into intraspecific variation in contamination and the geographic transfer of Hg to seabirds in the Southern Ocean.
Collapse
Affiliation(s)
- William F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK; Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK.
| | - Andrés E Ibañez
- Sección Ornitología, Div. Zool. Vert., Museo de La Plata (FCNyM-UNLP, CONICET), Museo de La Plata, Paseo Del Bosque S/n, B1900FWA-La Plata, Buenos Aires, Argentina
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Ana P B Carneiro
- BirdLife International, The David Attenborough Building, Pembroke St, Cambridge, CB2 3QZ, UK
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - Yves Cherel
- Centre D'Etudes Biologiques de Chizé (CEBC), UMR 7372 Du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Rocío Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar Del Plata, Mar Del Plata, Argentina
| | - Rona A R McGill
- Stable Isotope Ecology Lab, Natural Environment Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK
| | - Diego Montalti
- Sección Ornitología, Div. Zool. Vert., Museo de La Plata (FCNyM-UNLP, CONICET), Museo de La Plata, Paseo Del Bosque S/n, B1900FWA-La Plata, Buenos Aires, Argentina; Instituto Antartico Argentino, 25 de Mayo 1143, (B1650HMK) San Martin, Buenos Aires, Argentina
| | | | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
| |
Collapse
|
23
|
El Hanafi K, Pedrero Z, Ouerdane L, Marchán Moreno C, Queipo-Abad S, Bueno M, Pannier F, Corns WT, Cherel Y, Bustamante P, Amouroux D. First Time Identification of Selenoneine in Seabirds and Its Potential Role in Mercury Detoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3288-3298. [PMID: 35170956 DOI: 10.1021/acs.est.1c04966] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Birds are principally exposed to selenium (Se) through their diet. In long-lived and top predator seabirds, such as the giant petrel, extremely high concentrations of Se are found. Selenium speciation in biota has aroused great interest in recent years; however, there is a lack of information about the chemical form of Se in (sea)birds. The majority of publications focus on the growth performance and antioxidant status in broilers in relation to Se dietary supplementation. The present work combines elemental and molecular mass spectrometry for the characterization of Se species in wild (sea)birds. A set of eight giant petrels (Macronectes sp.) with a broad age range from the Southern Ocean were studied. Selenoneine, a Se-analogue of ergothioneine, was identified for the first time in wild avian species. This novel Se-compound, previously reported in fish, constitutes the major Se species in the water-soluble fraction of all of the internal tissues and blood samples analyzed. The levels of selenoneine found in giant petrels are the highest reported in animal tissues until now, supporting the trophic transfer in the marine food web. The characterization of selenoneine in the brain, representing between 78 and 88% of the total Se, suggests a crucial role in the nervous system. The dramatic decrease of selenoneine (from 68 to 3%) with an increase of Hg concentrations in the liver strongly supports the hypothesis of its key role in Hg detoxification.
Collapse
Affiliation(s)
- Khouloud El Hanafi
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Laurent Ouerdane
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Claudia Marchán Moreno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Silvia Queipo-Abad
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Maite Bueno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Florence Pannier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, U.K
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64000 Pau, France
| |
Collapse
|
24
|
Carravieri A, Vincze O, Bustamante P, Ackerman JT, Adams EM, Angelier F, Chastel O, Cherel Y, Gilg O, Golubova E, Kitaysky A, Luff K, Seewagen CL, Strøm H, Will AP, Yannic G, Giraudeau M, Fort J. Quantitative meta-analysis reveals no association between mercury contamination and body condition in birds. Biol Rev Camb Philos Soc 2022; 97:1253-1271. [PMID: 35174617 DOI: 10.1111/brv.12840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Mercury contamination is a major threat to the global environment, and is still increasing in some regions despite international regulations. The methylated form of mercury is hazardous to biota, yet its sublethal effects are difficult to detect in wildlife. Body condition can vary in response to stressors, but previous studies have shown mixed effects of mercury on body condition in wildlife. Using birds as study organisms, we provide the first quantitative synthesis of the effect of mercury on body condition in animals. In addition, we explored the influence of intrinsic, extrinsic and methodological factors potentially explaining cross-study heterogeneity in results. We considered experimental and correlative studies carried out in adult birds and chicks, and mercury exposure inferred from blood and feathers. Most experimental investigations (90%) showed a significant relationship between mercury concentrations and body condition. Experimental exposure to mercury disrupted nutrient (fat) metabolism, metabolic rates, and food intake, resulting in either positive or negative associations with body condition. Correlative studies also showed either positive or negative associations, of which only 14% were statistically significant. Therefore, the overall effect of mercury concentrations on body condition was null in both experimental (estimate ± SE = 0.262 ± 0.309, 20 effect sizes, five species) and correlative studies (-0.011 ± 0.020, 315 effect sizes, 145 species). The single and interactive effects of age class and tissue type were accounted for in meta-analytic models of the correlative data set, since chicks and adults, as well as blood and feathers, are known to behave differently in terms of mercury accumulation and health effects. Of the 15 moderators tested, only wintering status explained cross-study heterogeneity in the correlative data set: free-ranging wintering birds were more likely to show a negative association between mercury and body condition. However, wintering effect sizes were limited to passerines, further studies should thus confirm this trend in other taxa. Collectively, our results suggest that (i) effects of mercury on body condition are weak and mostly detectable under controlled conditions, and (ii) body condition indices are unreliable indicators of mercury sublethal effects in the wild. Food availability, feeding rates and other sources of variation that are challenging to quantify likely confound the association between mercury and body condition in natura. Future studies could explore the metabolic effects of mercury further using designs that allow for the estimation and/or manipulation of food intake in both wild and captive birds, especially in under-represented life-history stages such as migration and overwintering.
Collapse
Affiliation(s)
- Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Orsolya Vincze
- Centre for Ecological Research-DRI, Institute of Aquatic Ecology, 18/C Bem tér, Debrecen, 4026, Hungary.,Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 5-7 Clinicilor street, Cluj-Napoca, 400006, Romania
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France.,Institut Universitaire de France (IUF), 1 rue Descartes, Paris, 75005, France
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, U.S.A
| | - Evan M Adams
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, U.S.A
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360, France
| | - Olivier Gilg
- UMR 6249 CNRS-Chrono-environnement, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25000, France.,Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France
| | - Elena Golubova
- Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France.,Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Str., 18, Magadan, RU-685000, Russia
| | - Alexander Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, U.S.A
| | - Katelyn Luff
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Chad L Seewagen
- Great Hollow Nature Preserve and Ecological Research Center, 225 State Route 37, New Fairfield, CT, 06812, U.S.A
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Tromsø, NO-9296, Norway
| | - Alexis P Will
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, U.S.A
| | - Glenn Yannic
- Groupe de Recherche en Ecologie Arctique (GREA), 16 rue de Vernot, Francheville, 21440, France.,UMR 5553 CNRS-Université Grenoble Alpes, Université Savoie Mont Blanc, 2233 Rue de la Piscine, Saint-Martin d'Hères, Grenoble, 38000, France
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France.,Centre de Recherches en Écologie et en Évolution de la Santé (CREES), MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Domaine La Valette, 900 rue Breton, Montpellier, 34090, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| |
Collapse
|
25
|
Fioramonti NE, Ribeiro Guevara S, Becker YA, Riccialdelli L. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113365. [PMID: 35114547 DOI: 10.1016/j.marpolbul.2022.113365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of contaminants, such as mercury (Hg), in marine trophic webs is a critical topic in the scientific community due to the high concentrations encountered in organisms. In this study we attempted to provide information on total Hg accumulation patterns and possible pathways of trophic transfers assessed in combination with δ13C and δ15N to understand how this contaminant permeates three sub-Antarctic food webs: the Beagle Channel (BC), the Atlantic coast of Tierra del Fuego (AC-TDF) and Burdwood Bank (BB). We found a site-specific pattern of Hg transfer and biomagnification processes, while the oceanic BB showed major Hg transfer through the pelagic domain, coastal sectors (BC and AC-TDF) indicate a general biodilution process but with Hg concentrations incrementing with the benthivory grade. This represents a dissimilar Hg bioavailability for marine consumers that rely on different diet and forage in different habitats, and may become an issue of important conservation concern for these southern areas.
Collapse
Affiliation(s)
- N E Fioramonti
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina.
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av E. Bustillo Km 9.500, Bariloche, Argentina
| | - Y A Becker
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
26
|
CASTRO MARLLONF, MEIER MARTIN, NEVES JÚLIOC, FRANCELINO MÁRCIOR, SCHAEFER CARLOSERNESTOG, OLIVEIRA TEOGENESS. Influence of different seabird species on trace metals content in Antarctic soils. AN ACAD BRAS CIENC 2022; 94:e20210623. [DOI: 10.1590/0001-3765202220210623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
|
27
|
Dodino S, Riccialdelli L, Polito MJ, Pütz K, Brasso RL, Raya Rey A. Mercury exposure driven by geographic and trophic factors in Magellanic penguins from Tierra del Fuego. MARINE POLLUTION BULLETIN 2022; 174:113184. [PMID: 34856432 DOI: 10.1016/j.marpolbul.2021.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Penguins accumulate mercury due to their long-life span together with their high trophic position. We sampled adult and juveniles' feathers from three colonies of Spheniscus magellanicus from Tierra del Fuego along an inshore-offshore corridor. We integrated toxicological information (mercury concentrations) and foraging biomarkers (δ13C, δ15N) into a common data analysis framework (isotopic niche analysis) to evaluate the influence of age, location, and foraging behaviors on mercury concentrations. Adults had higher feather mercury concentrations, δ13C, and δ15N values compared to juveniles. Also, adult and juvenile feather mercury concentrations differed between colonies, with lower mercury concentrations at the nearest inshore colony relative to the farther offshore colonies. Trophic position and the isotopic niche analyses suggest that this geographic gradient in mercury concentrations is due to differences in colonies' foraging areas. Understanding penguins' exposure to mercury derived from local food webs is a crucial first step in evaluating the impacts of this heavy metal on their conservation status.
Collapse
Affiliation(s)
- Samanta Dodino
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina.
| | - Luciana Riccialdelli
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, United States of America
| | | | | | - Andrea Raya Rey
- Ecología y Conservación de Vida Silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Ushuaia, Tierra del Fuego, Argentina; Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina; Wildlife Conservation Society, Buenos Aires, Argentina
| |
Collapse
|
28
|
Cumbo V, Galluzzo FG, Cammilleri G, Mascetti A, Lo Cascio G, Giangrosso IE, Pulvirenti A, Seminara S, Ferrantelli V. Trace elements in stomach oil of Scopoli's shearwater (Calonectris diomedea) from Linosa's colony. MARINE POLLUTION BULLETIN 2022; 174:113242. [PMID: 34906783 DOI: 10.1016/j.marpolbul.2021.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Calonectris diomedea is a colonial Procellariiform breeding on Mediterranean islands. The stomach oil produced during chick rearing is a peculiar trait of this species. The composition of the stomach oil is likely to reflect the composition of the prey ingested and might reveal the contaminants uptake with prey becoming a possible tool for the marine pollution monitoring. We examined the concentration of 15 trace elements by ICP-MS and direct mercury analyser. The principal component analysis revealed a heterogeneous pattern of metal concentration, showing a significant separation between samples collected 20 and 70 days after hatching. The data obtained in this work give preliminary information on the feeding habits and breeding ecology of Linosa's colony of Scopoli's shearwater. The trace metals variability found suggest that the stomach oil may have a role as trophic markers to understand predator-prey relationships and to have evidence on the accumulation of pollutants in the latter.
Collapse
Affiliation(s)
- Valentina Cumbo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | | | - Giovanni Lo Cascio
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Innocenzo Ezio Giangrosso
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Salvatore Seminara
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| |
Collapse
|
29
|
Bengtson Nash SM, Casa MV, Kawaguchi S, Staniland I, Bjerregaard P. Mercury levels in humpback whales, and other Southern Ocean marine megafauna. MARINE POLLUTION BULLETIN 2021; 172:112774. [PMID: 34364143 DOI: 10.1016/j.marpolbul.2021.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Mercury is a known potent neurotoxin. The biogeochemical cycle of mercury in the remote Antarctic region is still poorly understood, with Polar climate change contributing added complexity. Longitudinal biomonitoring of mercury accumulation in Antarctic marine megafauna can contribute top-down insight into the bio-physical drivers of wildlife exposure. The bioaccumulative nature of organic mercury renders high trophic predators at the greatest risk of elevated exposure. Humpback whales represent secondary consumers of the Antarctic sea-ice ecosystem and an ideal biomonitoring species for persistent and bioaccumulative compounds due to their extended life-spans. This study provides the first results of mercury accumulation in humpback whales, and places findings within the context of mercury accumulation in both prey, as well as six other species of Antarctic marine megafauna. Combined, these findings contribute new baseline information regarding mercury exposure to Antarctic wildlife, and highlights methodological prerequisites for routine mercury biomonitoring in wildlife via non-lethally biopsied superficial tissues.
Collapse
Affiliation(s)
- Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia.
| | - Maria Valeria Casa
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
| | - So Kawaguchi
- Australian Antarctic Division, Kingston, TAS 7050, Australia
| | - Iain Staniland
- British Antarctic Survey, Cambridge CB3 0ET, England, United Kingdom of Great Britain and Northern Ireland
| | - Poul Bjerregaard
- Department of Biology, The University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
30
|
Bighetti GP, Padilha JA, Cunha LST, Kasper D, Malm O, Mancini PL. Bioaccumulation of mercury is equal between sexes but different by age in seabird (Sula leucogaster) population from southeast coast of Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117222. [PMID: 33932760 DOI: 10.1016/j.envpol.2021.117222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Since several seabird species have sexual size dimorphism, in which one sex is larger than the other, and may consume bigger prey, this size difference may affect the contamination concentration in the seabird's tissues depending on their sex and age. In this study, mercury contamination was investigated in brown booby (Sula leucogaster) adults and juveniles during their breeding season at the Santana Archipelago, on the southeast coast of Brazil. Two hypotheses were evaluated: 1. As females consume larger prey than males due to the reverse sexual dimorphism, higher total mercury (THg) and methylmercury (MeHg) concentrations are expected in females tissues than in males; 2. Adult seabirds have more time to accumulate mercury than juveniles, so it is expected that adults will show higher THg and MeHg concentrations than juveniles in their feathers, but none in blood since the last indicates the exposure of short time (30-60 days), as it is a constantly synthesized tissue. Feathers and blood were sampled from 20 individuals of each group (males, females and juveniles). Also, 10 eggs of the brown booby and muscle tissue samples of their main prey were collected, from February to October 2018. Females and males had similar THg concentrations in the tissues with no statistical differences between sexes. Thus, the sexual size dimorphism did not influence mercury concentrations among the tissues and both genders can be used as a biomonitor. Brown booby juveniles had low THg and MeHg concentrations compared to adults due to a shorter time of exposure for mercury to bioaccumulate in their tissues. This is the first study, to the best of our knowledge, analyzing methylmercury in feathers, blood and eggs of a tropical seabird, which can be a useful baseline for future studies on the effects of contaminants on this species in tropical regions.
Collapse
Affiliation(s)
- G P Bighetti
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal Do Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação Em Ciências Ambientais e Conservação (PPG-CiAC), Universidade Federal Do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil.
| | - J A Padilha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, RJ, Brazil
| | - L S T Cunha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, RJ, Brazil
| | - D Kasper
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, RJ, Brazil
| | - O Malm
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, RJ, Brazil
| | - P L Mancini
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal Do Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação Em Ciências Ambientais e Conservação (PPG-CiAC), Universidade Federal Do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| |
Collapse
|
31
|
Calizza E, Signa G, Rossi L, Vizzini S, Careddu G, Tramati CD, Caputi SS, Mazzola A, Costantini ML. Trace elements and stable isotopes in penguin chicks and eggs: A baseline for monitoring the Ross Sea MPA and trophic transfer studies. MARINE POLLUTION BULLETIN 2021; 170:112667. [PMID: 34242962 DOI: 10.1016/j.marpolbul.2021.112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Multi-tissue trace elements (TEs), C, N concentrations and stable isotopes (δ13C, δ15N) of chick carcasses and eggs of Adélie and Emperor penguins were studied to i) provide reference data before the recent institution of the Ross Sea Marine Protected Area (Antarctica), and ii) provide conversion factors that allow estimating C, N, δ13C and δ15N in edible tissues from non-edible ones, thus improving the use of stable isotopes in contamination and trophic transfer studies. Higher concentrations of As, Cd, Cr, Cu, Hg, Mn and Pb were found in chick carcasses than in eggs, suggesting increasing contamination in recent decades and high toxicity risks for penguin consumers. Isotopic conversion factors highlighted small differences among body tissues and conspecifics. These values suggest that chick carcasses are reliable indicators of the energy pathways underlying the two penguin species, their trophic position in the food web and their exposure to TEs.
Collapse
Affiliation(s)
- Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Geraldina Signa
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Earth and Marine Sciences, University of Palermo, via Archirafi 18, 90123 Palermo, Italy.
| | - Loreto Rossi
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Salvatrice Vizzini
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Earth and Marine Sciences, University of Palermo, via Archirafi 18, 90123 Palermo, Italy
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Cecilia Doriana Tramati
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Earth and Marine Sciences, University of Palermo, via Archirafi 18, 90123 Palermo, Italy
| | - Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Antonio Mazzola
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy; Department of Earth and Marine Sciences, University of Palermo, via Archirafi 18, 90123 Palermo, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
32
|
Furtado R, Granadeiro JP, Gatt MC, Rounds R, Horikoshi K, Paiva VH, Menezes D, Pereira E, Catry P. Monitoring of mercury in the mesopelagic domain of the Pacific and Atlantic oceans using body feathers of Bulwer's petrel as a bioindicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145796. [PMID: 33618310 DOI: 10.1016/j.scitotenv.2021.145796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Global mercury pollution has markedly and consistently grown over the past 70 years (although with regional variations in trends) and is a source of major concern. Mercury contamination is particularly prevalent in biota of the mesopelagic layers of the open ocean, but these realms are little studied, and we lack a large scale picture of contamination in living organisms of this region. The Bulwer's petrel Bulweria bulwerii, a species of migratory seabird, is a highly specialised predator of mesopelagic fish and squid, and therefore can be used as a bioindicator for the mesopelagic domain. Mercury accumulated by the birds through diet is excreted into feathers during the moulting process in adults and feather growth in chicks, reflecting contamination in the non-breeding and breeding periods, respectively, and hence the influence of different, largely non-overlapping breeding and non-breeding ranges. We studied mercury in feathers and the trophic position in two colonies from the Atlantic Ocean (Portugal and Cape Verde) and two colonies from the Pacific Ocean (Japan and Hawaii). We found significantly lower levels of mercury in adult and chick samples from the Pacific Ocean compared with samples from the Atlantic Ocean. However, we did not detect differences in trophic position of chicks among colonies and oceans, suggesting that differences in mercury measured in feathers reflect levels of environmental contamination, rather than differences in the structure of the trophic chain in different oceans. We conclude that despite a reduction in mercury levels in the Atlantic in recent decades, mesopelagic organisms in this ocean remain more heavily contaminated than in the Pacific at tropical and subtropical latitudes. We suggest that Bulwer's petrel is a highly suitable species to monitor the global contamination of mercury in the mesopelagic domain.
Collapse
Affiliation(s)
- Ricardo Furtado
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 1149-041 Lisboa, Portugal.
| | - José Pedro Granadeiro
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marie Claire Gatt
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rachel Rounds
- Pacific Islands Refuges and Monuments Office Inventory and Monitoring Program U.S. Fish and Wildlife Service, Honolulu, HI 808-792-9559, United States of America
| | - Kazuo Horikoshi
- Institute of Boninology Chichijima, Ogasawara-mura, Tokyo 100-2101, Japan
| | - Vítor H Paiva
- Universidade de Coimbra, MARE - Marine and Environmental Sciences Centre, Departamento de Ciências da Vida, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Dilia Menezes
- Instituto das Florestas e Conservação da Natureza, IP-RAM, 9064-512 Funchal, Portugal
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Catry
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 1149-041 Lisboa, Portugal
| |
Collapse
|
33
|
Yao T, Zhu G, Zhang Y, Yan P, Li C, de Boer WF. Bird's feather as an effective bioindicator for detection of trace elements in polymetallic contaminated areas in Anhui Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144816. [PMID: 33545476 DOI: 10.1016/j.scitotenv.2020.144816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution, especially because of trace metals, seriously affects ecological safety, and bird feathers are often used as bioindicators to monitor this risk in various environments. However, the feasibility of feathers as bioindicators for trace metals in polymetallic contaminated areas has not been extensively studied. In this study, we used inductively coupled plasma mass spectrometry (ICP-MS) to quantify and compare the contents of nine trace metal(loid)s (V, Cr, Mn, Co, Cu, Zn, As, Cd and Pb) among soil, plants, insects and birds (feathers and internal tissues) sampled in the mining area of Tongling, a polymetallic contaminated area in Anhui Province, eastern China. We detected significant trace metal pollution in the abiotic and biotic materials. The contents of Cr, Cu, Zn, As and Pb in feathers differed among bird species and among sampling sites, with higher contents often recorded in tree sparrows (Passer montanus). The metal(loid)s V, Mn, Co, Zn, and As had higher contents in feathers than in internal tissues including heart, liver, kidneys, muscles and bones. The contents of some elements in feathers were positively correlated with those in internal tissues, for example, Co, As, and Cd in the heart, V and Co in the kidneys, Cd in the liver, Pb in bones, and As in muscles. Furthermore, the contents of V, Cr, As and Pb in feathers were higher than those in other biomaterials, implying an increasing trend from plants, insects, and feathers. Our study indicates that bird feathers can be used as effective, non-destructive bioindicators to monitor trace metal(loid) pollution, especially for V, Co, As, Cd and Pb, in polymetallic contaminated areas, providing reliable information for ecological assessment.
Collapse
Affiliation(s)
- Tingting Yao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Guang Zhu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Yong Zhang
- College of Biology and the Environment, Nanjing Forestry University, No.159, Longpan Road, 210037 Nanjing, China
| | - Peng Yan
- School of Life Sciences, Anhui Normal University, No. 1, Beijing East Road, 241000 Wuhu, Anhui Province, China
| | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China; Institute of Physical Science and Information Technology, Anhui University, No. 111, Jiulong Road, 230601 Hefei, China.
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
34
|
Binkowski LJ, Fort J, Brault-Favrou M, Gallien F, Le Guillou G, Chastel O, Bustamante P. Foraging ecology drives mercury contamination in chick gulls from the English Channel. CHEMOSPHERE 2021; 267:128622. [PMID: 33162157 DOI: 10.1016/j.chemosphere.2020.128622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Although mercury (Hg) occurs naturally, human activity is currently the greatest source of release and the ocean receives Hg inputs by rivers and atmospheric deposition. Seabirds including chicks serve as valuable bioindicators of Hg contamination, reflecting local contamination around the colony. This study investigates the ecological drivers (trophic position and foraging habitat) influencing Hg concentrations in blood and feathers of chicks of three sympatric marine gull species. Chicks were sampled between 2015 and 2017 in the Seine Estuary, one of the most Hg contaminated rivers in Europe, and in the Normand-Breton Gulf (the Chausey Islands), 200 km west, as a reference site with limited contaminant inputs. The trophic status of the chicks was evaluated based on the relative abundance of stable isotopes (δ13C, δ15N and δ34S). There was a tight correlation between Hg concentrations, as well as the abundance of stable isotopes, in blood and feathers. Great black-backed gull had the highest blood Hg concentrations of the species (1.80 ± 0.92 μg⋅g-1 dry weight (dw)); the Lesser black-backed gull had intermediate concentrations (0.61 ± 0.18 μg⋅g-1 dw); and the European herring gull had the lowest (0.37 ± 0.26 μg⋅g-1 dw). Individuals with the highest trophic position showed consistently the highest Hg concentrations. The positive relationship between Hg concentrations and the feeding habitat (marine vs terrestrial) indicated that the main source of Hg for gulls in the English Channel is marine prey. This exposure led to relatively high Hg concentrations in Great black-backed gull, which may produce toxic effects to individuals with potential consequences for their populations.
Collapse
Affiliation(s)
- Lukasz J Binkowski
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland.
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Maud Brault-Favrou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fabrice Gallien
- Groupe Ornithologique Normand, 181 Rue d'Auge, 14000 Caen, France
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
35
|
Thébault J, Bustamante P, Massaro M, Taylor G, Quillfeldt P. Influence of Species-Specific Feeding Ecology on Mercury Concentrations in Seabirds Breeding on the Chatham Islands, New Zealand. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:454-472. [PMID: 33201544 DOI: 10.1002/etc.4933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a toxic metal that accumulates in organisms and biomagnifies along food webs; hence, long-lived predators such as seabirds are at risk as a result of high Hg bioaccumulation. Seabirds have been widely used to monitor the contamination of marine ecosystems. In the present study, we investigated Hg concentrations in blood, muscle, and feathers of 7 procellariform seabirds breeding on the Chatham Islands, New Zealand. Using bulk and compound-specific stable isotope ratios of carbon and nitrogen as a proxy of trophic position and distribution, we also tested whether Hg contamination is related to the species-specific feeding ecology. Mercury exposure varied widely within the seabird community. The highest contaminated species, the Magenta petrel, had approximately 29 times more Hg in its blood than the broad-billed prion, and approximately 35 times more Hg in its feathers than the grey-backed storm petrel. Variations of Hg concentrations in blood and feathers were significantly and positively linked to feeding habitats and trophic position, highlighting the occurrence of efficient Hg biomagnification processes along the food web. Species and feeding habitats were the 2 main drivers of Hg exposure within the seabird community. The Pterodroma species had high blood and feather Hg concentrations, which can be caused by their specific physiology and/or because of their foraging behavior during the interbreeding period (i.e., from the Tasman Sea to the Humboldt Current system). These 2 threatened species are at risk of suffering detrimental effects from Hg contamination and further studies are required to investigate potential negative impacts, especially on their reproduction capability. Environ Toxicol Chem 2021;40:454-472. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Justine Thébault
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Institut Universitaire de France (IUF), Paris, France
| | - Melanie Massaro
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, Australia
| | - Graeme Taylor
- Department of Conservation, Biodiversity Group, Wellington, New Zealand
| | - Petra Quillfeldt
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
36
|
Carravieri A, Warner NA, Herzke D, Brault-Favrou M, Tarroux A, Fort J, Bustamante P, Descamps S. Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels. ENVIRONMENTAL RESEARCH 2021; 193:110518. [PMID: 33245882 DOI: 10.1016/j.envres.2020.110518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g-1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g-1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g-1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g-1 ww) and p, p'-DDE (1.02 ± 1.49 ng g-1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g-1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.
Collapse
Affiliation(s)
- Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Nicholas A Warner
- NILU-Norwegian Institute for Air Research, Fram Centre, Tromsø, NO-9296, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Hansine Hansens veg 18, Tromsø, 9037, Norway
| | - Dorte Herzke
- NILU-Norwegian Institute for Air Research, Fram Centre, Tromsø, NO-9296, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Hansine Hansens veg 18, Tromsø, 9037, Norway
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Arnaud Tarroux
- NINA-Norwegian Institute for Nature Research, Fram Centre, Tromsø, NO-9296, Norway
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle, 17000, France; Institut Universitaire de France (IUF), 1 Rue Descartes, Paris, 75005, France
| | | |
Collapse
|
37
|
Mills WF, Bustamante P, McGill RAR, Anderson ORJ, Bearhop S, Cherel Y, Votier SC, Phillips RA. Mercury exposure in an endangered seabird: long-term changes and relationships with trophic ecology and breeding success. Proc Biol Sci 2020; 287:20202683. [PMID: 33352077 PMCID: PMC7779510 DOI: 10.1098/rspb.2020.2683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989-2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g-1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations-feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome-failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.
Collapse
Affiliation(s)
- William F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK.,Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9EZ, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Rona A R McGill
- NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK
| | - Orea R J Anderson
- Joint Nature Conservation Committee, Inverdee House, Baxter Street, Aberdeen AB11 9QA, UK
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9EZ, UK
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| |
Collapse
|
38
|
Souza JS, Kasper D, da Cunha LST, Soares TA, de Lira Pessoa AR, de Carvalho GO, Costa ES, Niedzielski P, Torres JPM. Biological factors affecting total mercury and methylmercury levels in Antarctic penguins. CHEMOSPHERE 2020; 261:127713. [PMID: 32738710 DOI: 10.1016/j.chemosphere.2020.127713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Penguins in Antarctica occupy high trophic levels, thus accumulating high amounts of mercury (Hg) through bioaccumulation and biomagnification. Blood reflects the current levels of contaminants circulating in the body, while feathers are known as the main route of Hg elimination in birds. Studies sampling chicks and adults can provide a comprehensive picture of bioaccumulation and local contamination. Three pygoscelid species (Pygoscelis adeliae, Pygoscelis antarcticus and Pygoscelis papua) have circumpolar distributions being the ideal sentinels of Antarctic environmental pollution. This study aimed to assess Hg contamination of the pristine Antarctic region using non-destructive penguin samples. Fieldwork was carried out during the austral summer of 2013/2014 in the South Shetland Islands, off the north-west Antarctic Peninsula. Concentrations of total Hg (ng.g-1 dw) in blood ranged from 39 to 182 in chicks and 45 to 581 in adults, while concentrations in feathers ranged from 73 to 598 in chicks and 156 to 1648 in adults. Most Hg in feathers (about 70%) is accumulated in the form of methylmercury. Differences were demonstrated in mercury bioaccumulation were related to species and age, but not to sex. To our knowledge this is the first study to report MeHg levels in both juvenile and adult pygoscelid penguins.
Collapse
Affiliation(s)
- Juliana Silva Souza
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil; Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Daniele Kasper
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Larissa Schmauder Teixeira da Cunha
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Tuany Alves Soares
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Adriana Rodrigues de Lira Pessoa
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Gabriel Oliveira de Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Erli Schneider Costa
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, Unidade Universitária Hortênsias, Rua Assis Brasil 842, 95400-000, Rio Grande do Sul, Brazil
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - João Paulo Machado Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
McPartland M, Noori B, Garbus SE, Lierhagen S, Sonne C, Krøkje Å. Circulating trace elements: Comparison between early and late incubation in common eiders (Somateria mollissima) in the central Baltic Sea. ENVIRONMENTAL RESEARCH 2020; 191:110120. [PMID: 32841637 DOI: 10.1016/j.envres.2020.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
We analyzed body mass and a panel of 64 trace elements in blood from incubating common eiders (Somateria mollissima) in the central Baltic Sea during the breeding seasons of 2017 (n = 27) and 2018 (n = 23). Using a non-invasive approach, the same incubating eiders nesting on Christiansø, Denmark were sampled once on day 4 and day 24 of incubation to provide a comparison between the early and late stages of incubation. Blood concentrations of chemical elements were quantified using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Cadmium and lead significantly increased over the course of the incubation period while body mass, barium, calcium, cerium, cesium, iron, magnesium, manganese, molybdenum, phosphorus, selenium, strontium, sulfur, uranium, and zinc all significantly decreased. Excluding lead, all trace elements were within expected ranges. Lead blood concentrations had a 4.7-fold increase from 2017 to 2018 indicating a potential health threat. However, internal interactions between trace elements must be considered when making comparisons to toxicological thresholds. Body mass and many essential elements showed significantly higher levels in 2017 than 2018, which could be an indication of limitations in preferred food availability or harsher fasting conditions. Additional sampling years are needed to further investigate if these results reflect yearly fluctuations or decreasing health within the Christiansø eider colony. There was little overlap in element blood concentrations and body mass between days of incubation, indicating these parameters are affected by the physiological processes of reproduction and incubation. We recommend continued biomonitoring and use of complete trace element analysis for the Christiansø eiders to further understand year-to-year variations within colonies. Further investigation into the spatial ecology of the colony is also needed to provide a more robust understanding of exposure and source identification of trace elements.
Collapse
Affiliation(s)
- Molly McPartland
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Brenley Noori
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Syverin Lierhagen
- Norwegian University of Science and Technology (NTNU), Department of Chemistry, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Åse Krøkje
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
40
|
Renedo M, Bustamante P, Cherel Y, Pedrero Z, Tessier E, Amouroux D. A "seabird-eye" on mercury stable isotopes and cycling in the Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140499. [PMID: 33167295 DOI: 10.1016/j.scitotenv.2020.140499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 05/12/2023]
Abstract
Since mercury (Hg) biogeochemistry in the Southern Ocean is minimally documented, we investigated Hg stable isotopes in the blood of seabirds breeding at different latitudes in the Antarctic, Subantarctic and Subtropical zones. Hg isotopic composition was determined in adult penguins (5 species) and skua chicks (2 species) from Adélie Land (66°39'S, Antarctic) to Crozet (46°25'S, Subantarctic) and Amsterdam Island (37°47'S, Subtropical). Mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) Hg isotopic values separated populations geographically. Antarctic seabirds exhibited lower δ202Hg values (-0.02 to 0.79 ‰, min-max) than Subantarctic (0.88 to 2.12 ‰) and Subtropical (1.44 to 2.37 ‰) seabirds. In contrast, Δ199Hg values varied slightly from Antarctic (1.31 to 1.73 ‰) to Subtropical (1.69 to 2.04 ‰) waters. The extent of methylmercury (MeHg) photodemethylation extrapolated from Δ199Hg values was not significantly different between locations, implying that most of the bioaccumulated MeHg was of mesopelagic origin. The larger increase of MDF between the three latitudes co-varies with MeHg concentrations. This supports an increasing effect of specific biogenic Hg pathways from Antarctic to Subtropical waters, such as Hg biological transformations and accumulations. This "biogenic effect" among different productive southern oceanic regions can also be related to different mixed layer depth dynamics and biological productivity turnover that specifically influence the vertical transport between the mesopelagic and the photic zones. This study shows the first Hg isotopic data of the Southern Ocean at large scale and reveals how regional Southern Ocean dynamics and productivity control marine MeHg biogeochemistry and the exposure of seabirds to Hg contamination.
Collapse
Affiliation(s)
- Marina Renedo
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| |
Collapse
|
41
|
Ebert LA, Branco JO, Barbieri E. Evaluation of trace elements in feathers of young kelp gull Larus dominicanus along the coast of Santa Catarina, Brazil. MARINE POLLUTION BULLETIN 2020; 160:111676. [PMID: 33181949 DOI: 10.1016/j.marpolbul.2020.111676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Seabirds are used as bioindicators of marine ecosystems, especially for quantifying and tracking pollution sources. The objective of this study was to evaluate the contamination in feathers of young kelp gulls by lead (Pb), chromium (Cr), mercury (Hg) and zinc (Zn) on three islands of southern Brazil. The highest values for Pb (2.1310 μg g-1) and Hg (0.0010 μg g-1) were observed in Lobos. Zn was common in all samples with a median around 41.7487 μg g-1 and Cr values were below the quantification limit (0.0300 μg g-1). The Kruskal-Wallis test indicated significant differences in Pb (H = 21.84; p < 0.05) and Zn (H = 958.80; p < 0.05), but no differences were observed in Cr (H = 3.08; p < 0.05) and Hg (H = 3.0; p < 0.05). This study was important to show the impact of trace element pollutants on the seabird communities and oceans.
Collapse
Affiliation(s)
- Luis A Ebert
- UNIASSELVI, Centro Universitário Leonardo da Vinci, Departamento de Engenharia Ambiental e Sanitária, Indaial, SC, Brazil.
| | - Joaquim O Branco
- UNIVALI, Universidade do Vale do Itajaí, Escola do Mar, Ciência e Tecnologia, Itajaí, SC, Brazil
| | - Edison Barbieri
- Instituto de Pesca - Secretaria da Agricultura e Abastecimento - Governo do Estado de São Paulo, Cananéia, SP, Brazil
| |
Collapse
|
42
|
Lewis PJ, McGrath TJ, Chiaradia A, McMahon CR, Emmerson L, Allinson G, Shimeta J. A baseline for POPs contamination in Australian seabirds: little penguins vs. short-tailed shearwaters. MARINE POLLUTION BULLETIN 2020; 159:111488. [PMID: 32738640 DOI: 10.1016/j.marpolbul.2020.111488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
While globally distributed throughout the world's ecosystems, there is little baseline information on persistent organic pollutants (POPs) in marine environments in Australia and, more broadly, the Southern Hemisphere. To fill this knowledge gap, we collected baseline information on POPs in migratory short-tailed shearwaters (Ardenna tenuirostris) from Fisher Island, Tasmania, and resident little penguins (Eudyptula minor) from Phillip Island, Victoria. Levels of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs) were determined from blood samples, with total contamination ranging 7.6-47.7 ng/g ww for short-tailed shearwaters and 0.12-46.9 ng/g ww for little penguins. In both species contamination followed the same pattern where PCBs>OCPs>BFRs. BFR levels included the presence of the novel flame retardant hexabromobenzene (HBB). These novel results of POPs in seabirds in southeast Australia provide important information on the local (penguins) and global (shearwaters) distribution of POPs in the marine environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria 3925, Australia
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, 19 Chowder Bay, Mosman 2088, New South Wales, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
43
|
Carravieri A, Burthe SJ, de la Vega C, Yonehara Y, Daunt F, Newell MA, Jeffreys RM, Lawlor AJ, Hunt A, Shore RF, Pereira MG, Green JA. Interactions between Environmental Contaminants and Gastrointestinal Parasites: Novel Insights from an Integrative Approach in a Marine Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8938-8948. [PMID: 32551599 PMCID: PMC7467638 DOI: 10.1021/acs.est.0c03021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Environmental contaminants and parasites are ubiquitous stressors that can affect animal physiology and derive from similar dietary sources (co-exposure). To unravel their interactions in wildlife, it is thus essential to quantify their concurring drivers. Here, the relationship between blood contaminant residues (11 trace elements and 17 perfluoroalkyl substances) and nonlethally quantified gastrointestinal parasite loads was tested while accounting for intrinsic (sex, age, and mass) and extrinsic factors (trophic ecology inferred from stable isotope analyses and biologging) in European shags Phalacrocorax aristotelis. Shags had high mercury (range 0.65-3.21 μg g-1 wet weight, ww) and extremely high perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) residues (3.46-53 and 4.48-44 ng g-1 ww, respectively). Males had higher concentrations of arsenic, mercury, PFOA, and PFNA than females, while the opposite was true for selenium, perfluorododecanoic acid (PFDoA), and perfluooctane sulfonic acid (PFOS). Individual parasite loads (Contracaecum rudolphii) were higher in males than in females. Females targeted pelagic-feeding prey, while males relied on both pelagic- and benthic-feeding organisms. Parasite loads were not related to trophic ecology in either sex, suggesting no substantial dietary co-exposure with contaminants. In females, parasite loads increased strongly with decreasing selenium:mercury molar ratios. Females may be more susceptible to the interactive effects of contaminants and parasites on physiology, with potential fitness consequences.
Collapse
Affiliation(s)
- Alice Carravieri
- School
of Environmental Sciences, University of
Liverpool, Liverpool L69 3GP, U.K.
- ,
| | - Sarah J. Burthe
- UK
Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, U.K.
| | - Camille de la Vega
- School
of Environmental Sciences, University of
Liverpool, Liverpool L69 3GP, U.K.
| | - Yoshinari Yonehara
- Atmosphere
and Ocean Research Institute, University
of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Francis Daunt
- UK
Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, U.K.
| | - Mark A. Newell
- UK
Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, U.K.
| | - Rachel M. Jeffreys
- School
of Environmental Sciences, University of
Liverpool, Liverpool L69 3GP, U.K.
| | - Alan J. Lawlor
- UK
Centre for Ecology & Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K
| | - Alexander Hunt
- UK
Centre for Ecology & Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K
| | - Richard F. Shore
- UK
Centre for Ecology & Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K
| | - M. Glória Pereira
- UK
Centre for Ecology & Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K
| | - Jonathan A. Green
- School
of Environmental Sciences, University of
Liverpool, Liverpool L69 3GP, U.K.
| |
Collapse
|
44
|
Lischka A, Braid H, Cherel Y, Bolstad K, Lacoue-Labarthe T, Bustamante P. Influence of sexual dimorphism on stable isotopes and trace element concentrations in the greater hooked squid Moroteuthopsis ingens from New Zealand waters. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104976. [PMID: 32662429 DOI: 10.1016/j.marenvres.2020.104976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The Chatham Rise, one of the highest offshore-primary production regions in New Zealand waters, hosts a great abundance and diversity of deep-sea cephalopods including the greater hooked squid, Moroteuthopsis ingens. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Se, V, and Zn) were assessed in female and male specimens of different size classes (89-563 mm mantle length). Values of δ13C and δ15N were overall higher in females and δ13C was further influenced by size and sex. Both muscular mantle (the largest fraction of the total body mass) and digestive gland (the known main storage organ for Ag, Cd, Cu and Zn in many cephalopods) tissues were analysed. Higher levels of Cd were observed in males than in females. A positive effect was found between size and Hg concentrations, which could be related to the ontogenetic descent of larger specimens into deeper waters, where they are exposed to higher Hg concentrations, and/or dietary shifts toward Hg-enriched prey with increasing size. This study provides trace element data for this abundant and ecologically important species, and further reveals higher trace element concentrations (especially Hg) in M. ingens from the Chatham Rise, compared to specimens from the sub-Antarctic zone.
Collapse
Affiliation(s)
- A Lischka
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand.
| | - H Braid
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand
| | - Y Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - K Bolstad
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand
| | - T Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
45
|
Soldatini C, Sebastiano M, Albores-Barajas YV, Abdelgawad H, Bustamante P, Costantini D. Mercury exposure in relation to foraging ecology and its impact on the oxidative status of an endangered seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138131. [PMID: 32247131 DOI: 10.1016/j.scitotenv.2020.138131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Mercury is a natural element extensively found in the Earth's crust, released to the atmosphere and waters by natural processes. Since the industrial revolution, atmospheric deposition of Hg showed a three-to-five-fold enrichment due to human activities. Marine top predators such as seabirds are recognized valuable bioindicators of ocean health and sensitive victims of Hg toxic effects. Hg negatively affects almost any aspect of avian physiology; thus, birds prove valuable to study the effect of Hg exposure in vertebrates. The Black-vented Shearwater is endemic to the North-Eastern Pacific Ocean, where it forages along the Baja California Peninsula during the breeding period. The area has no industrial settlement and is in the southern portion of the California Current System (CCS). After observing possible contamination effects in eggshells, we decided to quantify the exposure of breeding birds to Hg and test for possible effects on oxidative status of the species. The concentration of Hg in erythrocytes averaged 1.84 μg/g dw and varied from 1.41 to 2.40 μg/g dw. Males and females had similar Hg concentrations. The individual trophic level (reflected by δ15N) did not explain Hg exposure. In contrast, individuals foraging inshore had higher Hg concentrations than those foraging more offshore (reflected by δ13C). Shearwaters having higher concentrations of Hg had lower activity of the antioxidant enzyme glutathione peroxidase and showed lower non-enzymatic antioxidant capacity. Levels of plasma oxidative damage, superoxide dismutase and catalase were not associated with Hg. Our results indicate that (i) the foraging habitat is the factor explaining Hg exposure and (ii) there is some evidence for potential harmful effects of Hg exposure to this seabird species of conservation concern. CAPSULE: The foraging habitat is the factor explaining Hg exposure in seabirds and we observed potential harmful effects of Hg exposure in a seabird species of conservation concern.
Collapse
Affiliation(s)
- Cecilia Soldatini
- Centro de Investigación Científica y Educación Superior de Ensenada - Unidad La Paz, Calle Miraflores 334, La Paz, Baja California Sur 23050, Mexico
| | - Manrico Sebastiano
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS- Université La Rochelle, France
| | - Yuri V Albores-Barajas
- CONACYT, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Mexico City, Mexico; Universidad Autónoma de Baja California, Sur. Km. 5.5 Carr. 1, La Paz, B.C.S., Mexico.
| | - Hamada Abdelgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - David Costantini
- Unité Physiologie moléculaire et adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS, CP32, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
46
|
Costantini D, Bustamante P, Brault-Favrou M, Dell'Omo G. Patterns of mercury exposure and relationships with isotopes and markers of oxidative status in chicks of a Mediterranean seabird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114095. [PMID: 32041034 DOI: 10.1016/j.envpol.2020.114095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The Mediterranean basin is a hotspot of mercury (Hg) contamination owing to intense anthropogenic emissions, volcanic activity and oligotrophic conditions. Little work has been done to assess the sources of Hg exposure for seabirds and, particularly, the physiological consequences of Hg bioaccumulation. In this study, we (i) describe the individual and temporal variation in blood concentration of total Hg (THg) over three breeding seasons, (ii) identify the factors that affect the THg exposure and (iii) determine the individual- and population-level connections between THg and blood-based markers of oxidative status in chicks of Scopoli's shearwaters (Calonectris diomedea) breeding on the island of Linosa in the southern Mediterranean. We carried out the work on chicks near fledging because they are fed with prey captured near the colony, thus their Hg levels reflect local contamination. The concentration of THg in erythrocytes varied from 0.23 to 4.29 μg g-1 dw. Chicks that were fed upon higher trophic level prey (i.e., higher δ15N values) had higher THg levels. Individual variation in THg concentrations was not explained by parental identity, sex nor δ13C values. There was significant variation in THg among chicks born from the same mother in different years. We found significant correlations between THg and markers of oxidative status; however, these correlations were no longer significant when we took into account the annual variation in mean values of all metrics. Males with higher values of body condition index had higher blood THg, while THg and body condition index were not correlated in females. Our data indicate that THg levels were moderate to high if compared to other seabirds. However, there is little evidence for harmful short-term detrimental effects owing to THg exposure.
Collapse
Affiliation(s)
- David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National D'Histoire Naturelle, CNRS, CP32, 57 rue Cuvier, 75005, Paris, France; Ornis italica, Piazza Crati 15, 00199, Rome, Italy.
| | - Paco Bustamante
- Littoral Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | | |
Collapse
|