1
|
Papas W, Aranda-Rodriguez R, Fan X, Kubwabo C, Lee JSL, Fantin E, Zheng ED, Keir JLA, Matschke D, Blais JM, White PA. Occupational Exposure of On-Shift Ottawa Firefighters to Flame Retardants and Polycyclic Aromatic Hydrocarbons. TOXICS 2024; 12:677. [PMID: 39330605 PMCID: PMC11435908 DOI: 10.3390/toxics12090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Firefighters can be exposed to complex mixtures of airborne substances, including hazardous substances released during structural fires. This study employed silicone wristbands (SWBs) as passive samplers to investigate potential exposure to polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs). SWBs were deployed at different areas of four fire stations, in four truck cabins, and at an office control location; they were also donned outside the jackets of 18 firefighters who responded to fire calls. Overall, office areas had significantly lower PAHs than fire station areas. Vehicle bays and truck cabins had significantly higher concentrations of low molecular weight (LMW) PAHs than sleeping and living room areas. For organophosphate ester flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(1-chloro-2-propyl) phosphate (TCPP) were detected in all the samples; 2-ethylhexyl diphenyl phosphate (EHDPP) was more frequently detected in the fire station areas. Triphenyl phosphate (TPP) concentrations were highest in the truck cabin and office areas, and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) was highest in truck cabins. Thirteen of 16 PAHs and nine of 36 OPFRs were detected in all the SWBs worn by firefighters, and tris (2-butoxyethyl) phosphate (TBEP) was the predominant OPFR. Levels of LMW PAHs were significantly lower when firefighters did not enter the fire. LMW PAHs, HMW (high molecular weight) PAHs, and EHDPP were significantly elevated when heavy smoke was reported. This work highlights the potential for occupational exposure to PAHs and flame retardants in some fire station areas; moreover, factors that may influence exposure during fire suppression. Whilst firefighters' occupational exposure to PAHs is likely related to fire suppression and exposure to contaminated gear and trucks, exposure to OPFRs may be more related to their presence in truck interiors and electronics.
Collapse
Affiliation(s)
- William Papas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Janet S L Lee
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Emma Fantin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Elita D Zheng
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
| | - Jennifer L A Keir
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | | | - Jules M Blais
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A0K9, Canada
- Department of Biology, University of Ottawa. Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
- Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Gordon J Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jessica L Levasseur
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Bonner EM, Poutasse CM, Haddock CK, Poston WSC, Jahnke SA, Tidwell LG, Anderson KA. Addressing the need for individual-level exposure monitoring for firefighters using silicone samplers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00700-y. [PMID: 39033252 DOI: 10.1038/s41370-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Firefighters are occupationally exposed to hazardous chemical mixtures. Silicone passive sampling devices capture unique exposures over time with minimal impact to the participant and allow for the analysis of a broad chemical space. OBJECTIVE Silicone dog tags were worn by firefighters while on- and off-duty to measure individual exposures, identify potential occupational exposures, and assess their relation to occupational variables including fire response frequency, rank, and years as a firefighter. METHODS Fifty-six firefighters were recruited from two fire departments with relatively high and low call volumes in the Kansas City metropolitan area to wear two different silicone dog tags as passive samplers while on- and off-duty. Each dog tag was worn for a cumulative 30-day exposure period. Extracts of the dog tags were analyzed with gas chromatography, mass spectrometry methods for 43 flame retardants (FRs), 21 volatile organic compounds (VOCs), 42 polychlorinated biphenyls (PCBs), and 63 polycyclic aromatic hydrocarbons (PAHs). RESULTS Ninety-two total chemicals were detected, with eight chemicals not previously reported in firefighter exposure studies. Based on the magnitude and frequency of increased exposure in on-duty dog tags, relative to paired off-duty dog tags, five PBDEs and sec-butylbenzene were identified as potential occupational exposures; sec-butylbenzene and PBDE 49 have not previously been reported in firefighter exposure studies to the authors' knowledge. Multivariate analyses for these six compounds indicated that firefighter rank, fire response rates, and years in the fire service were poor indicators of increased occupational exposure. The greatest on-duty exposures to PBDEs were found in the low-call volume department among operational firefighters. Dog tags from firefighters at the high-call volume department accounted for 75% of PCB detections; one particular fire response may have contributed to this. Additionally, there was measurable similarity in total chemical exposure profiles between paired on- and off-duty tags for some firefighters. IMPACT This study used personal silicone passive samplers in the configuration of dog tags worn around the neck to quantify firefighter occupational exposure in on-duty samples relative to paired off-duty samples for several chemical categories: flame retardants, VOCs, and PCBs. Five PBDEs and sec-butylbenzene were identified as potential occupational exposures, however their prevalence in on-duty tags was not associated with frequency of fire responses, firefighter rank, or years the firefighter has been in the fire service. Additionally, similarity between chemical exposures in on- and off-duty tags from the same firefighter invites further investigation into individual behaviors influencing occupational and para-occupational exposures.
Collapse
Affiliation(s)
- Emily M Bonner
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | | | - Christopher K Haddock
- Center for Fire, Rescue, and EMS Health Research, National Development and Research Institutes, Inc. (NDRI)-USA, Leawood, KS, USA
| | - Walker S C Poston
- Center for Fire, Rescue, and EMS Health Research, National Development and Research Institutes, Inc. (NDRI)-USA, Leawood, KS, USA
| | - Sara A Jahnke
- Center for Fire, Rescue, and EMS Health Research, National Development and Research Institutes, Inc. (NDRI)-USA, Leawood, KS, USA
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
4
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Bakali U, Baum JLR, Louzado-Feliciano P, Killawala C, Santiago KM, Pauley JL, Dikici E, Schaefer Solle N, Kobetz EN, Bachas LG, Deo SK, Caban-Martinez AJ, Daunert S. Characterization of fire investigators' polyaromatic hydrocarbon exposures using silicone wristbands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116349. [PMID: 38714081 PMCID: PMC11215797 DOI: 10.1016/j.ecoenv.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Exposures to polyaromatic hydrocarbons (PAHs) contribute to cancer in the fire service. Fire investigators are involved in evaluations of post-fire scenes. In the US, it is estimated that there are up to 9000 fire investigators, compared to approximately 1.1 million total firefighting personnel. This exploratory study contributes initial evidence of PAH exposures sustained by this understudied group using worn silicone passive samplers. OBJECTIVES Evaluate PAH exposures sustained by fire investigators at post-fire scenes using worn silicone passive samplers. Assess explanatory factors and health risks of PAH exposure at post-fire scenes. METHODS As part of a cross-sectional study design, silicone wristbands were distributed to 16 North Carolina fire investigators, including eight public, seven private, and one public and private. Wristbands were worn during 46 post-fire scene investigations. Fire investigators completed pre- and post-surveys providing sociodemographic, occupational, and post-fire scene characteristics. Solvent extracts from wristbands were analyzed via gas chromatography-mass spectrometry (GC-MS). Results were used to estimate vapor-phase PAH concentration in the air at post-fire scenes. RESULTS Fire investigations lasted an average of 148 minutes, standard deviation ± 93 minutes. A significant positive correlation (r=0.455, p<.001) was found between investigation duration and PAH concentrations on wristbands. Significantly greater time-normalized PAH exposures (p=0.039) were observed for investigations of newer post-fire scenes compared to older post-fire scenes. Regulatory airborne PAH exposure limits were exceeded in six investigations, based on exposure to estimated vapor-phase PAH concentrations in the air at post-fire scenes. DISCUSSION Higher levels of off-gassing and suspended particulates at younger post-fire scenes may explain greater PAH exposure. Weaker correlations are found between wristband PAH concentration and investigation duration at older post-fire scenes, suggesting reduction of off-gassing PAHs over time. Exceedances of regulatory PAH limits indicate a need for protection against vapor-phase contaminants, especially at more recent post-fire scenes.
Collapse
Affiliation(s)
- Umer Bakali
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeramy L R Baum
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Chemistry, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Paola Louzado-Feliciano
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chitvan Killawala
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Katerina M Santiago
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeffrey L Pauley
- International Association of Arson Investigators, Bowie, MD, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| | - Natasha Schaefer Solle
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Erin N Kobetz
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami (BioNIUM), Miami, FL, USA
| |
Collapse
|
6
|
Park S, Kim HS, Oh HJ, Chung I, Ahn YS, Jeong KS. Assessment of phthalate exposure at a fire site in Korean firefighters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1800-1809. [PMID: 37584337 DOI: 10.1080/09603123.2023.2246388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
To determine phthalate exposure in 32 firefighters, the concentrations of urinary phthalate metabolites, immediately (exposure day) and three weeks (control day) after fire suppression, were compared. Mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-n-butyl phthalate (MBP), mono-n-benzyl phthalate (MBzP), and total phthalates (∑phthalates) levels, and creatinine-adjusted levels of MBP, MBzP, and ∑phthalates were significantly higher on exposure day than on control day. Phthalate concentration was significantly higher in firefighters who performed the fire extinguishing tasks (geometric mean [GM], 149.9 μg/L) than in those who performed other tasks (GM 70.8 μg/L) (p = .012). The GM concentration of firefighters who were active ≤ 50 m from the fire was 119.0 μg/L, and 37.6 μg/L for those who were > 50 m away (p = .012). The GM concentration was significantly different (p = .039) in firefighters with subjective symptoms after fire suppression (151.9 μg/L) compared to those without symptoms (81.6 μg/L). This study showed that firefighters were exposed to phthalate.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Total Healthcare Centre, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Industrial Health and Work Environment Research Institute, Korean Industrial Health Association, Seoul, Republic of Korea
| | - Hyun-Jeong Oh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Insung Chung
- Department of Occupational and Environmental Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine, Wonju College of medicine, Yonsei University, Wonju, Republic of Korea
| | - Kyoung Sook Jeong
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| |
Collapse
|
7
|
Teixeira J, Bessa MJ, Delerue-Matos C, Sarmento B, Santos-Silva A, Rodrigues F, Oliveira M. Firefighters' personal exposure to gaseous PAHs during controlled forest fires: A case study with estimation of respiratory health risks and in vitro toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168364. [PMID: 37963534 DOI: 10.1016/j.scitotenv.2023.168364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/02/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
Firefighters are daily exposed to adverse health-hazardous pollutants. Polycyclic aromatic hydrocarbons (PAHs), well known endocrine disruptors with carcinogenic, mutagenic, and teratogenic properties, are among the most relevant pollutants. The characterization of firefighters' occupational exposure to airborne PAHs remains limited; information is scarce for European firefighters. Also, the in vitro assessment of firefighters' respiratory health risks is inexistent. To reply to these scientific gaps, this work characterizes the levels of gaseous PAH in firefighters' personal air during regular working activities at controlled forest fires and at fire stations (control group). Breathable levels were 2.2-26.7 times higher during fire events than in the control group (2.63-32.63 μg/m3versus 1.22 μg/m3, p < 0.001); the available occupational guidelines (100 and 200 μg/m3 defined by the US National Institute for Occupational Safety and Health and the North American Occupational Safety and Health Administration, respectively) were not exceeded. Concentrations of (possible/probable) carcinogenic PAHs were 1.9-15.3 times superior during firefighting (p < 0.001). Increased values of total benzo(a)pyrene equivalents (p = 0.101), dose rates (p < 0.001), and carcinogenic risks (p = 0.063) were estimated in firefighters during controlled fires comparatively with the control group. Firefighters' breathable gaseous phase collected during fire events contributed to induce a significant viability decrease (<70 %; p < 0.05) in A549 and Calu-3 cell lines. The principal component analysis (PCA) allowed the differentiation between firefighters participating in controlled fire events from the control group. PCA analysis demonstrated the potential of PAHs to distinguish different sources of firefighters´ occupational exposure and of combining estimated health risk parameters with in vitro toxicities determined with human-breathable air collected during real-life scenarios. Overall, the participation in controlled fire events contributes to the respiratory health burden of firefighting forces. However, more studies are needed to corroborate these preliminary findings, explore the respiratory toxicological mechanisms, and support the implementation of preventive actions and mitigation strategies to pursue firefighters' health.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, 4585-116 Gandra, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
8
|
Keir JLA, Papas W, Wawrzynczak A, Aranda-Rodriguez R, Blais JM, White PA. Use of silicone wristbands to measure firefighters' exposures to polycyclic aromatic hydrocarbons (PAHs) during live fire training. ENVIRONMENTAL RESEARCH 2023; 239:117306. [PMID: 37797669 DOI: 10.1016/j.envres.2023.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Firefighters experience exposures to carcinogenic and mutagenic substances, including polycyclic aromatic hydrocarbons (PAHs). Silicone wristbands (SWBs) have been used as passive samplers to assess firefighters' exposures over the course of a shift but their utility in measuring short term exposures, source of exposure, and correlations with other measurements of exposure have not yet been investigated. In this study, SWBs were used to measure the concentrations of 16 priority PAHs inside and outside of firefighters' personal protective equipment (PPE) while firefighting. SWBs were placed on the wrist and jacket of 20 firefighters conducting live fire training. Correlations were made with matching data from a sister project that measured urinary concentrations of PAH metabolites and PAH concentrations from personal air samples from the same participants. Naphthalene, acenaphthylene and phenanthrene had the highest geometric mean concentrations in both jacket and wrist SWB, with 1040, 320, 180 ng/g SWB for jacket and 55.0, 4.9, and 6.0 ng/g SWB for wrist, respectively. Ratios of concentrations between the jacket and wrist SWBs were calculated as worker protection factors (WPFs) and averaged 40.1 for total PAHs and ranged from 2.8 to 214 for individual PAHs, similar to previous studies. Several significant correlations were observed between PAHs in jacket SWBs and air samples (e.g., total and low molecular weight PAHs, r = 0.55 and 0.59, p < 0.05, respectively). A few correlations were found between PAHs from SWBs worn on the wrist and jacket, and urinary concentrations of PAH metabolites and PAH concentrations in air samples. The ability of the SWBs to accurately capture exposures to various PAHs was likely influenced by short sampling time, high temperatures, and high turbulence. Future work should further examine the limitations of SWBs for PAH exposures in firefighting, and other extreme environments.
Collapse
Affiliation(s)
- Jennifer L A Keir
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - William Papas
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - Adam Wawrzynczak
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada.
| | - Jules M Blais
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
| | - Paul A White
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
9
|
Hegedus C, Andronie L, Uiuiu P, Jurco E, Lazar EA, Popescu S. Pets, Genuine Tools of Environmental Pollutant Detection. Animals (Basel) 2023; 13:2923. [PMID: 37760323 PMCID: PMC10525180 DOI: 10.3390/ani13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human-pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today's society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use.
Collapse
Affiliation(s)
- Cristina Hegedus
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Luisa Andronie
- Department of Biophysics, Meteorology and Climatology, Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eugen Jurco
- Department of Technological Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eva Andrea Lazar
- Association for the Welfare of Horses, 725700 Vatra Dornei, Romania;
| | - Silvana Popescu
- Department of Animal Hygiene and Welfare, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Bonner EM, Horn GP, Smith DL, Kerber S, Fent KW, Tidwell LG, Scott RP, Adams KT, Anderson KA. Silicone passive sampling used to identify novel dermal chemical exposures of firefighters and assess PPE innovations. Int J Hyg Environ Health 2023; 248:114095. [PMID: 36508961 PMCID: PMC9930175 DOI: 10.1016/j.ijheh.2022.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
A plethora of chemicals are released into the air during combustion events, including a class of compounds called polycyclic aromatic hydrocarbons (PAHs). PAHs have been implicated in increased risk of cancer and cardiovascular disease, both of which are disease endpoints of concern in structural firefighters. Current commercially available personal protective equipment (PPE) typically worn by structural firefighters during fire responses have gaps in interfaces between the ensemble elements (e.g., hood and jacket) that allow for ingress of contaminants and dermal exposure. This pilot study aims to use silicone passive sampling to assess improvements in dermal protection afforded by a novel configuration of PPE, which incorporates a one-piece liner to eliminate gaps in two critical interfaces between pieces of gear. The study compared protection against parent and alkylated PAHs between the one-piece liner PPE and the standard configuration of PPE with traditional firefighting jacket and pants. Mannequins (n = 16) dressed in the PPE ensembles were placed in a Fireground Exposure Simulator for 10 min, and exposed to smoke from a combusting couch. Silicone passive samplers were placed underneath PPE at vulnerable locations near interfaces in standard PPE, and in the chamber air, to measure PAHs and calculate the dermal protection provided by both types of PPE. Silicone passive sampling methodology and analyses using gas chromatography with mass-spectrometry proved to be well-suited for this intervention study, allowing for the calculation and comparison of worker protection factors for 51 detected PAHs. Paired comparisons of the two PPE configurations found greater sum 2-3 ring PAH exposure underneath the standard PPE than the intervention PPE at the neck and chest, and at the chest for 4-7 ring PAHs (respective p-values: 0.00113, 0.0145, and 0.0196). Mean worker protection factors of the intervention PPE were also greater than the standard PPE for 98% of PAHs at the neck and chest. Notably, the intervention PPE showed more than 30 times the protection compared to the standard PPE against two highly carcinogenic PAHs, dibenzo[a,l]pyrene and benzo[c]fluorene. Nine of the detected PAHs in this study have not been previously reported in fireground exposure studies, and 26 other chemicals (not PAHs) were detected using a large chemical screening method on a subset of the silicone samplers. Silicone passive sampling appears to be an effective means for measuring dermal exposure reduction to fireground smoke, providing evidence in this study that reducing gaps in PPE interfaces could be further pursued as an intervention to reduce dermal exposure to PAHs, among other chemicals.
Collapse
Affiliation(s)
- Emily M Bonner
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural & Life Sciences Building, Corvallis, OR, 97331, USA.
| | - Gavin P Horn
- Fire Safety Research Institute, UL Research Institutes, Columbia, MD, 21045, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, 61820, USA.
| | - Denise L Smith
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N Broadway St, Saratoga Springs, NY, 12866, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, 61820, USA.
| | - Steve Kerber
- Fire Safety Research Institute, UL Research Institutes, Columbia, MD, 21045, USA.
| | - Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety & Health (NIOSH), Centers for Disease Control and Prevention (CDC), 1090 Tusculum Ave, Cincinnati, OH, 45226, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural & Life Sciences Building, Corvallis, OR, 97331, USA.
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural & Life Sciences Building, Corvallis, OR, 97331, USA.
| | - Kaley T Adams
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural & Life Sciences Building, Corvallis, OR, 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural & Life Sciences Building, Corvallis, OR, 97331, USA.
| |
Collapse
|
11
|
Okeme JO, Koelmel JP, Johnson E, Lin EZ, Gao D, Pollitt KJG. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Curr Environ Health Rep 2023:10.1007/s40572-023-00392-w. [PMID: 36821032 DOI: 10.1007/s40572-023-00392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
Collapse
Affiliation(s)
- Joseph O Okeme
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Emily Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Dong Gao
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Samon SM, Rohlman D, Tidwell L, Hoffman PD, Oluyomi AO, Walker C, Bondy M, Anderson KA. Determinants of exposure to endocrine disruptors following hurricane Harvey. ENVIRONMENTAL RESEARCH 2023; 217:114867. [PMID: 36423664 PMCID: PMC9884094 DOI: 10.1016/j.envres.2022.114867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Hurricane Harvey was a category four storm that induced catastrophic flooding in the Houston metropolitan area. Following the hurricane there was increased concern regarding chemical exposures due to damage caused by flood waters and emergency excess emissions from industrial facilities. This study utilized personal passive samplers in the form of silicone wristbands in Houston, TX to both assess chemical exposure to endocrine disrupting chemicals (EDCs) immediately after the hurricane and determine participant characteristics associated with higher concentrations of exposure. Participants from the Houston-3H cohort (n = 172) wore a wristband for seven days and completed a questionnaire to determine various flood-related and demographic variables. Bivariate and multivariate analysis indicated that living in an area with a high Area Deprivation Index (ADI) (indicative of low socioeconomic status), identifying as Black/African American or Latino, and living in the Houston neighborhoods of Baytown and East Houston were associated with increased exposure to EDCs. These results provide evidence of racial/ethnic and socioeconomic injustices in exposure to EDCs in the Houston Metropolitan Area. Since the multiple regression models conducted did not fully explain exposure (0.047 < R2 < 0.34), more research is needed on the direct sources of EDCs within this area to create effective exposure mitigation strategies.
Collapse
Affiliation(s)
- S M Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| | - D Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - L Tidwell
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - P D Hoffman
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - A O Oluyomi
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - C Walker
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - M Bondy
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - K A Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
13
|
Samon SM, Hammel SC, Stapleton HM, Anderson KA. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. ENVIRONMENT INTERNATIONAL 2022; 169:107339. [PMID: 36116363 PMCID: PMC9713950 DOI: 10.1016/j.envint.2022.107339] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Personal chemical exposure assessment is necessary to determine the frequency and magnitude of individual chemical exposures, especially since chemicals present in everyday environments may lead to adverse health outcomes. In the last decade, silicone wristbands have emerged as a new chemical exposure assessment tool and have since been utilized for assessing personal exposure to a wide range of chemicals in a variety of populations. Silicone wristbands can be powerful tools for quantifying personal exposure to chemical mixtures in a single sample, associating exposure with health outcomes, and potentially overcoming some of the challenges associated with quantifying the chemical exposome. However, as their popularity grows, it is crucial that they are used in the appropriate context and within the limits of the technology. This review serves as a guide for researchers interested in utilizing silicone wristbands as a personal exposure assessment tool. Along with briefly discussing the passive sampling theory behind silicone wristbands, this review performs an in-depth comparison of wristbands to other common exposure assessment tools, including biomarkers of exposure measured in biospecimens, and evaluates their utility in exposure assessments and epidemiological studies. Finally, this review includes recommendations for utilizing silicone wristbands to evaluate personal chemical exposure and provides suggestions on what research is needed to recognize silicone wristbands as a premier chemical exposure assessment tool.
Collapse
Affiliation(s)
- Samantha M Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Stephanie C Hammel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Kim A Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
14
|
Horn GP, Fent KW, Kerber S, Smith DL. Hierarchy of contamination control in the fire service: Review of exposure control options to reduce cancer risk. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:538-557. [PMID: 35853136 PMCID: PMC9928012 DOI: 10.1080/15459624.2022.2100406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The international fire service community is actively engaged in a wide range of activities focused on development, testing, and implementation of effective approaches to reduce exposure to contaminants and the related cancer risk. However, these activities are often viewed independent of each other and in the absence of the larger overall effort of occupational health risk mitigation. This narrative review synthesizes the current research on fire service contamination control in the context of the National Institute for Occupational Safety and Health (NIOSH) Hierarchy of Controls, a framework that supports decision making around implementing feasible and effective control solutions in occupational settings. Using this approach, we identify evidence-based measures that have been investigated and that can be implemented to protect firefighters during an emergency response, in the fire apparatus and at the fire station, and identify several knowledge gaps that remain. While a great deal of research and development has been focused on improving personal protective equipment for the various risks faced by the fire service, these measures are considered less effective. Administrative and engineering controls that can be used during and after the firefight have also received increased research interest in recent years. However, less research and development have been focused on higher level control measures such as engineering, substitution, and elimination, which may be the most effective, but are challenging to implement. A comprehensive approach that considers each level of control and how it can be implemented, and that is mindful of the need to balance contamination risk reduction against the fire service mission to save lives and protect property, is likely to be the most effective.
Collapse
Affiliation(s)
- Gavin P Horn
- Fire Safety Research Institute, UL Research Institutes, Columbia, Maryland
- Illinois Fire Service Institute, Champaign, Illinois
| | - Kenneth W Fent
- National Institute for Occupational Safety & Health, Cincinnati, Ohio
| | - Steve Kerber
- Fire Safety Research Institute, UL Research Institutes, Columbia, Maryland
| | - Denise L Smith
- Illinois Fire Service Institute, Champaign, Illinois
- Skidmore College, Saratoga Springs, New York
| |
Collapse
|
15
|
Levasseur JL, Hoffman K, Herkert NJ, Cooper E, Hay D, Stapleton HM. Characterizing firefighter's exposure to over 130 SVOCs using silicone wristbands: A pilot study comparing on-duty and off-duty exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155237. [PMID: 35447169 PMCID: PMC9728008 DOI: 10.1016/j.scitotenv.2022.155237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 05/26/2023]
Abstract
Firefighters are occupationally exposed to an array of hazardous chemicals, and these exposures have been linked to the higher rates of some cancer in firefighters. However, additional research that characterizes firefighters' exposure is needed to fully elucidate the impacts on health risks. In this pilot study, we used silicone wristbands to quantify off-duty and on-duty chemical exposures experienced by 20 firefighters in Durham, North Carolina. By using each firefighter's off-duty wristband to represent individual baseline exposures, we assessed occupation-related exposures (i.e. on-duty exposures). We also investigated the influence of responding to a fire event while on-duty. In total, 134 chemicals were quantified using both GC-MS and LC-MS/MS targeted methods. Seventy-one chemicals were detected in at least 50% of all silicone wristbands, including 7 PFAS, which to our knowledge, have not been reported in wristbands previously. Of these, phthalates were generally measured at the highest concentrations, followed by brominated flame retardants (BFRs) and organophosphate esters (OPEs). PFAS were measured at lower concentrations overall, but firefighter PFOS exposures while on-duty and responding to fires were 2.5 times higher than off-duty exposures. Exposure to polycyclic aromatic hydrocarbons (PAH), BFRs, and some OPEs were occupationally associated, with firefighters experiencing 0.5 to 8.5 times higher exposure while on-duty as compared to off-duty. PAH exposures were also higher for firefighters who respond to a fire than those who did not while on-duty. Additional research with a larger population of firefighters that builds upon this pilot investigation may further pinpoint exposure sources that may contribute to firefighters' risk for cancer, such as those from firefighter gear or directly from fires. This research demonstrates the utility of using silicone wristbands to quantify occupational exposure in firefighters and the ability to disentangle exposures that may be specific to fire events as opposed to other sources that firefighters might experience.
Collapse
Affiliation(s)
| | - Kate Hoffman
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Nicholas J Herkert
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Ellen Cooper
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Duncan Hay
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | | |
Collapse
|
16
|
Kahremanoğlu K, Tosun H, Eroğlu AE, Boyaci E. Recent progress in wearable extractive sampling technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Samon SM, Rohlman D, Tidwell LG, Hoffman PD, Oluyomi AO, Anderson KA. Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6670. [PMID: 35682254 PMCID: PMC9180596 DOI: 10.3390/ijerph19116670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Hurricane Harvey was associated with flood-related damage to chemical plants and oil refineries, and the flooding of hazardous waste sites, including 13 Superfund sites. As clean-up efforts began, concerns were raised regarding the human health impact of possible increased chemical exposure resulting from the hurricane and subsequent flooding. Personal sampling devices in the form of silicone wristbands were deployed to a longitudinal panel of individuals (n = 99) within 45 days of the hurricane and again one year later in the Houston metropolitan area. Using gas chromatography−mass spectroscopy, each wristband was screened for 1500 chemicals and analyzed for 63 polycyclic aromatic hydrocarbons (PAHs). Chemical exposure levels found on the wristbands were generally higher post-Hurricane Harvey. In the 1500 screen, 188 chemicals were detected, 29 were detected in at least 30% of the study population, and of those, 79% (n = 23) were found in significantly higher concentrations (p < 0.05) post-Hurricane Harvey. Similarly, in PAH analysis, 51 chemicals were detected, 31 were detected in at least 30% of the study population, and 39% (n = 12) were found at statistically higher concentrations (p < 0.05) post-Hurricane Harvey. This study indicates that there were increased levels of chemical exposure after Hurricane Harvey in the Houston metropolitan area.
Collapse
Affiliation(s)
- Samantha M. Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lane G. Tidwell
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Peter D. Hoffman
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Abiodun O. Oluyomi
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kim A. Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| |
Collapse
|
18
|
Unconventional and user-friendly sampling techniques of semi-volatile organic compounds present in an indoor environment: An approach to human exposure assessment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Dixon HM, Bramer LM, Scott RP, Calero L, Holmes D, Gibson EA, Cavalier HM, Rohlman D, Miller RL, Calafat AM, Kincl L, Waters KM, Herbstman JB, Anderson KA. Evaluating predictive relationships between wristbands and urine for assessment of personal PAH exposure. ENVIRONMENT INTERNATIONAL 2022; 163:107226. [PMID: 35405507 PMCID: PMC8978533 DOI: 10.1016/j.envint.2022.107226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
During events like the COVID-19 pandemic or a disaster, researchers may need to switch from collecting biological samples to personal exposure samplers that are easy and safe to transport and wear, such as silicone wristbands. Previous studies have demonstrated significant correlations between urine biomarker concentrations and chemical levels in wristbands. We build upon those studies and use a novel combination of descriptive statistics and supervised statistical learning to evaluate the relationship between polycyclic aromatic hydrocarbon (PAH) concentrations in silicone wristbands and hydroxy-PAH (OH-PAH) concentrations in urine. In New York City, 109 participants in a longitudinal birth cohort wore one wristband for 48 h and provided a spot urine sample at the end of the 48-hour period during their third trimester of pregnancy. We compared four PAHs with the corresponding seven OH-PAHs using descriptive statistics, a linear regression model, and a linear discriminant analysis model. Five of the seven PAH and OH-PAH pairs had significant correlations (Pearson's r = 0.35-0.64, p ≤ 0.003) and significant chi-square tests of independence for exposure categories (p ≤ 0.009). For these five comparisons, the observed PAH or OH-PAH concentration could predict the other concentration within a factor of 1.47 for 50-80% of the measurements (depending on the pair). Prediction accuracies for high exposure categories were at least 1.5 times higher compared to accuracies based on random chance. These results demonstrate that wristbands and urine provide similar PAH exposure assessment information, which is critical for environmental health researchers looking for the flexibility to switch between biological sample and wristband collection.
Collapse
Affiliation(s)
- Holly M Dixon
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lisa M Bramer
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Richard P Scott
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA
| | - Lehyla Calero
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Darrell Holmes
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Elizabeth A Gibson
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Haleigh M Cavalier
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Diana Rohlman
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Rachel L Miller
- Icahn School of Medicine at Mount Sinai, Division of Clinical Immunology, New York City, NY, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Laurel Kincl
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Katrina M Waters
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA; Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, USA
| | - Julie B Herbstman
- Columbia University, Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, New York City, NY, USA
| | - Kim A Anderson
- Oregon State University, Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Corvallis, OR, USA.
| |
Collapse
|
20
|
Hamzai L, Lopez Galvez N, Hoh E, Dodder NG, Matt GE, Quintana PJ. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:244-258. [PMID: 34302044 DOI: 10.1038/s41370-021-00359-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure assessment is critical for connecting environmental pollutants to health outcomes and evaluating impacts of interventions or environmental policies. Silicone wristbands (SWBs) show promise for multi-pollutant exposure assessment, including polycyclic aromatic hydrocarbons (PAHs), a ubiquitous class of toxic environmental pollutants. OBJECTIVE To review published studies where SWBs were worn on the wrist for human environmental exposure assessments and evaluate the ability of SWBs to capture personal exposures, identify gaps which need to be addressed to implement this tool, and make recommendations for future studies to advance the field of exposure science through utilization of SWBs. METHODS We performed a systematic search and a cited reference search in Scopus and extracted key study descriptions. RESULTS Thirty-nine unique studies were identified, with analytes including PAHs, pesticides, flame retardants, and tobacco products. SWBs were shipped under ambient conditions without apparent analyte loss, indicating utility for global exposure and health studies. Nineteen articles detected a total of 60 PAHs in at least one SWB. Correlations with other concurrent biological and air measurements indicate the SWB captures exposure to flame retardants, tobacco products, and PAHs. SIGNIFICANCE SWBs show promise as a simple-to-deploy tool to estimate environmental and occupational exposures to chemical mixtures, including PAHs.
Collapse
Affiliation(s)
- Laila Hamzai
- School of Public Health, San Diego State University, San Diego, CA, USA
| | | | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego, CA, USA
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
21
|
O'Connell SG, Anderson KA, Epstein MI. Determining chemical air equivalency using silicone personal monitors. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:268-279. [PMID: 33953340 PMCID: PMC8920887 DOI: 10.1038/s41370-021-00332-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Silicone personal samplers are increasingly being used to measure chemical exposures, but many of these studies do not attempt to calculate environmental concentrations. OBJECTIVE Using measurements of silicone wristband uptake of organic chemicals from atmospheric exposure, create log Ksa and ke predictive models based on empirical data to help develop air equivalency calculations for both volatile and semi-volatile organic compounds. METHODS An atmospheric vapor generator and a custom exposure chamber were used to measure the uptake of organic chemicals into silicone wristbands under simulated indoor conditions. Log Ksa models were evaluated using repeated k-fold cross-validation. Air equivalency was compared between best-performing models. RESULTS Log Ksa and log ke estimates calculated from uptake data were used to build predictive models from boiling point (BP) and other parameters (all models: R2 = 0.70-0.94). The log Ksa models were combined with published data and refined to create comprehensive and effective predictive models (R2: 0.95-0.97). Final estimates of air equivalency using novel BP models correlated well over an example dataset (Spearman r = 0.984) across 5-orders of magnitude (<0.05 to >5000 ng/L). SIGNIFICANCE Data from silicone samplers can be translated into air equivalent concentrations that better characterize environmental concentrations associated with personal exposures and allow direct comparisons to regulatory levels.
Collapse
Affiliation(s)
| | - Kim A Anderson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
22
|
Stephan T, Burgess SM, Cheng H, Danko CG, Gill CA, Jarvis ED, Koepfli KP, Koltes JE, Lyons E, Ronald P, Ryder OA, Schriml LM, Soltis P, VandeWoude S, Zhou H, Ostrander EA, Karlsson EK. Darwinian genomics and diversity in the tree of life. Proc Natl Acad Sci U S A 2022; 119:e2115644119. [PMID: 35042807 PMCID: PMC8795533 DOI: 10.1073/pnas.2115644119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Collapse
Affiliation(s)
- Taylorlyn Stephan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Shawn M Burgess
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Hans Cheng
- Avian Disease and Oncology Laboratory, Agricultural Research Service, US Department of Agriculture, East Lansing, MI 48823
| | - Charles G Danko
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850
| | - Clare A Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Eric Lyons
- School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Grass Genetics, Joint Bioenergy Institute, Emeryville, CA 94608
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, University of California San Diego, La Jolla, CA 92093
| | - Lynn M Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Sue VandeWoude
- Department of Micro-, Immuno-, and Pathology, Colorado State University, Fort Collins, CO 80532
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655;
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
23
|
Wise CF, Hammel SC, Herkert NJ, Ospina M, Calafat AM, Breen M, Stapleton HM. Comparative Assessment of Pesticide Exposures in Domestic Dogs and Their Owners Using Silicone Passive Samplers and Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1149-1161. [PMID: 34964617 PMCID: PMC10150270 DOI: 10.1021/acs.est.1c06819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure. Due to increased interest in using companion animals as sentinels for human environmental health studies, we conducted a comparative pesticide exposure assessment in 30 people and their pet dogs to determine how well silicone wristbands and silicone dog tags can predict urinary pesticide biomarkers of exposure. Using targeted gas chromatography-mass spectrometry analyses, we quantified eight pesticides in silicone samplers and used a suspect screening approach for additional pesticides. Urine samples were analyzed for 15 pesticide metabolite biomarkers. Several pesticides were detected in >70% of silicone samplers including permethrin, N,N-diethyl-meta-toluamide (DEET), and chlorpyrifos. Significant and positive correlations were observed between silicone sampler levels of permethrin and DEET with their corresponding urinary metabolites (rs = 0.50-0.96, p < 0.05) in both species. Significantly higher levels of fipronil were observed in silicone samplers from participants who reported using flea and tick products containing fipronil on their dog. This study suggests that people and their dogs have similar pesticide exposures in a home environment.
Collapse
Affiliation(s)
- Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Matthew Breen
- Duke Cancer Institute, Durham, North Carolina 27710, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
24
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
25
|
Poutasse CM, Haddock CK, Poston WSC, Jahnke SA, Tidwell LG, Bonner EM, Hoffman PD, Anderson KA. Firefighter exposures to potential endocrine disrupting chemicals measured by military-style silicone dog tags. ENVIRONMENT INTERNATIONAL 2022; 158:106914. [PMID: 34649051 PMCID: PMC8757287 DOI: 10.1016/j.envint.2021.106914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 05/04/2023]
Abstract
Studies suggest that exposure to potential endocrine disrupting chemicals (pEDCs) may contribute to adverse health outcomes, but pEDC exposures among firefighters have not been fully characterized. Previously, we demonstrated the military-style silicone dog tag as a personal passive sampling device for assessing polycyclic aromatic hydrocarbon exposures among structural firefighters. This follow-up analysis examined the pEDC exposures based on department call volume, duty shift, and questionnaire variables. Structural firefighters (n = 56) were from one high and one low fire call volume department (Kansas City, MO metropolitan area) and wore separate dog tags while on- and off-duty (ndogtags = 110). The targeted 1530 analyte semi-quantitative screening method was conducted using gas chromatography mass spectrometry (npEDCs = 433). A total of 47 pEDCs were detected, and several less-frequently-detected pEDCs (<75%) were more commonly detected in off- compared to on-duty dog tags (conditional logistic regression). Of the 11 phthalates and fragrances detected most frequently (>75%), off-duty pEDC concentrations were strongly correlated (r = 0.31-0.82, p < 0.05), suggesting co-applications of phthalates and fragrances in consumer products. Questionnaire variables of "regular use of conventional cleaning products" and "fireplace in the home" were associated with select elevated pEDC concentrations by duty shift (paired t-test). This suggested researchers should include detailed questions about consumer product use and home environment when examining personal pEDC exposures.
Collapse
Affiliation(s)
- Carolyn M Poutasse
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher K Haddock
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Walker S C Poston
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Sara A Jahnke
- Center for Fire, Rescue, and EMS Health Research, NDRI-USA, Leawood, KS 66224, United States
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Emily M Bonner
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Peter D Hoffman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
26
|
Horn GP, Madrzykowski D, Neumann DL, Mayer AC, Fent KW. Airborne contamination during post-fire investigations: Hot, warm and cold scenes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:35-49. [PMID: 34762010 PMCID: PMC10074475 DOI: 10.1080/15459624.2021.2002343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fire investigators may be occupationally exposed to many of the same compounds as the more widely studied fire suppression members of the fire service but are often tasked with working in a given exposure for longer periods ranging from hours to multiple days and may do so with limited personal protective equipment. In this study, we characterize the area air concentrations of contaminants during post-fire investigation of controlled residential fires with furnishings common to current bedroom, kitchen and living room fires in the United States. Area air sampling was conducted during different investigation phases including when investigations might be conducted immediately after fire suppression and extended out to 5 days after the fire. Airborne particulate over a wide range of dimensions, including sub-micron particles, were elevated to potentially unhealthy levels (based on air quality index) when averaged over a 60 min investigation period shortly after fire suppression with median PM2.5 levels over 100 µg/m3 (range 16-498 µg/m3) and median peak transient concentrations of 1,090 µg/m3 (range 200-23,700 µg/m3) during drywall removal or shoveling activities. Additionally, airborne aldehyde concentrations were elevated compared to volatile organic compounds with peak values of formaldehyde exceeding NIOSH ceiling limits during the earliest investigation periods (median 356 µg/m3, range: 140-775 µg/m3) and occasionally 1 day post-fire when the structure was boarded up before subsequent investigation activities. These results highlight the need to protect investigators' airways from particulates when fire investigation activities are conducted as well as during post-fire reconstruction activities. Additionally, vapor protection from formaldehyde should be strongly considered at least through investigations occurring 3 days after the fire and personal formaldehyde air monitoring is recommended during investigations.
Collapse
Affiliation(s)
- Gavin P. Horn
- Fire Safety Research Institute, Underwriters Laboratories Inc.; Columbia, MD
| | - Daniel Madrzykowski
- Fire Safety Research Institute, Underwriters Laboratories Inc.; Columbia, MD
| | | | | | - Kenneth W. Fent
- National Institute for Occupational Safety & Health; Cincinnati, OH
| |
Collapse
|
27
|
Bakali U, Baum JLR, Killawala C, Kobetz EN, Solle NS, Deo SK, Caban-Martinez AJ, Bachas LG, Daunert S. Mapping carcinogen exposure across urban fire incident response arenas using passive silicone-based samplers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112929. [PMID: 34768049 DOI: 10.1016/j.ecoenv.2021.112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Carcinogens are emitted in significant quantities at fire scenes and are a major contributor in the increased cancer risk observed in firefighters when compared to the general population. A knowledge gap exists in the current understanding of the distribution of these toxic compounds within a localized fire incident response arena. Here, we employ stationary silicone-based passive samplers at controlled live fire trainings to evaluate the deposition behavior of polyaromatic hydrocarbons (PAHs) emitted by fires. Our findings indicate significantly greater total PAH exposure in fires fueled by biomass and wood compared to fires burning cleaner fuels, such as propane. A 22% increase in total PAH deposition and a 68% increase in high molecular weight PAH deposition was recorded for biomass fueled fires compared to propane fueled fires. Furthermore, we observe that heavier molecular weight PAHs exhibit a pronounced deposition front within a certain radius of the hot zone, whereas low molecular weight PAHs are more uniformly distributed throughout the area. These findings highlight that the warm zones and cold zones of fire situations yield elevated levels of carcinogen exposure to first responders within them. We anticipate that these findings will help inform decisions made by emergency personnel when evaluating risk for the hot zone, warm zone, and cold zone of urban fires helping ease the carcinogenic risk experienced.
Collapse
Affiliation(s)
- Umer Bakali
- Department of Biochemistry and Molecular Biology University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jeramy L R Baum
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Chitvan Killawala
- Department of Biochemistry and Molecular Biology University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Erin N Kobetz
- Public Health Sciences and Sylvester Comprehensive Cancer Center, USA; Medicine and Sylvester Comprehensive Cancer Center, USA; Sylvester Comprehensive Cancer Center, USA
| | - Natasha Schaefer Solle
- Medicine and Sylvester Comprehensive Cancer Center, USA; Sylvester Comprehensive Cancer Center, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology University of Miami, Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, USA
| | - Alberto J Caban-Martinez
- Public Health Sciences and Sylvester Comprehensive Cancer Center, USA; Sylvester Comprehensive Cancer Center, USA
| | | | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology University of Miami, Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, USA.
| |
Collapse
|
28
|
Ekpe OD, Sim W, Choi S, Choo G, Oh JE. Assessment of Exposure of Korean Firefighters to Polybrominated Diphenyl Ethers and Polycyclic Aromatic Hydrocarbons via Their Measurement in Serum and Polycyclic Aromatic Hydrocarbon Metabolites in Urine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14015-14025. [PMID: 34435767 DOI: 10.1021/acs.est.1c02554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study investigated the occupational exposure of Korean firefighters to a suite of combustion-related pollutants. Exposure to polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) was assessed by measurement of their levels in serum and metabolites in urine (i.e., monohydroxylated PAHs, OH-PAHs). The mean level of ∑PBDEs in the serum of firefighters (17.1 ng/g lipid weight (lw)) was significantly higher than that of the general population (1.39 ng/g lw) (Mann-Whitney U Test, p < 0.05), which is similar to the ∑PAH levels (1286 ng/g lw for firefighters and 1016 ng/g lw for the general population). Individual OH-PAH levels showed 2.1- to 4.2-fold increases in postfire urine samples compared to the control urine samples, with the mean ∑OH-PAHs being significantly higher in postfire urine samples (22,658 ng/g creatinine) than in the control urine samples (10,253 ng/g creatinine) (Mann-Whitney U test, p < 0.05). It was found that ∑PBDEs correlated with firefighters' length of service and years dedicated to on-site dispatch, while ∑OH-PAHs was strongly associated with firefighters' exposure duration, age, length of service, and years dedicated to on-site dispatch. Indeed, the results of the present study indicate that Korean firefighters are prone to elevated risk of exposure to toxic combustion-related pollutants compared with the general population.
Collapse
Affiliation(s)
- Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
- National Fishery Products Quality Management Service, Busan 51140, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
29
|
Chang Y, Rager JE, Tilton SC. Linking Coregulated Gene Modules with Polycyclic Aromatic Hydrocarbon-Related Cancer Risk in the 3D Human Bronchial Epithelium. Chem Res Toxicol 2021; 34:1445-1455. [PMID: 34048650 PMCID: PMC8560124 DOI: 10.1021/acs.chemrestox.0c00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) often occurs as complex chemical mixtures, which are linked to numerous adverse health outcomes in humans, with cancer as the greatest concern. The cancer risk associated with PAH exposures is commonly evaluated using the relative potency factor (RPF) approach, which estimates PAH mixture carcinogenic potential based on the sum of relative potency estimates of individual PAHs, compared to benzo[a]pyrene (BAP), a reference carcinogen. The present study evaluates molecular mechanisms related to PAH cancer risk through integration of transcriptomic and bioinformatic approaches in a 3D human bronchial epithelial cell model. Genes with significant differential expression from human bronchial epithelium exposed to PAHs were analyzed using a weighted gene coexpression network analysis (WGCNA) two-tiered approach: first to identify gene sets comodulated to RPF and second to link genes to a more comprehensive list of regulatory values, including inhalation-specific risk values. Over 3000 genes associated with processes of cell cycle regulation, inflammation, DNA damage, and cell adhesion processes were found to be comodulated with increasing RPF with pathways for cell cycle S phase and cytoskeleton actin identified as the most significantly enriched biological networks correlated to RPF. In addition, comodulated genes were linked to additional cancer-relevant risk values, including inhalation unit risks, oral cancer slope factors, and cancer hazard classifications from the World Health Organization's International Agency for Research on Cancer (IARC). These gene sets represent potential biomarkers that could be used to evaluate cancer risk associated with PAH mixtures. Among the values tested, RPF values and IARC categorizations shared the most similar responses in positively and negatively correlated gene modules. Together, we demonstrated a novel manner of integrating gene sets with chemical toxicity equivalence estimates through WGCNA to understand potential mechanisms.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, and Curriculum in Toxicology, The University of North Carolina, Chapel Hill, NC, United States
| | - Susan C. Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| |
Collapse
|