1
|
Peng SY, Yang YD, Tian R, Lu N. Critical new insights into the interactions of hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) with albumin at molecular and cellular levels. J Environ Sci (China) 2025; 149:88-98. [PMID: 39181681 DOI: 10.1016/j.jes.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 08/27/2024]
Abstract
A key characteristic to be elucidated, to address the harmful health risks of environmental perfluorinated alkyl substances (PFAS), is their binding modes to serum albumin, the most abundant protein in blood. Hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) is a new industrial replacement for the widespread linear long-chain PFAS. However, the detailed interaction of new-generation short-chain PFAS with albumin is still lacking. Herein, the binding characteristics of bovine serum albumin (BSA) to GenX were explored at the molecular and cellular levels. It was found that this branched short-chain GenX could bind to BSA with affinity lower than that of legacy linear long-chain perfluorooctanoic acid (PFOA). Site marker competitive study and molecular docking simulation revealed that GenX interacted with subdomain IIIA to form BSA-GenX complex. Consistent with its weaker affinity to albumin protein, the cytotoxicity of branched short-chain GenX was less susceptible to BSA binding compared with that of the linear long-chain PFOA. In contrast to the significant effects of strong BSA-PFOA interaction, the weak affinity of BSA-GenX binding did not influence the structure of protein and the cytotoxicity of GenX. The detailed characterization and direct comparisons of serum albumin interaction with new generation short-chain GenX will provide a better understanding for the toxicological properties of this new alternative.
Collapse
Affiliation(s)
- Shi-Ya Peng
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Zhang QY, Lai MQ, Chen YK, Zhong MT, Gi M, Wang Q, Xie XL. Inulin alleviates GenX-induced intestinal injury in mice by modulating the MAPK pathway, cell cycle, and cell adhesion proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124974. [PMID: 39332800 DOI: 10.1016/j.envpol.2024.124974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
GenX, a substitute for perfluorooctanoic acid, has demonstrated potential enterotoxicity. The enterotoxic effects of GenX and effective interventions need further investigation. In the present study, the mice were administered GenX (2 mg/kg/day) with or without inulin supplementation (5 g/kg/day) for 12 weeks. Histopathological assessments revealed that GenX induced colonic gland atrophy, inflammatory cell infiltration, a reduction in goblet cell numbers, and decreased mucus secretion. Furthermore, a significant decrease in the protein levels of ZO-1, occludin, and claudin-5 indicated compromised barrier integrity. Transcriptomic analysis identified 2645 DEGs, which were mapped to 39 significant pathways. The TGF-β, BMP6, and β-catenin proteins were upregulated in the intestinal mucosa following GenX exposure, indicating activation of the TGF-β pathway. Conversely, the protein expression of PAK3, CyclinD2, contactin1, and Jam2 decreased, indicating disruptions in cell cycle progression and cell adhesion. Inulin cotreatment ameliorated these GenX-induced alterations, partially through modulating the MAPK pathway, as evidenced by the upregulation of the cell cycle and cell adhesion proteins. Collectively, these findings suggested that GenX exposure triggered intestinal injury in mice by activating the TGF-β pathway and disrupting proteins crucial for the cell cycle and cell adhesion, whereas inulin supplementation mitigated this injury by modulating the MAPK pathway.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515, Guangzhou, China.
| |
Collapse
|
3
|
Hou H, Ji Y, Pan Y, Wang L, Liang Y. Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124980. [PMID: 39293651 DOI: 10.1016/j.envpol.2024.124980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The characteristic of semi-volatility enables persistent organic pollutants (POPs) almost ubiquitous in the environment. There is increasing concern about the potential risks of exposure to POPs due to their lipophilicity and readily bioaccumulation. Lipid droplets (LDs) are highly dynamic lipid storage organelles, alterations of intracellular LDs play a vital role in the progression of many prevalent metabolic diseases, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). This article systematically reviewed the biological processes involved in LDs metabolism, the role of LDs proteins and LDs in metabolic diseases, and summarized updating researches on involvement of POPs in the progression of LDs-related metabolic diseases and potential mechanisms. POPs might change the physiological functions of LDs, also interfere the processes of adipogenesis and lipolysis by altering LDs synthesis, decomposition and function. However, further studies are still needed to explore the underlying mechanism of POPs-induced metabolic diseases, which can offer scientific evidences for metabolic disease prevention.
Collapse
Affiliation(s)
- Huixin Hou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yaoting Ji
- Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
4
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Jackson TW, Lambright CS, Evans N, Wehmas LC, MacMillan DK, Bangma J, Gray LE, Conley JM. Exploring maternal and developmental toxicity of perfluoroalkyl ether acids PFO4DA and PFO5DoA using hepatic transcriptomics and serum metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175978. [PMID: 39226966 PMCID: PMC11466241 DOI: 10.1016/j.scitotenv.2024.175978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Production of per- and polyfluoroalkyl substances (PFAS) has shifted from long-chain perfluoroalkyl acids to short-chain compounds and those with ether bonds in the carbon chain. Next-generation perfluoroalkylether PFAS include HFPO-DA ("GenX chemicals"), Nafion Byproducts, and the PFOx homologous series that includes perfluoro-3,5,7,9-butaoxadecanoic acid (PFO4DA) and perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA). PFO4DA and PFO5DoA have been detected in serum and/or tissues from humans and wildlife proximal to contamination point sources. However, toxicity data are extremely limited, with no in vivo developmental toxicology data. To address these data gaps, pregnant Sprague-Dawley rats were exposed via oral gavage to vehicle, PFO4DA, or PFO5DoA across a series of doses (0.1 to 62.5 mg/kg/day) from gestation day (GD) 18-22. Hepatic transcriptomics were assayed in dams and fetuses, and serum metabolomics in dams. These data were overlaid with serum PFO4DA and PFO5DoA concentrations to perform dose-response modeling. Both dams and fetuses exhibited dose-responsive disruption of hepatic gene expression in response to PFO4DA or PFO5DoA, with fetal expression disrupted at lower doses than dams. Several differentially expressed genes were upregulated by every dose of PFO5DoA in both maternal and fetal samples, including genes encoding enzymes that hydrolyze acyl-coA to free fatty acids. Maternal serum metabolomics revealed PFO4DA exposure did not induce significant changes at any tested dose, whereas PFO5DoA exposure resulted in dose-dependent differential metabolite abundance for 149 unique metabolites. Multi-omics pathway analyses of integrated maternal liver transcriptomics and serum metabolomics revealed significant convergent changes as low as 3 mg/kg/d PFO4DA and 0.3 mg/kg/d PFO5DoA exposure. Overall, transcriptomic and metabolomic effects of PFO4DA and PFO5DoA appear consistent with other carboxylic acid PFAS, with primary changes related to lipid metabolism, bile acids, cholesterol, and cellular stress. Importantly, PFO5DoA exposure more potently induced changes in maternal and fetal hepatic gene expression and maternal circulating metabolites, despite high structural similarity. Further, we report in vitro PPARα and PPARγ receptor activation for both compounds as putative molecular mechanisms. This work demonstrates the potential developmental toxicity of alternative moiety perfluoroethers and highlights the developing liver as particularly vulnerable to transcriptomic disruption. Synopsis: Developmental exposure to fluoroether carboxylic acids PFO4DA and PFO5DoA result in differential impacts on hepatic transcriptome in dams and offspring and circulating metabolome in dams, with PFO5DoA exhibiting higher potency than PFO4DA.
Collapse
Affiliation(s)
- Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Christy S Lambright
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Nicola Evans
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Leah C Wehmas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Denise K MacMillan
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jacqueline Bangma
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - L Earl Gray
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Justin M Conley
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
6
|
Abu-Salah A, Cesur MF, Anchan A, Ay M, Langley MR, Shah A, Reina-Gonzalez P, Strazdins R, Çakır T, Sarkar S. Comparative Proteomics Highlights that GenX Exposure Leads to Metabolic Defects and Inflammation in Astrocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39499804 DOI: 10.1021/acs.est.4c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Exposure to PFAS such as GenX (HFPO dimer acid) has become increasingly common due to the replacement of older generation PFAS in manufacturing processes. While neurodegenerative and developmental effects of legacy PFAS exposure have been studied in depth, there is a limited understanding specific to the effects of GenX exposure. To investigate the effects of GenX exposure, we exposed Drosophila melanogaster to GenX and assessed the motor behavior and performed quantitative proteomics of fly brains to identify molecular changes in the brain. Additionally, metabolic network-based analysis using the iDrosophila1 model unveiled a potential link between GenX exposure and neurodegeneration. Since legacy PFAS exposure has been linked to Parkinson's disease (PD), we compared the proteome data sets between GenX-exposed flies and a fly model of PD expressing human α-synuclein. Considering the proteomic data- and network-based analyses that revealed GenX may be regulating GABA-associated pathways and the immune system, we next explored the effects of GenX on astrocytes, as astrocytes in the brain can regulate GABA. An array of assays demonstrated GenX exposure may lead to mitochondrial dysfunction and neuroinflammatory response in astrocytes, possibly linking non-cell autonomous neurodegeneration to the motor deficits associated with GenX exposure.
Collapse
Affiliation(s)
- Abdulla Abu-Salah
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Müberra Fatma Cesur
- Department of Bioengineering, Gebze Technical University, Gebze, KOCAELİ 41400, Turkey
| | - Aiesha Anchan
- Department of Neuroscience, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Monica R Langley
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Neurology, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Gonda Building, 19th Floor, 200 First St. SW, Rochester, Minnesota 55905, United States
| | - Ahmed Shah
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Pablo Reina-Gonzalez
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Rachel Strazdins
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, KOCAELİ 41400, Turkey
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
- Department of Neuroscience, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| |
Collapse
|
7
|
Megson D, Niepsch D, Spencer J, Santos CD, Florance H, MacLeod CL, Ross I. Non-targeted analysis reveals hundreds of per- and polyfluoroalkyl substances (PFAS) in UK freshwater in the vicinity of a fluorochemical plant. CHEMOSPHERE 2024; 367:143645. [PMID: 39476983 DOI: 10.1016/j.chemosphere.2024.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
There are now over 7 million recognised per- and polyfluoroalkyl substances (PFAS), however the majority of routine monitoring programmes and policy decisions are based on just a handful of these. There is need for a shift towards gaining a better understanding of the total PFAS present in a sample rather than relying on targeted analysis alone. Total PFAS methods help us to understand if targeted methods are missing a mass of PFAS, but they do not identify which PFAS are missing. Non-targeted methods fill this knowledge gap by using high resolution mass spectrometry to identify the PFAS present in a sample. In this manuscript we use complimentary targeted and non-targeted analysis (NTA) to detect hundreds of PFAS in five freshwater samples obtained from the Northwest of the UK. Targeted analysis revealed PFOA at a maximum concentration of 12,100 ng L-1, over three orders of magnitude greater than the proposed environmental quality standard (EQS) of 100 ng L-1. A conservative assessment calculated an average total PFAS concentration of approximately 40 μg L-1 across all samples. A suspect screening approach identified between 1175 (least conservative) to 89 (most conservative) PFAS at confidence level 4. Exploratory data analysis was used to identify 33 PFAS at confidence level 3 and 10 PFAS at a confidence level of 2. Only 8 of these 43 PFAS (representing 17% of the total PFAS peak area) are regularly monitored in the UK as part of the UK DWI 47 PFAS. Our results suggested the presence of a novel group of unsaturated perfluoroalkyl ether carboxylic acids (U-PFECAs) related to EEA-NH4, a perfluoroalkyl ether carboxylic acid (PFECA), providing an example of the benefits of non-targeted screening. This study highlights the merits of non-targeted methods and demonstrates that future monitoring programmes and regulations would benefit from incorporating a non-targeted element.
Collapse
Affiliation(s)
- David Megson
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; Chemistry Matters, Alberta, Canada.
| | - Daniel Niepsch
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan Spencer
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Claudio Dos Santos
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK
| | - Hannah Florance
- Agilent Technologies UK Ltd, 5500 Lakeside, Cheadle, Cheshire, UK
| | - Cecilia L MacLeod
- School of Engineering, University of Greenwich, Chatham, Maritime, Kent, UK; Microbio Ltd, Morecambe, Lancashire, UK
| | - Ian Ross
- Ecology and Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester, UK; CDM Smith Monterey, CA, USA
| |
Collapse
|
8
|
Conley JM, Lambright CS, Evans N, Bangma J, Ford J, Hill D, Gray LE. Long-chain perfluoroalkylether carboxylic acids PFO5DoA and PFO4DA alter glucose, bile acid, and thyroid hormone homeostasis in fetal rats from 5-day maternal oral exposure. ENVIRONMENTAL RESEARCH 2024; 263:120210. [PMID: 39461699 DOI: 10.1016/j.envres.2024.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Chemical monitoring studies in North Carolina, USA and Shandong, China have reported detections of perfluoroalkylether carboxylic acids of increasing chain length with ether bonds between each fluorinated carbon. Despite detection there is limited hazard data available to inform risk assessment. Here, we exposed pregnant Sprague-Dawley rats to two of these compounds, perfluoro-3,5,7,9-butaoxadecanoic acid (PFO4DA) and perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA), from gestation days 18-22 across a series of doses (0.3-62.5 mg/kg/d) via oral gavage. PFO5DoA was acutely toxic to rat dams and fetuses at the top two doses (30 and 62.5 mg/kg), while PFO4DA did not cause acute toxicity at any doses tested. PFO5DoA significantly increased maternal liver weight (≥3 mg/kg; 28% increase at 10 mg/kg) while PFO4DA did not affect maternal liver weight up to 62.5 mg/kg. PFO4DA and PFO5DoA both significantly reduced serum total thyroxine in maternal (≥10 mg/kg for both) and fetal (≥1 mg/kg) rats. Both compounds significantly reduced fetal liver glycogen concentrations, increased fetal serum total bile acids, and altered expression levels of multiple genes associated with glucose metabolism in the fetal liver. Serum concentrations of PFO5DoA were higher than PFO4DA in both rat dams and fetuses at equivalent maternal oral doses indicating greater accumulation. Dose response modelling of several fetal endpoints as a function of serum molar concentration indicates PFO5DoA was ∼3-4-fold more potent than PFO4DA. PFO5DoA and PFO4DA produced maternal and fetal toxicity from short-term oral maternal exposure indicating need for additional toxicity data to evaluate potential human health risks.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacqueline Bangma
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Mahoney H, Ankley P, Roberts C, Lamb A, Schultz M, Zhou Y, Giesy JP, Brinkmann M. Unveiling the Molecular Effects of Replacement and Legacy PFASs: Transcriptomic Analysis of Zebrafish Embryos Reveals Surprising Similarities and Potencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18554-18565. [PMID: 39392652 DOI: 10.1021/acs.est.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Catherine Roberts
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alicia Lamb
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yutong Zhou
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, Texas 76798-7266, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 1K2, Canada
| |
Collapse
|
10
|
Knox B, Güil-Oumrait N, Basagaña X, Cserbik D, Dadvand P, Foraster M, Galmes T, Gascon M, Dolores Gómez-Roig M, Gómez-Herrera L, Småstuen Haug L, Llurba E, Márquez S, Rivas I, Sunyer J, Thomsen C, Julia Zanini M, Bustamante M, Vrijheid M. Prenatal exposure to per- and polyfluoroalkyl substances, fetoplacental hemodynamics, and fetal growth. ENVIRONMENT INTERNATIONAL 2024; 193:109090. [PMID: 39454342 DOI: 10.1016/j.envint.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The impact of legacy per- and polyfluoroalkyl substances (PFAS) on fetal growth has been well studied, but assessments of next-generation PFAS and PFAS mixtures are sparse and the potential role of fetoplacental hemodynamics has not been studied. We aimed to evaluate associations between prenatal PFAS exposure and fetal growth and fetoplacental hemodynamics. METHODS We included 747 pregnant women from the BiSC birth cohort (Barcelona, Spain (2018-2021)). Twenty-three PFAS were measured at 32 weeks of pregnancy in maternal plasma, of which 13 were present above detectable levels. Fetal growth was measured by ultrasound, as estimated fetal weight at 32 and 37 weeks of gestation, and weight at birth. Doppler ultrasound measurements for uterine (UtA), umbilical (UmA), and middle cerebral artery (MCA) pulsatility indices (PI), as well as the cerebroplacental ratio (CPR - ratio MCA to UmA), were obtained at 32 weeks to assess fetoplacental hemodynamics. We applied linear mixed effects models to assess the association between singular PFAS and longitudinal fetal growth and PI, and Bayesian Weighted Quantile Sum models to evaluate associations between the PFAS mixture and the aforementioned outcomes, controlled for the relevant covariates. RESULTS Single PFAS and the mixture tended to be associated with reduced fetal growth and CPR PI, but few associations reached statistical significance. Legacy PFAS PFOS, PFHpA, and PFDoDa were associated with statistically significant decreases in fetal weight z-score of 0.13 (95%CI (-0.22, -0.04), 0.06 (-0.10, 0.01), and 0.05 (-0.10, 0.00), respectively, per doubling of concentration. The PFAS mixture was associated with a non-statistically significant 0.09 decrease in birth weight z-score (95%CI -0.22, 0.04) per quartile increase. CONCLUSION This study suggests that legacy PFAS may be associated with reduced fetal growth, but associations for next generation PFAS and for the PFAS mixture were less conclusive. Associations between PFAS and fetoplacental hemodynamics warrant further investigation.
Collapse
Affiliation(s)
- Bethany Knox
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Dora Cserbik
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Toni Galmes
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mireia Gascon
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| | - Maria Dolores Gómez-Roig
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Elisa Llurba
- Department of Obstetrics and Gynaecology. Institut d'Investigació Biomèdica Sant Pau - IIB Sant Pau. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases d Developof Perinatal anmental Origin Network (RICORS), RD21/0012/0001, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health (NIPH), Department of Food Safety, Oslo, Norway.
| | - Maria Julia Zanini
- BCNatal, Fetal Medicine Research Center, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0003, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Lei H, Lu Y, Wang P, Xie X, Li J, An X, Liang Z, Sun B, Wang C. Shift from legacy to emerging per- and polyfluoroalkyl substances for watershed management along the coast of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125153. [PMID: 39427954 DOI: 10.1016/j.envpol.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Per- and polyfluoroalkyl substances and their short-chain alternatives have attracted world-wide attention due to their widespread presence and persistence in the environment. However, the sources, environmental fate, and driving forces of PFAS in coastal ecosystems remain poorly understood. In this study, the spatial distribution, source apportionment, and driving mechanisms of PFAS were investigated through a comprehensive analysis of water samples collected along the China's coastline. The concentrations of Σ25PFAS in water samples followed a general pattern, with higher levels observed in northern coastal zones of China than the south, ranging from 0.72 to 1872.21 ng L-1. PFOA and PFBA were dominant. Emerging short-chain PFAS, such as PFBS, PFBA, F-53B and GenX, were frequently detected, with detection rates of 97%, 99%, 95% and 77%, respectively. This indicated a shift in coastal PFAS contamination from legacy compounds to emerging short-chain alternatives. Source apportionment using the Positive Matrix Factorization model identified key contributors to PFAS pollution, including textile production, volatile precursors, precious metal industries, aqueous film-forming foam, metal-plating, electrochemical fluorination, and fluoropolymer manufacturing. Additionally, PFAS concentrations were significantly positively correlated with cultivated land, urban area, and wastewater discharge, while negatively correlated with annual precipitation and woodland coverage (p < 0.05). Socio-economic development was identified as a major driver of PFAS emissions, while the hydrological factors and vegetation coverage can significantly enhance watershed resilience against PFAS pollution.
Collapse
Affiliation(s)
- Haojie Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xingwei Xie
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Jialong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Zian Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| |
Collapse
|
12
|
Xiu Z, Zheng N, An Q, Chen C, Lin Q, Li X, Wang S, Peng L, Li Y, Zhu H, Sun S, Wang S. Tissue-specific distribution and fatty acid content of PFAS in the northern Bohai Sea fish: Risk-benefit assessment of legacy PFAS and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136024. [PMID: 39396441 DOI: 10.1016/j.jhazmat.2024.136024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
This study aimed to examine the distribution of poly- and perfluoroalkyl substances (PFAS) in 15 marine fish species from the northern Bohai Sea, investigate their sources of contamination, and evaluate the benefits-risks associated with the concurrent consumption of fish fatty acids and PFAS. The ∑PFAS concentrations in fish ranged from 9.38 to 262.92 ng·g-1 (dry weight). The highest PFAS levels were found in the viscera and gills, while the lowest levels were found in the muscles. Industrial effluents and sewage treatment plant discharges were the primary sources of PFAS contamination. The individual PFAS concentrations in fish were insignificantly correlated with their trophic levels (p > 0.05). However, the concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA) or long-chain PFAS (C > 8) significantly increased with fish size (e.g., total length, weight) and lipid content (p < 0.001). The benefit-risk analysis suggests that HPFO-DA poses a higher health risk than perfluorooctanoic acid (PFOA) in fish (p < 0.05). Long-term consumption of contaminated fish may significantly increase human serum PFOA concentration and kidney cancer risk (p < 0.05). Daily consumption of 5 g (wet weight) muscle from Ditrema temmincki and Konosirus punctatus is recommended to meet the requirements for fatty acid supplementation without posing health risks.
Collapse
Affiliation(s)
- Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qiuyan Lin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Yunyang Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Shuai Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
13
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Wang W, Li Z, Yuan S, Du Z, Li J, Peng H, Ru S. A Potential Neurotoxic Mechanism: Bisphenol S-Induced Inhibition of Glucose Transporter 1 Leads to ATP Excitotoxicity in the Zebrafish Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15463-15474. [PMID: 39167196 DOI: 10.1021/acs.est.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Many environmental pollutants have neurotoxic effects, but the initial molecular events involved in these effects are unclear. Here, zebrafish were exposed to the neurotoxicant bisphenol S (BPS, 1, 10, or 100 μg/L) from the embryonic stage to the larval stage to explore the ability of BPS to interfere with energy metabolism in the brain. BPS, which is similar to a glucose transporter 1 (GLUT1) inhibitor, inhibited GLUT1 function but increased mitochondrial activity in the brains of larval zebrafish. Interestingly, GLUT1 inhibitor treatment and BPS exposure did not reduce energy production in the brain; instead, they increased ATP production by inducing the preferential use of ketone bodies. Moreover, BPS promoted the protein expression of the purinergic 2X receptor but inhibited the purinergic 2Y-mediated phosphatidylinositol signaling pathway, indicating that excess ATP acts as a neurotransmitter to activate the purinergic 2X receptor under the BPS-induced restriction of GLUT1 function. BPS-induced inhibition of GLUT1 increased the number of neurons but promoted apoptosis by activating ATP-purinergic 2X receptors in the brain, causing ATP excitatory neurotoxicity. Our data reveal a potential neurotoxic mechanism induced by BPS that may represent a new adverse outcome pathway.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shipeng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Adewuyi A, Li Q. Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries. ECO-ENVIRONMENT & HEALTH 2024; 3:355-368. [PMID: 39281067 PMCID: PMC11399586 DOI: 10.1016/j.eehl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
The detection of per- and polyfluoroalkyl substances (PFAS) in water presents a significant challenge for developing countries, requiring urgent attention. This review focuses on understanding the emergence of PFAS in drinking water, health concerns, and removal strategies for PFAS in water systems in developing countries. This review indicates the need for more studies to be conducted in many developing nations due to limited information on the environmental status and fate of PFAS. The health consequences of PFAS in water are enormous and cannot be overemphasized. Efforts are ongoing to legislate a national standard for PFAS in drinking water. Currently, there are few known mitigation efforts from African countries, in contrast to several developing nations in Asia. Therefore, there is an urgent need to develop economically viable techniques that could be integrated into large-scale operations to remove PFAS from water systems in the region. However, despite the success achieved with removing long-chain PFAS from water, more studies are required on strategies for eliminating short-chain moieties in water.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
16
|
O'Shaughnessy KL, Bell KS, Sasser AL, Gilbert ME, Riutta C, Ford JL, McCord J, Wood CR. The pollutant perfluorohexane sulfonate (PFHxS) reduces serum thyroxine but does not alter thyroid action in the postnatal rat brain. ENVIRONMENT INTERNATIONAL 2024; 190:108838. [PMID: 38963985 DOI: 10.1016/j.envint.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood. Here we examine the endocrine and neurodevelopmental consequences of perfluorohexane sulfonate (PFHxS) exposure in pregnant, lactating, and developing rats, and compare its effects to an anti-thyroid pharmaceutical (propylthiouracil, PTU) that induces thyroid-mediated developmental neurotoxicity. We show that PFHxS dramatically reduces maternal serum thyroxine (T4), nearly equivalently to PTU (-55 and -51%, respectively). However, only PTU increases thyroid stimulating hormone. The lactational transfer of PFHxS is significant and reduces pup serum T4 across the postnatal period. Surprisingly, brain THs are only minimally decreased by PFHxS, whereas PTU drastically diminishes them. Evaluation of brain TH action by phenotyping, RNA-Sequencing, and quantification of radial glia cell morphology supports that PTU interrupts TH signaling while PFHxS has limited to no effect. These data show that PFHxS induces abnormal serum TH profiles; however, there were no indications of hypothyroidism in the postnatal brain. We suggest the stark differences between the neurodevelopmental effects of PFHxS and a typical antithyroid agent may be due to its interaction with TH distributing proteins like transthyretin.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - James McCord
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, United States Environmental Protection Agency Research Triangle Park, NC 27709, USA
| | - Carmen R Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Kashobwe L, Sadrabadi F, Brunken L, Coelho ACMF, Sandanger TM, Braeuning A, Buhrke T, Öberg M, Hamers T, Leonards PEG. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Toxicology 2024; 506:153862. [PMID: 38866127 DOI: 10.1016/j.tox.2024.153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industrial and consumer products. They have gained attention due to their ubiquitous occurrence in the environment and potential for adverse effects on human health, often linked to immune suppression, hepatotoxicity, and altered cholesterol metabolism. This study aimed to explore the impact of ten individual PFAS, 3 H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP/Adona), ammonium perfluoro-(2-methyl-3-oxahexanoate) (HFPO-DA/GenX), perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) on the lipid metabolism in human hepatocyte-like cells (HepaRG). These cells were exposed to different concentrations of PFAS ranging from 10 µM to 5000 µM. Lipids were extracted and analyzed using liquid chromatography coupled with mass spectrometry (LC- MS-QTOF). PFOS at 10 µM and PFOA at 25 µM increased the levels of ceramide (Cer), diacylglycerol (DAG), N-acylethanolamine (NAE), phosphatidylcholine (PC), and triacylglycerol (TAG) lipids, while PMPP/Adona, HFPO-DA/GenX, PFBA, PFBS, PFHxA, and PFHxS decreased the levels of these lipids. Furthermore, PFOA and PFOS markedly reduced the levels of palmitic acid (FA 16.0). The present study shows distinct concentration-dependent effects of PFAS on various lipid species, shedding light on the implications of PFAS for essential cellular functions. Our study revealed that the investigated legacy PFAS (PFOS, PFOA, PFBA, PFDA, PFHxA, PFHxS, and PFNA) and alternative PFAS (PMPP/Adona, HFPO-DA/GenX and PFBS) can potentially disrupt lipid homeostasis and metabolism in hepatic cells. This research offers a comprehensive insight into the impacts of legacy and alternative PFAS on lipid composition in HepaRG cells.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lars Brunken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Carolina M F Coelho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
18
|
Vujic E, Ferguson SS, Brouwer KLR. Effects of PFAS on human liver transporters: implications for health outcomes. Toxicol Sci 2024; 200:213-227. [PMID: 38724241 DOI: 10.1093/toxsci/kfae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed "forever chemicals," is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes.
Collapse
Affiliation(s)
- Ena Vujic
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
20
|
Li Y, Lv Y, Jiang Z, Ma C, Li R, Zhao M, Guo Y, Guo H, Zhang X, Li A, Liu Y. Association of co-exposure to organophosphate esters and per- and polyfluoroalkyl substances and mixture with cardiovascular-kidney-liver-metabolic biomarkers among Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116524. [PMID: 38838464 DOI: 10.1016/j.ecoenv.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) and Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with common exposure sources, leading to their widespread presence in human body. However, evidence on co-exposure to OPEs and PFAS and its impact on cardiovascular-kidney-liver-metabolic biomarkers remains limited. METHODS In this cross-sectional study, 467 adults were enrolled from January to May 2022 during physical visits in Shijiazhuang, Hebei province. Eleven types of OPEs and twelves types of PFAS were detected, among which eight OPEs and six PFAS contaminants were detected in more than 60% of plasma samples. Seventeen biomarkers were assessed to comprehensively evaluate the cardiovascular-kidney-liver-metabolic function. Multiple linear regression, multipollutant models with sparse partial least squares, and Bayesian kernel machine regression (BKMR) models were applied to examine the associations of individual OPEs and PFAS and their mixtures with organ function and metabolism, respectively. RESULTS Of the over 400 exposure-outcome associations tested when modelling, we observed robust results across three models that perfluorohexanoic acid (PFHxS) was significantly positively associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and indirect bilirubin (IBIL). Perfluorononanoic acid was significantly associated with decreased AST/ALT and increased very-low-density lipoprotein cholesterol levels. Besides, perfluorodecanoic acid was correlated with increased high lipoprotein cholesterol and perfluoroundecanoic acid was consistently associated with lower glucose level. BKMR analysis showed that OPEs and PFAS mixtures were positively associated with IBIL and TBIL, among which PFHxS was the main toxic chemicals. CONCLUSIONS Our findings suggest that exposure to OPEs and PFAS, especially PFHxS and PFNA, may disrupt organ function and metabolism in the general population, providing insight into the potential pathophysiological mechanisms of OPEs and PFAS co-exposure and chronic diseases.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengwei Zhao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yi Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China.
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
21
|
González-Alvarez ME, Antwi-Boasiako C, Keating AF. Effects of Per- and Polyfluoroalkylated Substances on Female Reproduction. TOXICS 2024; 12:455. [PMID: 39058107 PMCID: PMC11280844 DOI: 10.3390/toxics12070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Per- and poly-fluoroalkylated substances (PFAS) are a large group of chemicals that persist both in the environment and in the body. Legacy PFAS, e.g., perfluorooctanoic acid and perfluorooctane sulfonic acid, are implicated as endocrine disruptors and reproductive and developmental toxicants in epidemiological and animal model studies. This review describes female reproductive outcomes of reported studies and includes where associative relationships between PFAS exposures and female reproductive outcomes have been observed as well as where those are absent. In animal models, studies in which PFAS are documented to cause toxicity and where effects are lacking are described. Discrepancies exist in both human and animal studies and are likely attributable to human geographical contamination, developmental status, duration of exposure, and PFAS chemical identity. Similarly, in animal investigations, the model used, exposure paradigm, and developmental status of the female are important and vary widely in documented studies. Taken together, support for PFAS as reproductive and developmental toxicants exists, although the disparity in study conditions and human exposures contribute to the variation in effects noted.
Collapse
Affiliation(s)
| | | | - Aileen F. Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
O’Rourke E, Losada S, Barber JL, Scholey G, Bain I, Pereira MG, Hailer F, Chadwick EA. Persistence of PFOA Pollution at a PTFE Production Site and Occurrence of Replacement PFASs in English Freshwaters Revealed by Sentinel Species, the Eurasian Otter ( Lutra lutra). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10195-10206. [PMID: 38800846 PMCID: PMC11171452 DOI: 10.1021/acs.est.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 μg/kg ww <20 km from factory) and declined with increasing distance (<57 μg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 μg/kg ww and 4,640 μg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.
Collapse
Affiliation(s)
- Emily O’Rourke
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | - Sara Losada
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft NR33
0HT, U.K.
| | - Jonathan L. Barber
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft NR33
0HT, U.K.
| | - Graham Scholey
- Environment
Agency, Red Kite House, Howbery Park, Wallingford, Oxfordshire OX10 8BD, U.K.
| | - Isobel Bain
- Environment
Agency, Red Kite House, Howbery Park, Wallingford, Oxfordshire OX10 8BD, U.K.
| | - M. Glória Pereira
- Lancaster
Environment Centre, UK Centre for Ecology
and Hydrology, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K.
| | - Frank Hailer
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | | |
Collapse
|
23
|
Tan H, Tang S, Yang L, Li J, Deng Y, Shen H, Dai Q, Gao Y, Wu P, Zhu L, Cai Z. Global quantification of emerging and legacy per- and polyfluoroalkyl substances in indoor dust: Levels, profiles and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172132. [PMID: 38569952 DOI: 10.1016/j.scitotenv.2024.172132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.
Collapse
Affiliation(s)
- Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Shuqin Tang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yongfeng Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hao Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Qingyuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
| |
Collapse
|
24
|
Luo YS, Ying RY, Chen XT, Yeh YJ, Wei CC, Chan CC. Integrating high-throughput phenotypic profiling and transcriptomic analyses to predict the hepatosteatosis effects induced by per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133891. [PMID: 38457971 DOI: 10.1016/j.jhazmat.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a large compound class (n > 12,000) that is extensively present in food, drinking water, and aquatic environments. Reduced serum triglycerides and hepatosteatosis appear to be the common phenotypes for different PFAS chemicals. However, the hepatosteatosis potential of most PFAS chemicals remains largely unknown. This study aims to investigate PFAS-induced hepatosteatosis using in vitro high-throughput phenotype profiling (HTPP) and high-throughput transcriptomic (HTTr) data. We quantified the in vitro hepatosteatosis effects and mitochondrial damage using high-content imaging, curated the transcriptomic data from the Gene Expression Omnibus (GEO) database, and then calculated the point of departure (POD) values for HTPP phenotypes or HTTr transcripts, using the Bayesian benchmark dose modeling approach. Our results indicated that PFAS compounds with fully saturated C-F bonds, sulfur- and nitrogen-containing functional groups, and a fluorinated carbon chain length greater than 8 have the potential to produce biological effects consistent with hepatosteatosis. PFAS primarily induced hepatosteatosis via disturbance in lipid transport and storage. The potency rankings of PFAS compounds are highly concordant among in vitro HTPP, HTTr, and in vivo hepatosteatosis phenotypes (ρ = 0.60-0.73). In conclusion, integrating the information from in vitro HTPP and HTTr analyses can accurately project in vivo hepatosteatosis effects induced by PFAS compounds.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Ren-Yan Ying
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Xsuan-Ting Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
25
|
Coperchini F, Greco A, Croce L, Teliti M, Calì B, Chytiris S, Magri F, Rotondi M. Do PFCAs drive the establishment of thyroid cancer microenvironment? Effects of C6O4, PFOA and PFHxA exposure in two models of human thyroid cells in primary culture. ENVIRONMENT INTERNATIONAL 2024; 187:108717. [PMID: 38728818 DOI: 10.1016/j.envint.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Benedetto Calì
- Istituti Clinici Scientifici Maugeri IRCCS, Department of General and Minimally Invasive Surgery, Pavia, (PV) 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
26
|
Ren W, Wang Z, Guo H, Gou Y, Dai J, Zhou X, Sheng N. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123314. [PMID: 38218542 DOI: 10.1016/j.envpol.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.
Collapse
Affiliation(s)
- Wanlan Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yong Gou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Zhu B, Sheng N, Dai J. Adverse effects of gestational exposure to hexafluoropropylene oxide trimer acid (HFPO-TA) homologs on maternal, fetal, and placental health in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169151. [PMID: 38065497 DOI: 10.1016/j.scitotenv.2023.169151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
In an effort to identify and develop potential alternatives for perfluorooctanoic acid (PFOA), PFDMO2HpA and PFDMO2OA have been engineered by reducing the -CF2 content in the molecular structure of hexafluoropropylene oxide trimer acid (HFPO-TA). Yet, despite their subsequent presence in environmental samples, there is a paucity of information regarding their toxicity, particularly on pregnancy. Here, pregnant CD-1 mice were exposed to PFDMO2HpA (0, 0.04, 0.16, 0.63, 2.5, or 10 mg/kg/day) or PFDMO2OA (0, 0.01, 0.04, 0.16, 0.63, or 2.5 mg/kg/day) via oral gavage from gestational days 2 (GD2) to 12 or 18 to evaluate the detrimental effects on dams and embryo-placenta units. Both two chemicals can transfer across the placenta, with a higher transfer ratio in late-pregnancy (GD18) than in mid-pregnancy (GD12), and PFDMO2OA being transferred at a higher rate than PFDMO2HpA. PFDMO2HpA/PFDMO2OA exposure caused maternal hepatotoxicity and fetal hepatomegaly, showing the lowest no-observed-adverse-effect level among all observed endpoints, which were used for calculating their reference dose (13.33 ng/kg/day). In the 2.5 and 10 mg/kg/day PFDMO2HpA groups as well as 2.5 mg/kg/day PFDMO2OA group at GD18, besides the abnormally high abortion rates exceeding 5 %, survival fetal weight was notably reduced (2.33 %, 6.44 %, and 5.59 % decrease relative to corresponding controls, respectively). Concurrently, placentas exhibited significant enlargement following PFDMO2HpA or PFDMO2OA exposure at doses of 0.63 mg/kg/day or higher, resulting in diminished placental efficiency. The deleterious effects of two chemicals on dams, fetuses, and placentas were stronger than that of PFOA or HFPO-DA, suggesting that neither PFDMO2HpA nor PFDMO2OA is suitable PFOA alternative. Bioinformatics analyses revealed significant alterations in the expression of genes involved in inflammation and immunity in the placenta upon exposure to 10 mg/kg/day PFDMO2HpA and 2.5 mg/kg/day PFDMO2OA at GD18, potentially elucidating mechanism behind the observed decrease in placental efficiency and increase in abortion rates after exposure.
Collapse
Affiliation(s)
- Bao Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiayin Dai
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
28
|
Xie X, Lu Y, Wang P, Lei H, Chen N, Liang Z, Jiang X, Li J, Cao Z, Liao J, Li K. Per- and polyfluoroalkyl substances in a subtropical river-mangrove estuary-bay system. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132937. [PMID: 37976860 DOI: 10.1016/j.jhazmat.2023.132937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Mangrove estuaries are one of the most economically valuable and biologically diverse coastal ecosystems. However, knowledge of emerging pollutants in mangrove estuaries is limited. This study provided insight into the PFAS in a river (Zhangjiang River, ZR)-mangrove estuary (Zhangjiang River Estuary, ZRE)-bay (Dongshan Bay, DSB) continuous system in Fujian Province, China. The Σ25PFAS (sum of 25 PFAS) concentrations (0.94 ∼ 62.44 ng/L) showed a declining trend from the river to bay. The Zhe-Min Coastal Current (ZMCC) can transport an abundance of PFAS, especially PFOA, from the northern sea to southern bays, which can affect the seasonal distribution of PFAS concentrations in the DSB and result in PFOA/Σ25PFAS with a decreasing trend in the DSB (28.08%), ZRE (21.15%), and ZR (14.13%), respectively. The primary PFAS sources in this area determined by the positive matrix factor model mainly contained the effluent of the wastewater treatment plant neighboring the R2 site, discharge of domestic and production wastewater, irregular emissions of aqueous film-forming foams, and fluorochemistry industry wastewater transmitted from the ZMCC. The PFAS pollution in the mangrove creek was mainly affected by the discharge of domestic and production wastewater and presented a significant point source pollution, especially during the rainy season.
Collapse
Affiliation(s)
- Xingwei Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Pei Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Nengwang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zian Liang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xudong Jiang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jialong Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jieming Liao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Kongming Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
29
|
Conley JM, Lambright CS, Evans N, Bangma J, Ford J, Hill D, Medlock-Kakaley E, Gray LE. Maternal and Neonatal Effects of Maternal Oral Exposure to Perfluoro-2-methoxyacetic Acid (PFMOAA) during Pregnancy and Early Lactation in the Sprague-Dawley Rat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1064-1075. [PMID: 38163761 PMCID: PMC11427954 DOI: 10.1021/acs.est.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Perfluoro-2-methoxyacetic acid (PFMOAA) is a short-chain perfluoroalkyl ether carboxylic acid that has been detected at high concentrations (∼10 μg/L) in drinking water in eastern North Carolina, USA, and in human serum and breastmilk in China. Despite documented human exposure there are almost no toxicity data available to inform risk assessment of PFMOAA. Here we exposed pregnant Sprague-Dawley rats to a range of PFMOAA doses (10-450 mg/kg/d) via oral gavage from gestation day (GD) 8 to postnatal day (PND) 2 and compared results to those we previously reported for perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). Newborn pups displayed reduced birthweight (≥30 mg/kg), depleted liver glycogen concentrations (all doses), hypoglycemia (≥125 mg/kg), and numerous significantly altered genes in the liver associated with fatty acid and glucose metabolism similar to gene changes produced by HFPO-DA. Pup survival was significantly reduced at ≥125 mg/kg, and at necropsy on PND2 both maternal and neonatal animals displayed increased liver weights, increased serum aspartate aminotransferase (AST), and reduced serum thyroid hormones at all doses (≥10 mg/kg). Pups also displayed highly elevated serum cholesterol at all doses. PFMOAA concentrations in serum and liver increased with maternal oral dose in both maternal and F1 animals and were similar to those we reported for PFOA but considerably higher than HFPO-DA. We calculated 10% effect levels (ED10 or EC10) and relative potency factors (RPF; PFOA = index chemical) among the three compounds based on maternal oral dose and maternal serum concentration (μM). Reduced pup liver glycogen, increased liver weights and reduced thyroid hormone levels (maternal and pup) were the most sensitive end points modeled. PFMOAA was ∼3-7-fold less potent than PFOA for most end points based on maternal serum RPFs, but slightly more potent for increased maternal and pup liver weights. PFMOAA is a maternal and developmental toxicant in the rat producing a constellation of adverse effects similar to PFOA and HFPO-DA.
Collapse
Affiliation(s)
- Justin M. Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| | - Christy S. Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| | - Jacqueline Bangma
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, North Carolina 27709 United States
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, North Carolina 27709 United States
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| | - L. Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709 United States
| |
Collapse
|
30
|
Zhang QY, Xu LL, Zhong MT, Chen YK, Lai MQ, Wang Q, Xie XL. Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168059. [PMID: 37884144 DOI: 10.1016/j.scitotenv.2023.168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX), a replacement for perfluorooctanoic acid (PFOA), has been detected in multiple environmental media and biological samples worldwide. Accumulated evidence implies that GenX exposure might exert adverse health effects, although the underlying mechanisms have not been fully revealed. In this study, pregnant BALB/c mice were exposed to GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water by gavage from the first day of gestation (GD0) until GD21. Necropsy and tissue collection were conducted in pups at 4 weeks of age. PFOA and GenX induced similar histopathological changes in both the liver and the intestinal mucosa, accompanied by higher serum levels of alanine and aspartate aminotransferase. Moreover, the capacity of hepatic glycogen storage and intestinal mucus secretion were significantly decreased, suggesting dysfunction of liver metabolism and the intestinal mucosal barrier. A total of 637 and 352 differentially expressed genes (DEGs) were identified in the liver tissues of GenX and PFOA group, respectively. Most of the enriched pathways from the DEGs by KEGG enrichment analysis were metabolism-associated. Moreover, overexpression of CYP4A14, Sult2a1, Cpt1b, Acaa1b, Igfbp1, Irs-2 and decreased expression of Gys2 were observed in livers of GenX exposed pups, supporting the hypothesis that there was metabolic disruption. Furthermore, DNA damage and cell cycle arrest proteins (Gadd45β, p21, Ppard) were significantly increased, while cell proliferation-related proteins (Cyclin E, Myc, EGFR) were decreased by gestational GenX exposure in the pups' liver. In addition, imbalance of gut microbiota and dysfunction of the intestinal mucosa barrier might contribute to hepatotoxicity at least in part. Taken together, our results suggested that gestational GenX exposure triggered metabolic disorder, which might be responsible for the hepatotoxicity in the pups in addition to dysfunction of the intestinal mucosa barrier. This study enriches the mechanisms of GenX-induced developmental hepatotoxicity by associating metabolic disorder with intestinal homeostasis.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
31
|
Lv D, Liu H, An Q, Lei C, Wang Y, Sun J, Li C, Lin Y, Dong Q, Yang Z, Che K, Liu W, Han W. Association of adverse fetal outcomes with placental inflammation after oral gestational exposure to hexafluoropropylene oxide dimer acid (GenX) in Sprague-Dawley rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132536. [PMID: 37717439 DOI: 10.1016/j.jhazmat.2023.132536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), known as "GenX" for its trade name, is gradually taking the place of Perfluorooctanoic acid (PFOA). However, there is a poor understanding of the developmental effects of GenX. This study aims to explore whether GenX produces adverse effects on offspring development in Sprague-Dawley (SD) rats and the underlying mechanisms. Pregnant rats were orally administered with GenX (0, 1, 10 and 100 mg/kg/day) from gestational 0.5-19.5 days. Experimental data showed that the exposure to GenX resulted in increased rats' gestational weight gain, whereas both body weight and body length of their fetuses born naturally were significantly reduced. This could contribute to the developmental delays of fetal body weight, body length and tail length from postnatal 1-21 days. Histopathological evaluation of placenta indicated that GenX exposure led to neutrophil infiltration in decidual zone and congestion in labyrinth zone. Moreover, placental proteomics showed changes at the expression levels of the inflammation-related proteins in the Rap1 signaling pathway. In conclusion, gestational exposure to GenX induced fetal intrauterine and extrauterine development retardation in SD rats. Placental inflammation may play a key role in this process through the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Di Lv
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Hongyun Liu
- Pathology Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China
| | - Qi An
- Child Healthcare Department, Qingdao Women and Children's Hospital, Qingdao 266071, China
| | - Chengwei Lei
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yanxuan Wang
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jin Sun
- Department of Developmental Pediatrics and Child Health Care, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qing Dong
- Pediatrics Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Kui Che
- Key Laboratory of Thyroid Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wendong Liu
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| | - Wenchao Han
- Pediatrics Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| |
Collapse
|
32
|
Baqar M, Saleem R, Zhao M, Zhao L, Cheng Z, Chen H, Yao Y, Sun H. Combustion of high-calorific industrial waste in conventional brick kilns: An emerging source of PFAS emissions to agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167612. [PMID: 37804982 DOI: 10.1016/j.scitotenv.2023.167612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The brick kilns in the South Asian region are widely documented to partially combust high-calorific waste components of synthetic-industrial origin, which contain hazardous constituents, including per- and polyfluoroalkyl substances (PFAS). Correspondingly, these establishments are necessarily built on agricultural land to easily acquire clay by excavating soil horizons, thus making cultivation soils vulnerable to PFAS contaminations. In this pioneering study, the occurrence, distribution profile, traceability and human health risk exposure to forty-four legacy and novel PFAS homologues, including two ultrashort-chain (C2-C3) PFAS, were investigated in agricultural soils around thirty-two conventional brick kilns across three districts of Pakistan. ⅀44PFAS concentrations ranged from 14.3 to 465 ng/g (median: 28.2 ng/g), which were 2 to 70 folds higher than those in background soils, and slightly higher than those reported in agricultural soils in the global literature. The highest occurrence was observed for PFAS alternatives, i.e., 6:2 fluorotelomer sulfonate (6:2 FTSA) (40 %) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (4.5 %). A significant positive correlation (p < 0.01) was observed among the concentrations of short-chain perfluoroalkyl acids (C4-C7) and novel PFOS substitutes, implying their origin from common sources. Furthermore, ultrashort-chain and short-chain perfluorocarboxylic acids (PFCA) (89 %) and perfluorosulfonic acids (PFSA) (63 %) dominated over long-chain's PFCA (11 %) and PFSA (37 %), respectively. The estimated daily intake to children exposed in surrounding inhabited communities, at 95th percentile concentrations was found to be approaching the European tolerable daily intake limit of 0.63 ng/kg bw/day. Therefore, the brick manufacturing industry is identified as a novel source of PFAS in the adjacent environment and for residents. This suggests the need for further investigations to elucidate the origin of emerging contaminants in the waste streams of the region to safeguard ecological integrity.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Rimsha Saleem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Robarts DR, Dai J, Lau C, Apte U, Corton JC. Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice. TOXICS 2023; 11:963. [PMID: 38133364 PMCID: PMC10748317 DOI: 10.3390/toxics11120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
34
|
Dong S, Xu J, Yang D, Zhao X, Li X, Chen D, Xing J, Shi Y, Sun Y, Ding G. Different Life-Stage Exposure to Hexafluoropropylene Oxide Trimer Acid Induces Reproductive Toxicity in Adult Zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2490-2500. [PMID: 37589400 DOI: 10.1002/etc.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
As a novel alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been widely used and has caused ubiquitous water pollution. However, its adverse effects on aquatic organisms are still not well known. In the present study, zebrafish at different life stages were exposed to 0, 5, 50, and 100 μg/L of HFPO-TA for 21 days to investigate reproductive toxicity in zebrafish. The results showed that HFPO-TA exposure significantly inhibited growth and induced reproductive toxicity in zebrafish, including a decrease of the condition factor, gonadosomatic index, and the average number of eggs. Histological section observation revealed that percentages of mature oocytes and spermatozoa were reduced, while those of primary oocytes and spermatocytes increased. In addition, exposure to HFPO-TA at three stages induced a significant decrease in the hatching rate, while the heart rate and normal growth rate of F1 offspring were only significantly inhibited for the exposure from fertilization to 21 days postfertilization (dpf). Compared with the exposure from 42 to 63 dpf, the reproductive toxicity induced by HFPO-TA was more significant for the exposure from fertilization to 21 dpf and from 21 to 42 dpf. Expression of the genes for cytochrome P450 A1A, vitellogenin 1, estrogen receptor alpha, and estrogen receptor 2b was significantly up-regulated in most cases after exposure to HFPO-TA, suggesting that HFPO-TA exhibited an estrogen effect similar to PFOA. Therefore, HFPO-TA might disturb the balance of sex steroid hormones and consequently induce reproductive toxicity in zebrafish. Taken together, the results demonstrate that exposure to HFPO-TA at different life stages could induce reproductive toxicity in zebrafish. However, the underlying mechanisms deserve further investigation. Environ Toxicol Chem 2023;42:2490-2500. © 2023 SETAC.
Collapse
Affiliation(s)
- Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xiaohui Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Jing Xing
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
35
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
36
|
Zhang C, Xu Y, Liu W, Zhou H, Zhang N, Fang Z, Gao J, Sun X, Feng D, Sun X. New insights into the degradation mechanism and risk assessment of HFPO-DA by advanced oxidation processes based on activated persulfate in aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115298. [PMID: 37499385 DOI: 10.1016/j.ecoenv.2023.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) is widely used as a substitute for perfluorooctanoic acid (PFOA). HFPO-DA exhibits high water solubility and low adsorption potential, conferring significant fluidity in aquatic environments. Given that the toxicity of HFPO-DA is similar to PFOA, it is necessary to control its content in aquatic environments. Electrochemical and thermally-activated persulfates have been successfully used to degrade HFPO-DA, but UV-activated persulfates cannot degrade the compound. Given that research on degradation mechanisms is still incomplete and lacks kinetic research, the mechanism and kinetic calculations of oxidative degradation were studied in detail using DFT calculations. And the toxicity of HFPO-DA degradation intermediates and products was evaluated to reveal the feasibility of using advanced oxidation process (AOP) technology based on persulfate to degrade HFPO-DA in wastewater. The results showed that the committed step of HFPO-DA degradation was initiated by the electron transfer reaction of SO4•- radicals. This reaction is not spontaneous at room temperature and requires sufficient electrical or thermal energy to be absorbed from the external environment. The perfluoroalcohol produced during this reaction can subsequently undergo four possible reactions: H atom abstraction from alcohol groups by an OH radical; H atom abstraction by SO4•-; direct HF removal; and HF removal with water as the catalyst. The final degradation products of HFPO-DA mainly include CO2, CF3CF2COOH, CF3COOH, FCOOH and HF, which has been identified through previous experimental analysis. Ecotoxicity assessment indicates that degradation does not produce highly toxic intermediates, and that the final products are non-toxic, supporting the feasibility of persulfate-based AOP technologies.
Collapse
Affiliation(s)
- Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Youxin Xu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenyan Liu
- School of agriculture, Ludong University, Yantai 264025, China
| | - Huaiyu Zhou
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Ningning Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Zhihao Fang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
37
|
Shu Y, Wang Q, Hong P, Ruan Y, Lin H, Xu J, Zhang H, Deng S, Wu H, Chen L, Leung KMY. Legacy and Emerging Per- and Polyfluoroalkyl Substances Surveillance in Bufo gargarizans from Inlet Watersheds of Chaohu Lake, China: Tissue Distribution and Bioaccumulation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13148-13160. [PMID: 37565447 DOI: 10.1021/acs.est.3c02660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
38
|
Martin KV, Hilbert TJ, Reilly M, Christian WJ, Hoover A, Pennell KG, Ding Q, Haynes EN. PFAS soil concentrations surrounding a hazardous waste incinerator in East Liverpool, Ohio, an environmental justice community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80643-80654. [PMID: 37300732 PMCID: PMC10510938 DOI: 10.1007/s11356-023-27880-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds widely used in industrial and consumer products. While PFAS provide product durability, these chemicals are ubiquitous, persistent, bioaccumulative, and toxic. These characteristics make the ultimate disposal of PFAS a challenge. One current disposal method is incineration; however, little research has been conducted on the safety and effectiveness of PFAS incineration. The characteristics of communities with hazardous waste incinerators that have received PFAS shipments indicate that more individuals with lower incomes and individuals with less education than the US average are at higher risk of exposure, which presents important environmental justice and health equity concerns of PFAS incineration. Situated in eastern Ohio, East Liverpool is an Appalachian community that is home to a large hazardous-waste incinerator, operated by Heritage WTI, that began accepting PFAS in 2019. Residents are concerned that the disposal lacks the research necessary to assure safety for the residents. Due to both community interest and data gaps regarding PFAS incineration, our research team conducted a pilot study to examine the distribution and concentration of PFAS in soil samples surrounding the incinerator. All 35 soil samples had measurable amounts of PFAS including perfluorobutanesulfonic acid (PFBS), perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide dimer acid (HFPO-DA)/GenX. PFOS was measured in the majority of soil samples (97%) with a range of 50-8,300 ng/kg. PFOA was measured in 94% of soil samples with a range of 51 ng/kg to 1300 ng/kg. HFPO-DA/GenX was measurable in 12 soil samples with concentrations of ranging from 150 ng/kg to 1500 ng/kg. Further research on PFAS disposal will advance knowledge and action related to regulatory requirements and exposure prevention, ultimately improving individual and community protections and health equity.
Collapse
Affiliation(s)
- Kaitlin Vollet Martin
- College of Public Health, University of Kentucky, Lexington, KY, USA
- St. Elizabeth College of Natural and Health Sciences, Thomas More University, Crestview Hills, KY, USA
| | | | - Michael Reilly
- Michael Reilly Environmental, Health and Safety Services, Inc., McKeesport, PA, USA
| | - W Jay Christian
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Anna Hoover
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Kelly G Pennell
- College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Erin N Haynes
- College of Public Health, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
39
|
Yim G, McGee G, Gallagher L, Baker E, Jackson BP, Calafat AM, Botelho JC, Gilbert-Diamond D, Karagas MR, Romano ME, Howe CG. Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. CHEMOSPHERE 2023; 329:138644. [PMID: 37031836 PMCID: PMC10208216 DOI: 10.1016/j.chemosphere.2023.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed to investigate the joint, class-specific, and individual impacts of (i) PFAS, (ii) toxic metals and metalloids (referred to collectively as "metals"), and (iii) essential elements on birth outcomes in a prospective pregnancy cohort using both established and recent mixture modeling approaches. Participants included 537 mother-child pairs from the New Hampshire Birth Cohort Study. Concentrations of 6 metals and 5 PFAS were measured in maternal toenail clippings and plasma, respectively. Birth weight, birth length, and head circumference at birth were abstracted from medical records. Joint, index-wise, and individual associations of the metals and PFAS concentrations with birth outcomes were evaluated using Bayesian Kernel Machine Regression (BKMR) and Bayesian Multiple Index Models (BMIM). After controlling for potential confounders, the metals-PFAS mixture was associated with a larger head circumference at birth, which was driven by manganese. When using BKMR, the difference in the head circumference z-score when changing manganese from its 25th to 75th percentiles while holding all other mixture components at their medians was 0.22 standard deviations (95% posterior credible interval [CI]: -0.02, 0.46). When using BMIM, the posterior mean of index weight estimates assigned to manganese for head circumference z-score was 0.72 (95% CI: 0, 0.99). Prenatal exposure to the metals-PFAS mixture was not associated with birth weight or birth length by either BKMR or BMIM. Using both traditional and new mixture modeling approaches, prenatal exposure to manganese was associated with a larger head circumference at birth after accounting for exposure to PFAS and multiple toxic and essential metals.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Lisa Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
40
|
Zhang X, Ren X, Sun W, Griffin N, Wang L, Liu H. PFOA exposure induces aberrant glucose and lipid metabolism in the rat liver through the AMPK/mTOR pathway. Toxicology 2023; 493:153551. [PMID: 37236338 DOI: 10.1016/j.tox.2023.153551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA) is the most prominent member of a widely utilized family of compounds named Perfluoroalkyl substances (PFASs). Initially produced for use in both industrial and consumer applications, it has since been recognized that PFASs are extremely persistent in the environment where they have been characterized as persistent organic pollutants (POPs). While previous studies have demonstrated that PFOA may induce disorders of lipid and carbohydrate metabolism, the precise mechanisms by which PFOA produces this phenotype and the involvement of downstream AMPK/mTOR pathways remains unclear. In this study, male rats were exposed to 1.25, 5 and 20mg PFOA/kg body weight/day for 28 days by oral gavage. After 28 days, blood was collected and tested for serum biochemical indicators and livers were removed and weighed. To investigate aberrant metabolism in rats exposed to PFOA, livers were analyzed by performing LC-MS/MS untargeted metabolomics, quantitative real-time PCR, western blotting, immunohistochemical staining was also performed on exposed tissues. Our results showed that exposure to PFOA induced liver damage, increased the expression of glucose and lipid related biochemical indexes in liver and serum, and altered the expression levels of AMPK/mTOR pathway related genes and proteins. In summary, this study clarifies the mechanisms responsible for PFOA toxicity in the liver of exposed animals.
Collapse
Affiliation(s)
- Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Weiqiang Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China.
| |
Collapse
|
41
|
Yoo HJ, Pyo MC, Rhee KH, Lim JM, Yang SA, Yoo MK, Lee KW. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (GenX): Hepatic stress and bile acid metabolism with different pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115001. [PMID: 37196520 DOI: 10.1016/j.ecoenv.2023.115001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and perfluoroalkyl ether carboxylic acids (PFECAs) are organic chemicals that are widely used in the manufacture of a wide range of human-made products. Many monitoring findings revealed the presence of PFASs and PFECAs in numerous environmental sources, including water, soil, and air, which drew more attention to both chemicals. Because of their unknown toxicity, the discovery of PFASs and PFECAs in a variety of environmental sources was viewed as a cause for concern. In the present study, male mice were given orally one of the typical PFASs, perfluorooctanoic acid (PFOA), and one of the representative PFECAs, hexafluoropropylene oxide-dimer acid (HFPO-DA). The liver index showing hepatomegaly rose significantly after 90 d of exposure to PFOA and HFPO-DA, respectively. While sharing similar suppressor genes, both chemicals demonstrated unique hepatotoxic mechanisms. In different ways, these two substances altered the expression of hepatic stress-sensing genes as well as the regulation of nuclear receptors. Not only are bile acid metabolism-related genes in the liver altered, but cholesterol metabolism-related genes as well. These results indicate that PFOA and HFPO-DA both cause hepatotoxicity and bile acid metabolism impairment with distinct mechanisms.
Collapse
Affiliation(s)
- Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyu Hyun Rhee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Min Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seon-Ah Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ki Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
42
|
Wu S, Xie J, Zhao H, Sanchez O, Zhao X, Freeman JL, Yuan C. Pre-differentiation GenX exposure induced neurotoxicity in human dopaminergic-like neurons. CHEMOSPHERE 2023; 332:138900. [PMID: 37172627 DOI: 10.1016/j.chemosphere.2023.138900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
GenX, also known as hexafluoropropylene oxide dimer acid (HFPO) was introduced as a safer alternative to perfluorooctanoic acid (PFOA) in 2009. After nearly two decades of applications there are increasing safety concerns about GenX due to its association with various organ damages. Few studies, however, have systematically assessed the molecular neurotoxicity of low-dose GenX exposure. Here, we evaluated the effects of pre-differentiation exposure of GenX on dopaminergic (DA) -like neurons using SH-SY5Y cell line; and assessed changes in epigenome, mitochondrion, and neuronal characteristics. Low dose GenX exposure at 0.4 and 4 μg/L prior to differentiation induces persistent changes in nuclear morphology and chromatin arrangements, manifested specifically in the facultative repressive marker H3K27me3. We also observed impaired neuronal network, increased calcium activity along with alterations in Tyrosine hydroxylase (TH) and α-Synuclein after prior exposure to GenX. Collectively, our results identified neurotoxicity of low-dose GenX exposure in human DA-like neurons following a developmental exposure scheme. The observed changes in neuronal characteristics suggest GenX as a potential neurotoxin and risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar Sanchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
43
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
44
|
Jeanne PV, McLamb F, Feng Z, Griffin L, Gong S, Shea D, Szuch MA, Scott S, Gersberg RM, Bozinovic G. Locomotion and brain gene expression exhibit sex-specific non-monotonic dose-response to HFPO-DA during Drosophila melanogaster lifespan. Neurotoxicology 2023; 96:207-221. [PMID: 37156305 DOI: 10.1016/j.neuro.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Legacy per- and polyfluoroalkyl substances (PFAS), known for their environmental persistence and bio-accumulative properties, have been phased out in the U.S. due to public health concerns. A newer polymerization aid used in the manufacture of some fluoropolymers, hexafluoropropylene oxide-dimer acid (HFPO-DA), has lower reported bioaccumulation and toxicity, but is a potential neurotoxicant implicated in dopaminergic neurodegeneration. OBJECTIVE We investigated HFPO-DA's bio-accumulative potential and sex-specific effects on lifespan, locomotion, and brain gene expression in fruit flies. METHODS We quantified bioaccumulation of HFPO-DA in fruit flies exposed to 8.7×104µg/L of HFPO-DA in the fly media for 14 days via UHPLC-MS. Long-term effect on lifespan was determined by exposing both sexes to 8.7×102 - 8.7×105µg/L of HFPO-DA in media. Locomotion was measured following 3, 7, and 14 days of exposures at 8.7×101 - 8.7×105µg/L of HFPO-DA in media, and high-throughput 3'-end RNA-sequencing was used to quantify gene expression in fly brains across the same time points. RESULTS Bioaccumulation of HFPO-DA in fruit flies was not detected. HFPO-DA-induced effects on lifespan, locomotion, and brain gene expression, and lowest adverse effect level (LOAEL) showed sexually dimorphic patterns. Locomotion scores significantly decreased in at least one dose at all time points for females and only at 3-day exposure for males, while brain gene expression exhibited non-monotonic dose-response. Differentially expressed genes correlated to locomotion scores revealed sex-specific numbers of positively and negatively correlated genes per functional category. CONCLUSION Although HFPO-DA effects on locomotion and survival were significant at doses higher than the US EPA reference dose, the brain transcriptomic profiling reveals sex-specific changes and neurological molecular targets; gene enrichments highlight disproportionately affected categories, including immune response: female-specific co-upregulation suggests potential neuroinflammation. Consistent sex-specific exposure effects necessitate blocking for sex in experimental design during HFPO-DA risk assessment.
Collapse
Affiliation(s)
- P Vu Jeanne
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | | | - Mary A Szuch
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Savannah Scott
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Richard M Gersberg
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, School of Biological Sciences, La Jolla, CA, USA.
| |
Collapse
|
45
|
Wang C, Fu H, Yang J, Liu L, Zhang F, Yang C, Li H, Chen J, Li Q, Wang X, Ye Y, Sheng N, Guo Y, Dai J, Xu G, Liu X, Wang J. PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130831. [PMID: 36696776 DOI: 10.1016/j.jhazmat.2023.130831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) are a worldwide health concern due to their potential bioaccumulation and toxicity in humans. A variety of perfluoroether carboxylic acids (PFECAs) have been developed as next-generation replacements of legacy PFASs. However, information regarding their possible environmental and human health risks is limited. In the present study, we explored the effects of PFECAs on mice based on long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA). Results showed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly. PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the liver. Importantly, PFECAs had an inhibitory effect on the glucocorticoid receptor (GR), which may contribute to the extensive suppression of stress signals. Of note, the GR suppression induced by PFECAs was not reported by legacy perfluorooctanoic acid (PFOA). PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased fatty acids and amino acids and increased β-oxidation. Mechanistically, PFO5DoDA inhibited GR transactivation by degradation of GR proteins. Our results emphasize the potential risk of PFECAs to human health, which were introduced to ease concerns regarding legacy PFASs.
Collapse
Affiliation(s)
- Chang Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jun Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
46
|
Mahoney H, Cantin J, Xie Y, Brinkmann M, Giesy JP. Perfluoroethylcyclohexane sulphonate, an emerging perfluoroalkyl substance, disrupts mitochondrial membranes and the expression of key molecular targets in vitro. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106453. [PMID: 36848694 DOI: 10.1016/j.aquatox.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroethylcyclohexane sulphonate (PFECHS) is an emerging, replacement perfluoroalkyl substance (PFAS) with little information available on the toxic effects or potencies with which to characterize its potential impacts on aquatic environments. This study aimed to characterize effects of PFECHS using in vitro systems, including rainbow trout liver cells (RTL-W1 cell line) and lymphocytes separated from whole blood. It was determined that exposure to PFECHS caused minor acute toxic effects for most endpoints and that little PFECHS was concentrated into cells with a mean in vitro bioconcentration factor of 81 ± 25 L/kg. However, PFECHS was observed to affect the mitochondrial membrane and key molecular receptors, such as the peroxisome proliferator receptor, cytochrome p450-dependent monooxygenases, and receptors involved in oxidative stress. Also, glutathione-S-transferase was significantly down-regulated at a near environmentally relevant exposure concentration of 400 ng/L. These results are the first to report bioconcentration of PFECHS, as well as its effects on the peroxisome proliferator and glutathione-S-transferase receptors, suggesting that even with little bioconcentration, PFECHS has potential to cause adverse effects.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jenna Cantin
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yuwei Xie
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 5C8, Canada; Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 5C8, Canada.
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| |
Collapse
|
47
|
Wen ZJ, Wei YJ, Zhang YF, Zhang YF. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 2023; 97:1195-1245. [PMID: 36947184 DOI: 10.1007/s00204-023-03477-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
48
|
Heintz MM, Haws LC, Klaunig JE, Cullen JM, Thompson CM. Assessment of the mode of action underlying development of liver lesions in mice following oral exposure to HFPO-DA and relevance to humans. Toxicol Sci 2023; 192:15-29. [PMID: 36629480 PMCID: PMC10025879 DOI: 10.1093/toxsci/kfad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate) is a short-chain polyfluorinated alkyl substance (PFAS) used in the manufacture of some types of fluorinated polymers. Like many PFAS, toxicity studies with HFPO-DA indicate the liver is the primary target of toxicity in rodents following oral exposure. Due to the structural diversity of PFAS, the mode of action (MOA) can differ between PFAS for the same target tissue. There is significant evidence for involvement of peroxisome proliferator-activated receptor alpha (PPARα) activation based on molecular and histopathological responses in the liver following HFPO-DA exposure, but other MOAs have also been hypothesized based on limited evidence. The MOA underlying the liver effects in mice exposed to HFPO-DA was assessed in the context of the Key Events (KEs) outlined in the MOA framework for PPARα activator-induced rodent hepatocarcinogenesis. The first 3 KEs (ie, PPARα activation, alteration of cell growth pathways, and perturbation of cell growth/survival) are supported by several lines of evidence from both in vitro and in vivo data available for HFPO-DA. In contrast, alternate MOAs, including cytotoxicity, PPARγ and mitochondrial dysfunction are generally not supported by the scientific literature. HFPO-DA-mediated liver effects in mice are not expected in humans as only KE 1, PPARα activation, is shared across species. PPARα-mediated gene expression in humans produces only a subset (ie, lipid modulating effects) of the responses observed in rodents. As such, the adverse effects observed in rodent livers should not be used as the basis of toxicity values for HFPO-DA for purposes of human health risk assessment.
Collapse
Affiliation(s)
| | | | - James E Klaunig
- School of Public Health, Indiana University, Bloomington, Indiana 47405, USA
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606, USA
| | | |
Collapse
|
49
|
Rashid F, Dubinkina V, Ahmad S, Maslov S, Irudayaraj JMK. Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. TOXICS 2023; 11:281. [PMID: 36977046 PMCID: PMC10051855 DOI: 10.3390/toxics11030281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Alterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism. Male CD-1 mice were exposed to PFOS and GenX in different concentrations and compared to controls. GenX and PFOS were found to have different effects on the bacterial community in both the small intestine and colon based on 16S rRNA profiles. High GenX doses predominantly led to increases in the abundance of Clostridium sensu stricto, Alistipes, and Ruminococcus, while PFOS generally altered Lactobacillus, Limosilactobacillus, Parabacteroides, Staphylococcus, and Ligilactobacillus. These treatments were associated with alterations in several important microbial metabolic pathways in both the small intestine and colon. Untargeted LC-MS/MS metabolomic analysis of the liver, small intestine, and colon yielded a set of compounds significantly altered by PFOS and GenX. In the liver, these metabolites were associated with the important host metabolic pathways implicated in the synthesis of lipids, steroidogenesis, and in the metabolism of amino acids, nitrogen, and bile acids. Collectively, our results suggest that PFOS and GenX exposure can cause major perturbations in the gastrointestinal tract, aggravating microbiome toxicity, hepatotoxicity, and metabolic disorders.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saeed Ahmad
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Maria Kumar Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
50
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|