1
|
Anand-Ivell R, Heng K, Antonio L, Bartfai G, Casanueva FF, Maggi M, O'Neill TW, Punab M, Rastrelli G, Slowikowska-Hilczer J, Tournoy J, Vanderschueren D, Wu FC, Huhtaniemi IT, Ivell R. Insulin-like peptide 3 (INSL3) as an indicator of leydig cell insufficiency (LCI) in Middle-aged and older men with hypogonadism: reference range and threshold. Aging Male 2024; 27:2346322. [PMID: 38676285 DOI: 10.1080/13685538.2024.2346322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a circulating biomarker for Leydig cell functional capacity in men, also indicating Leydig Cell Insufficiency (LCI) and potential primary hypogonadism. Using results from large cohort studies we explore sources of biological and technical variance, and establish a reference range for adult men. It is constitutively secreted with little within-individual variation and reflects testicular capacity to produce testosterone. The main INSL3 assays available indicate good concordance with low technical variance; there is no effect of ethnicity. INSL3 declines with age from 35 years at about 15% per decade. Like low calculated free testosterone, and to a lesser extent low total testosterone, reduced INSL3 is significantly associated with increasing age-related morbidity, including lower overall sexual function, reflecting LCI. Consequently, low INSL3 (≤0.4 ng/ml; ca. <2 SD from the population mean) might serve as an additional biochemical marker in the assessment of functional hypogonadism (late-onset hypogonadism, LOH) where testosterone is in the borderline low range. Excluding individuals with low LCI (INSL3 ≤ 0.4 ng/ml) leads to an age-independent (> 35 years) reference range (serum) for INSL3 in the eugonadal population of 0.4 - 2.3 ng/ml, with low INSL3 prospectively identifying individuals at risk of increased future morbidity.
Collapse
Affiliation(s)
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-Gyorgy Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (IDIS), CIBER de Fisiopatología Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Mario Maggi
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, The University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Margus Punab
- Andrology Clinic, Tartu University Hospital, and Institute of Clinical Medicine, and Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Giulia Rastrelli
- Endocrinology and Andrology Unit, "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Jos Tournoy
- Department of Geriatrics, University Hospitals Leuven, and Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, Leuven, KU, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Department of Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, UK
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
2
|
de Haro-Romero T, Peinado FM, Vela-Soria F, Lara-Ramos A, Fernández-Parra J, Molina-Lopez A, Ubiña A, Ocón O, Artacho-Cordón F, Freire C. Association between exposure to perfluoroalkyl substances (PFAS) and endometriosis in the ENDEA case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175593. [PMID: 39179042 DOI: 10.1016/j.scitotenv.2024.175593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are environmental contaminants present in a wide range of consumer products and frequently detected in drinking water. They have been linked to adverse reproductive health outcomes in women, but there is limited human evidence on the association of PFAS exposure with endometriosis. OBJECTIVE/AIM To explore the association between plasma concentrations of several PFAS, considered individually and as a mixture, and the risk of endometriosis in women of childbearing age. METHODS Between 2018 and 2020, 42 patients with endometriosis and 90 controls undergoing abdominal surgery were recruited at two public hospitals in Granada, Spain. The presence or absence of endometriosis was ascertained by laparoscopic inspection of the pelvis and biopsy of suspected lesions (histological diagnosis). Concentrations of 10 PFAS were quantified in plasma samples from participants. Unconditional logistic regression was employed to examine associations of individual PFAS and summed concentrations of short (∑SC) and long-chain (∑LC) PFAS with odds of endometriosis, and quantile g-computation was used to assess their mixture effect. RESULTS In models adjusted for age, schooling, and parity, perfluorotridecanoic acid (PFTrDA) was associated with higher odds of endometriosis (odds ratio [OR] = 1.74; 95 % CI = 1.11-2.73 per 2-fold increase in plasma concentrations), while marginally significant associations were found for perfluorohexane sulfonate (PFHxS) (OR = 1.45, 95 % CI = 0.94-2.21) and ∑SC PFAS (OR = 1.48; 95 % CI = 0.96-2.30). No associations were found for the remaining PFAS. The PFAS mixture was non-significantly associated with 1.7-fold higher odds of endometriosis (95 % CI = 0.73-3.80), with perfluorononanoic acid (PFNA), PFHxS, and PFTrDA being the major contributors to this effect. CONCLUSIONS These findings suggest that exposure to certain PFAS may increase the odds of endometriosis. However, given the modest sample size, further studies are warranted to verify these results.
Collapse
Affiliation(s)
- Teresa de Haro-Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Clinical Laboratory Management Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Francisco M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071 Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Clinical Laboratory Management Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Ana Lara-Ramos
- Gynaecology and Obstetrics Unit, Virgen de las Nieves University Hospital, 18016 Granada, Spain
| | - Jorge Fernández-Parra
- Gynaecology and Obstetrics Unit, Virgen de las Nieves University Hospital, 18016 Granada, Spain
| | - Ana Molina-Lopez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Gynaecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Alfredo Ubiña
- General Surgery Unit, San Cecilio University Hospital, E-18016, Granada, Spain
| | - Olga Ocón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Gynaecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071 Granada, Spain; General Surgery Unit, San Cecilio University Hospital, E-18016, Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
3
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
4
|
Shang Y, Chen K, Ni H, Zhu X, Yuan X, Wang Y, Liu X, Cui Z, Niu Y, Shi Y, Wu H, Xia D, Wu Y. Environmentally relevant concentrations of perfluorobutane sulfonate impair locomotion behaviors and healthspan by downregulating mitophagy in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135938. [PMID: 39326150 DOI: 10.1016/j.jhazmat.2024.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Perfluorobutane sulfonate (PFBS), a chemical compound within the group of per- and polyfluoroalkyl substances (PFAS), has been utilized as an alternative to perfluorooctane sulfonate (PFOS) recently. Previous research has indicated that PFBS might be linked to a range of health concerns. However, the potential impacts of environmentally relevant concentrations of PFBS (25 nM) on aging as well as the underlying mechanisms remained largely unexplored. In this study, we investigated the impact of PFBS exposure on aging and the associated mechanisms in Caenorhabditis elegans. Our findings indicated that exposure to PFBS impaired healthspan of C. elegans. Through bioinformatic screening analyses, we identified that the dysfunctions of pink-1 mediated mitophagy might play a critical role in PFBS induced aging. The results furtherly revealed that PFBS exposure led to elevated levels of reactive oxygen species (ROS) and mitophagy impairment through downregulating pink-1/pdr-1 pathway. Furthermore, the mitophagy agonist Urolithin A (UA) effectively reversed PFBS-induced mitophagy dysfunction and enhanced healthspan in C. elegans. Taken together, our study suggested that exposure to environmentally relevant concentrations of PFBS could accelerate aging by downregulating the pink-1 mediated mitophagy. Promoting mitophagy within cells could be a promising therapeutic strategy for delaying PFBS-induced aging.
Collapse
Affiliation(s)
- Yahui Shang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Zhu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Huang Y, Jia Z, Lu X, Wang Y, Li R, Zhou A, Chen L, Wang Y, Zeng HC, Li P, Ghassabian A, Yuan N, Kong F, Xu S, Liu H. Prenatal Exposure to Per- and Polyfluoroalkyl Substances and ASD-Related Symptoms in Early Childhood: Mediation Role of Steroids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16291-16301. [PMID: 39226190 DOI: 10.1021/acs.est.4c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Previous studies regarding the associations between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and autism spectrum disorder (ASD) have yielded inconsistent results, with the underlying mechanisms remaining unknown. In this study, we quantified 13 PFAS in cord serum samples from 396 neonates and followed the children at age 4 to assess ASD-related symptoms. Our findings revealed associations between certain PFAS and ASD-related symptoms, with a doubling of perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) concentrations associated with respective increases of 1.79, 1.62, and 1.45 units in language-related symptoms and PFDA exhibiting an association with higher score of sensory stimuli. Nonlinear associations were observed in the associations of 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES) and 8:2 Cl-PFAES with ASD-related symptoms. Employing weighted quantile sum (WQS) regression, we observed significant mixture effects of multiple PFAS on all domains of ASD-related symptoms, with PFNA emerging as the most substantial contributor. Assuming causality, we found that 39-40% of the estimated effect of long-chain PFAS (PFUnDA and PFDoDA) exposure on sensory stimuli was mediated by androstenedione. This study provides novel epidemiological data about prenatal PFAS mixture exposure and ASD-related symptoms.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xinhe Lu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Yin Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ruizhen Li
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430016, Hubei, China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430016, Hubei, China
| | - Lei Chen
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430016, Hubei, China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, 10016 New York, New York, United States
| | - Huai-Cai Zeng
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Pei Li
- Department of Physiology and Biophysics, University of New York at Buffalo, 14260 New York, New York, United States
| | - Akhgar Ghassabian
- Department of Population Health, New York University Grossman School of Medicine, 10016 New York, New York, United States
| | - Ningxue Yuan
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fanjuan Kong
- Medical Record Management Department, Maternal and Child Health Hospital of Hunan Province, Changsha 410008, Hunan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
6
|
Zhang YT, Zeeshan M, Fan YY, Tan WH, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Lin LZ, Liu RQ, Zeng XW, Dong GH, Chu C. Isomer of per- and polyfluoroalkyl substances and red blood cell indices in adults: The Isomers of C8 Health Project in China. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:153-165. [PMID: 39219509 DOI: 10.1080/19338244.2024.2396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to explore the isomer-specific, sex-specific, and joint associations of PFAS and red blood cell indices. We used data of 1,238 adults from the Isomers of C8 Health Project in China. Associations of PFAS isomers and red blood cell indices were explored using multiple linear regression models, Bayesian Kernel Machine Regression models and subgroup analysis across sex. We found that serum concentration of linear (n-) and branched (Br-) isomers of perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were significantly associated with red blood cell indices in single-pollutant models, with stronger associations observed for n-PFHxS than Br-PFHxS, in women than in men. For instance, the estimated percentage change in hemoglobin concentration for n-PFHxS (3.65%; 95% CI: 2.95%, 4.34%) was larger than that for Br-PFHxS (0.96%; 95% CI: 0.52%, 1.40%). The estimated percentage change in red blood cell count for n-PFHxS in women (2.55%; 95% CI: 1.81%, 3.28%) was significantly higher than that in men (0.12%; 95% CI: -1.04%, 1.29%) (Pinter < 0.001). Similarly, sex-specific positive association of PFAS mixture and outcomes was observed. Therefore, the structure, susceptive population, and joint effect of PFAS isomers should be taken into consideration when evaluating the health risk of chemicals.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Yuan-Yuan Fan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xia Liang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jing-Wen Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jia-Xin Zhou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Hao Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Zi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Ru-Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Chu Chu
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Wu B, Sheng N, Li Z, Wang J, Ji S, Zhao F, Pan Y, Qu Y, Wei Y, Xie L, Li Y, Hu X, Wu C, Zhang Z, Qiu Y, Zheng X, Zhang W, Hu X, Song H, Cai J, Cao Z, Ji JS, Lv Y, Dai J, Shi X. Positive Associations of Perfluoroalkyl and Polyfluoroalkyl Substances With Hypertension May Be Attenuated by Endogenous Sex Hormones: A Nationally Representative Cross-Sectional Study. Hypertension 2024; 81:1799-1810. [PMID: 38853753 DOI: 10.1161/hypertensionaha.123.22127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substance (PFAS) has endocrine-disrupting properties and may affect blood pressure. Endogenous hormones also play a crucial role in the progression of hypertension. However, their interaction with hypertension remains to be explored. METHODS This study included 10 794 adults aged ≥18 years from the China National Human Biomonitoring program. Weighted multiple logistic regression and linear regression were used to examine the associations of serum PFAS with hypertension, diastolic blood pressure, and systolic blood pressure. Joint effects of PFAS mixtures on hypertension, diastolic blood pressure, and systolic blood pressure were evaluated using quantile-based g-computation. Additive and multiplicative interactions were used to assess the role of PFAS with testosterone and estradiol on hypertension. RESULTS The prevalence of hypertension in Chinese adults was 35.50%. Comparing the fourth quartile with the first quartile, odds ratio (95% CI) of hypertension were 1.53 (1.13-2.09) for perfluorononanoic acid, 1.40 (1.03-1.91) for perfluorodecanoic acid, 1.34 (1.02-1.78) for perfluoroheptane sulfonic acid, and 1.46 (1.07-1.99) for perfluorooctane sulfonic acid. Moreover, PFAS mixtures, with perfluorononanoic acid contributing the most, were positively associated with hypertension, diastolic blood pressure, and systolic blood pressure. PFAS and endogenous hormones had an antagonistic interaction in hypertension. For example, the relative excess risk ratio, attributable proportion, and synergy index for perfluorononanoic acid and estradiol were -3.61 (-4.68 to -2.53), -1.65 (-2.59 to -0.71), and 0.25 (0.13-0.47), respectively. CONCLUSIONS Perfluorononanoic acid, perfluorodecanoic acid, perfluoroheptane sulfonic acid, perfluorooctane sulfonic acid, and PFAS mixtures showed positive associations with hypertension, systolic blood pressure, and diastolic blood pressure. Positive associations of PFAS with hypertension might be attenuated by increased levels of endogenous sex hormones.
Collapse
Affiliation(s)
- Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Changzi Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xuehua Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China (J.S.J.)
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
- Center for Global Health, School of Public Health, Nanjing Medical University, China (J.D., X.S.)
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
- Center for Global Health, School of Public Health, Nanjing Medical University, China (J.D., X.S.)
| |
Collapse
|
8
|
Ma X, Cai D, Chen Q, Zhu Z, Zhang S, Wang Z, Hu Z, Shen H, Meng Z. Hunting Metabolic Biomarkers for Exposure to Per- and Polyfluoroalkyl Substances: A Review. Metabolites 2024; 14:392. [PMID: 39057715 PMCID: PMC11278593 DOI: 10.3390/metabo14070392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a class of persistent synthetic chemicals extensively utilized across industrial and consumer sectors, raising substantial environmental and human health concerns. Epidemiological investigations have robustly linked PFAS exposure to a spectrum of adverse health outcomes. Altered metabolites stand as promising biomarkers, offering insights into the identification of specific environmental pollutants and their deleterious impacts on human health. However, elucidating metabolic alterations attributable to PFAS exposure and their ensuing health effects has remained challenging. In light of this, this review aims to elucidate potential biomarkers of PFAS exposure by presenting a comprehensive overview of recent metabolomics-based studies exploring PFAS toxicity. Details of PFAS types, sources, and human exposure patterns are provided. Furthermore, insights into PFAS-induced liver toxicity, reproductive and developmental toxicity, cardiovascular toxicity, glucose homeostasis disruption, kidney toxicity, and carcinogenesis are synthesized. Additionally, a thorough examination of studies utilizing metabolomics to delineate PFAS exposure and toxicity biomarkers across blood, liver, and urine specimens is presented. This review endeavors to advance our understanding of PFAS biomarkers regarding exposure and associated toxicological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhen Meng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
9
|
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. ENVIRONMENTAL RESEARCH 2024; 250:118485. [PMID: 38373549 DOI: 10.1016/j.envres.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Shi T, Li D, Li D, Sun J, Xie P, Wang T, Li R, Li Z, Zou Z, Ren X. Individual and joint associations of per- and polyfluoroalkyl substances (PFAS) with gallstone disease in adults: A cross-sectional study. CHEMOSPHERE 2024; 358:142168. [PMID: 38685323 DOI: 10.1016/j.chemosphere.2024.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Disturbances in the enterohepatic circulation are important biological mechanisms for causing gallstones and also have important effects on the metabolism of Per- and polyfluoroalkyl substances (PFAS). Moreover, PFAS is associated with sex hormone disorder which is another important cause of gallstones. However, it remains unclear whether PFAS is associated with gallstones. In this study, we used logistic regression, restricted cubic spline (RCS), quantile g-computation (qg-comp), Bayesian kernel machine regression (BKMR), and subgroup analysis to assess the individual and joint associations of PFAS with gallstones and effect modifiers. We observed that the individual associations of perfluorodecanoic acid (PFDeA) (OR: 0.600, 95% CI: 0.444 to 0.811), perfluoroundecanoic acid (PFUA) (OR: 0.630, 95% CI: 0.453 to 0.877), n-perfluorooctane sulfonic acid (n-PFOS) (OR: 0.719, 95% CI: 0.571 to 0.906), and perfluoromethylheptane sulfonic acid isomers (Sm-PFOS) (OR: 0.768, 95% CI: 0.602 to 0.981) with gallstones were linearly negative. Qg-comp showed that the PFAS mixture (OR: 0.777, 95% CI: 0.514 to 1.175) was negatively associated with gallstones, but the difference was not statistically significant, and PFDeA had the highest negative association. Moreover, smoking modified the association of perfluorononanoic acid (PFNA) with gallstones. BKMR showed that PFDeA, PFNA, and PFUA had the highest groupPIP (groupPIP = 0.93); PFDeA (condPIP = 0.82), n-perfluorooctanoic acid (n-PFOA) (condPIP = 0.68), and n-PFOS (condPIP = 0.56) also had high condPIPs. Compared with the median level, the joint association of the PFAS mixture with gallstones showed a negative trend; when the PFAS mixture level was at the 70th percentile or higher, they were negatively associated with gallstones. Meanwhile, when other PFAS were fixed at the 25th, 50th, and 75th percentiles, PFDeA had negative associations with gallstones. Our evidence emphasizes that PFAS is negatively associated with gallstones, and more studies are needed in the future to definite the associations of PFAS with gallstones and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Di Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjuan Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zixuan Zou
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Institute for Health Statistics and Intelligent Analysis, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Ying Y, Wang S, Han L, Li H, Wang Y, Lv J, Ge RS, Tang Y. Perfluorotetradecanoic acid exposure to adult male rats stimulates corticosterone biosynthesis but inhibits aldosterone production. ENVIRONMENTAL TOXICOLOGY 2024; 39:2610-2622. [PMID: 38205621 DOI: 10.1002/tox.24135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a novel perfluoroalkyl substance that ubiquitously exists in the environment. However, whether PFTeDA affects adrenal cortex function remains unclear. Male Sprague-Dawley rats (age of 60 days) were daily administered with PFTeDA (0, 1, 5, and 10 mg/kg body weight) through gavage for 28 days. PFTeDA did not change body and adrenal gland weights. PFTeDA markedly elevated serum corticosterone level at 10 mg/kg but lowering serum aldosterone level at this dosage without influencing serum adrenocorticotropic hormone level. PFTeDA thickened zona fasciculata without affecting zona glomerulosa. PFTeDA remarkably upregulated the expression of corticosterone biosynthetic genes (Mc2r, Scarb1, Star, Cyp21, Cyp11b1, and Hsd11b1) and their proteins, whereas downregulating aldosterone biosynthetic enzyme Cyp11b2 and its protein, thereby distinctly altering their serum levels. PFTeDA markedly downregulated the expression of antioxidant genes (Sod1 and Sod2) and their proteins at 10 mg/kg. PFTeDA significantly decreased SIRT1/PGC1α and AMPK signaling while stimulating AKT1/mTOR signaling. Corticosterone significantly inhibited testosterone production by adult Leydig cells at >0.1 μM in vitro; however aldosterone significantly stimulated testosterone production at 0.1 nM. In conclusion, exposure to PFTeDA at male rat adulthood causes corticosterone excess and aldosterone deficiency via SIRT1/PGC1α, AMPK, and AKT1/mTOR signals, which in turn additively leads to testosterone deficiency.
Collapse
Affiliation(s)
- Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Pesonen M, Vähäkangas K. Involvement of per- and polyfluoroalkyl compounds in tumor development. Arch Toxicol 2024; 98:1241-1252. [PMID: 38478087 PMCID: PMC10965717 DOI: 10.1007/s00204-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
13
|
Maxwell DL, Oluwayiose OA, Houle E, Roth K, Nowak K, Sawant S, Paskavitz AL, Liu W, Gurdziel K, Petriello MC, Richard Pilsner J. Mixtures of per- and polyfluoroalkyl substances (PFAS) alter sperm methylation and long-term reprogramming of offspring liver and fat transcriptome. ENVIRONMENT INTERNATIONAL 2024; 186:108577. [PMID: 38521043 DOI: 10.1016/j.envint.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Male fertility has been declining worldwide especially in countries with high levels of endocrine disrupting chemicals (EDCs). Per- and polyfluorinated alkyl Substances (PFAS) have been classified as EDCs and have been linked to adverse male reproductive health. The mechanisms of these associations and their implications on offspring health remain unknown. The aims of the current study were to assess the effect of PFAS mixtures on the sperm methylome and transcriptional changes in offspring metabolic tissues (i.e., liver and fat). C57BL/6 male mice were exposed to a mixture of PFAS (PFOS, PFOA, PFNA, PFHxS, Genx; 20 µg/L each) for 18-weeks or water as a control. Genome-wide methylation was assessed on F0 epidydimal sperm using reduced representation bisulfite sequencing (RRBS) and Illumina mouse methylation array, while gene expression was assessed by bulk RNA sequencing in 8-week-old offspring derived from unexposed females. PFAS mixtures resulted in 2,861 (RRBS) and 83 (Illumina) sperm DMRs (q < 0.05). Functional enrichment revealed that PFAS-induced sperm DMRs were associated with behavior and developmental pathways in RRBS, while Illumina DMRs were related to lipid metabolism and cell signaling. Additionally, PFAS mixtures resulted in 40 and 53 differentially expressed genes (DEGs) in the liver and fat of males, and 9 and 31 DEGs in females, respectively. Functional enrichment of DEGs revealed alterations in cholesterol metabolism and mitotic cell cycle regulation in the liver and myeloid leukocyte migration in fat of male offspring, while in female offspring, erythrocyte development and carbohydrate catabolism were affected in fat. Our results demonstrate that exposure to a mixture of legacy and newly emerging PFAS chemicals in adult male mice result in aberrant sperm methylation and altered gene expression of offspring liver and fat in a sex-specific manner. These data indicate that preconception PFAS exposure in males can be transmitted to affect phenotype in the next generation.
Collapse
Affiliation(s)
- DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America
| | - Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Amanda L Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America; Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America; Department of Pharmacology, School of Medicine, Wayne State University, Detroit 48201, MI, the United States of America
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, the United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, the United States of America.
| |
Collapse
|
14
|
Wu Y, Qiu Y, Wu Y, Li H, Yang H, Deng Q, He B, Yan F, Li Y, Chen F. Association of per- and polyfluoroalkyl substances (PFAS) with periodontitis: the mediating role of sex hormones. BMC Oral Health 2024; 24:243. [PMID: 38360594 PMCID: PMC10870532 DOI: 10.1186/s12903-024-03863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To investigate the association between serum per- and polyfluoroalkyl substances (PFAS) and periodontitis, and further explore the possible mediating role of sex hormones in this association. METHODS We extracted data from National Health and Nutrition Examination Survey (NHANES) 2009-2014. Univariable and multivariable logistic regression models were performed to investigate the association between serum levels of seven PFASs and periodontitis. Bayesian kernel machine regression (BKMR) was conducted to assess the joint effect of PFASs in mixtures. Mediation analyses were used to explore the potential mediating role of sex hormones. RESULTS Participants with periodontitis had higher concentrations of serum perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) than those without periodontitis (both P < 0.05). In fully adjusted models, high serum concentrations of PFOS and PFNA were positively associated with periodontitis (tertile 3 vs. tertile 1: prevalence ratio (PR) = 1.19 for PFOS, 95% CI: 1.01-1.39; PR = 1.17 for PFNA, 95% CI: 1.02-1.34). The results from the BKMR models consistently showed a positive association between PFAS mixtures and periodontitis. Of note, testosterone and the ratio of testosterone to estradiol significantly mediated the relationship between high level of PFOS and periodontitis, accounting for 16.5% and 31.7% of the total effect, respectively. Sensitivity analyses yielded similar results when using periodontal clinical indices (mean loss of attachment, mean periodontal probing depth, and the number of teeth) as dependent variables. CONCLUSIONS These findings provide evidence to support a positive association between certain PFASs and periodontitis, which might be partially mediated by sex hormones.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Husheng Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Qingrong Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Averina M, Huber S, Almås B, Brox J, Jacobsen BK, Furberg AS, Grimnes G. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study. ENVIRONMENTAL RESEARCH 2024; 242:117703. [PMID: 37984785 DOI: 10.1016/j.envres.2023.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that are ubiquitous in the environment and include recognized persistent organic pollutants. The aim of this cross-sectional study was to investigate possible endocrine disrupting effects of different PFAS in adolescents. METHODS Serum concentrations of PFAS, thyroid, parathyroid and steroid hormones were measured in 921 adolescents aged 15-19 years in the Fit Futures study, Northern Norway. The questionnaire included data on self-reported age at menarche and puberty development score (PDS). Multiple linear and logistic regression analyses and principle component analyses (PCA) were used to assess associations of PFAS with hormones concentrations and puberty indices. RESULTS In girls, total PFAS (∑PFAS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorodecanoate (PFDA) were positively associated with dehydroepiandrosterone sulfate (DHEAS) and negatively associated with 11-deoxycorticosterone (11-DOC)/DHEAS ratio. In boys, the associations with 11-DOC/DHEAS ratio were positive for ∑PFAS, perfluoroheptanoate (PFHpA), perfluoroheptane sulfonate (PFHpS), PFOA, and PFOS. Perfluoroundecanoate (PFUnDA) was negatively associated with free thyroxine (fT4) and free triiodothyronine (fT3) in boys. PFNA and PFDA were also negatively associated with fT3 in boys. Serum parathyroid hormone concentration (PTH) was negatively associated with ∑PFAS and perfluorohexane sulfonate (PFHxS) in girls, and with PFOS in boys. PFDA and PFUnDA were positively associated with early menarche, while ∑PFAS and PFOA were positively associated with PDS in boys. No associations of PFAS with serum testosterone, follicle-stimulating hormone, or luteinizing hormone were found in either sex. In girls, PFOA was positively associated with free testosterone index (FTI). In boys, PFOA was positively associated with androstendione and 17-OH-progesterone, while PFHpA was positively associated with estradiol. CONCLUSIONS Serum concentrations of several PFAS were associated with parathyroid and steroid hormones in both sexes, and with thyroid hormones in boys, as well as with early menarche in girls and higher PDS in boys.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway.
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjørg Almås
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Haukelandsveien 22, 5009, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjarne K Jacobsen
- Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Center for Sami Health Research, Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Molde University College, Britvegen 2, 6410, Molde, Norway
| | - Guri Grimnes
- Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Division of Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| |
Collapse
|
16
|
Li L, Guo Y, Ma S, Wen H, Li Y, Qiao J. Association between exposure to per- and perfluoroalkyl substances (PFAS) and reproductive hormones in human: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 241:117553. [PMID: 37931739 DOI: 10.1016/j.envres.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) is persistent endocrine disrupting chemicals. Previous evidence suggests that exposure to PFAS is associated with reproductive hormone levels, but the results of relevant studies are inconsistent. The objective of our study is to determine the association between exposure to PFAS and reproductive hormone levels in gender-specific general population. METHOD Based on scientific search strategies, we systematically searched PubMed, Web of Science, Embase, Medline, and Scopus to obtain the eligible studies published before January 21, 2023. The quality of the included articles was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias tool. We combined the β coefficient and 95% confidence intervals (CI) using Stata.17 with random-effect model or fixed-effect model. We also performed subgroup analysis, sensitivity analysis, and Begger's and Egger's tests. RESULTS Eleven studies involving 7714 participants were included. Meta-analysis showed that PFHxS exposure was positively associated with estradiol (E2) levels in female [β = 0.030, 95% CI: (0.013, 0.046), P = 0.000]. A negative association was found between PFOA [β = -0.012, 95% CI: (-0.023, -0.002), P = 0.017] and PFOS [β = -0.011; 95% CI: (-0.021, -0.000), P = 0.042] exposure with male testosterone (TT) levels. In the subgroup analysis, there were stronger associations in children than in adults. And the high heterogeneity was mainly due to the cross-sectional studies. Publication bias was not found in most of the analyses. CONCLUSION Our study showed that PFAS exposure was significantly associated with reproductive hormone levels. Further related studies are needed to identify the association and potential mechanism in the future.
Collapse
Affiliation(s)
- Ling Li
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yingkun Guo
- School of Nursing, Weifang Medical University, Weifang, 261053, China
| | - Shuai Ma
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hui Wen
- School of Nursing, Weifang Medical University, Weifang, 261053, China
| | - Yupei Li
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianhong Qiao
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China; The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
17
|
Mínguez-Alarcón L, Gaskins AJ, Meeker JD, Braun JM, Chavarro JE. Endocrine-disrupting chemicals and male reproductive health. Fertil Steril 2023; 120:1138-1149. [PMID: 37827483 PMCID: PMC10841502 DOI: 10.1016/j.fertnstert.2023.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Modifiable factors, such as environmental exposures, can impact human fertility. The objective of this review is to summarize the potential effects of exposure to important endocrine-disrupting chemicals on male reproductive health. Most experimental and animal data demonstrate strong evidence for the negative effects of exposure to phenols, phthalates, pesticides, and perfluoroalkyl and polyfluoroalkyl substances on male reproductive health. Although evidence of negative associations in humans was overall strong for phthalates and pesticides, limited and inconclusive relationships were found for the other examined chemical biomarkers. Reasons for the discrepancies in results include but are not limited to, differences in study populations, exposure concentrations, number of samples collected, sample sizes, study design, and residual confounding. Additional studies are needed, particularly for newer phenols and perfluoroalkyl and polyfluoroalkyl substances, given the scarce literature on the topic and increasing exposures over time.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jorge E Chavarro
- Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
18
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Freire C, Olivas-Martínez A, Schillemans T, Åkesson A, Desalegn A, Iszatt N, den Hond E, Verheyen V, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Cox B, Govarts E, Baken K, Tena-Sempere M, Olea N, Schoeters G, Fernández MF. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122214. [PMID: 37482334 DOI: 10.1016/j.envpol.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | | | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004., Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004, Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
19
|
Wang X, Liu Y, Zhang X, Tu W, Wang Q, Liu S, Zhang M, Wu Y, Mai B. Bioaccumulation, tissue distribution, and maternal transfer of novel PFOS alternatives (6:2 Cl-PFESA and OBS) in wild freshwater fish from Poyang Lake, China. CHEMOSPHERE 2023:139253. [PMID: 37331668 DOI: 10.1016/j.chemosphere.2023.139253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
As emerging alternatives to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) and sodium p-perfluorous nonenox-benzenesulfonate (OBS) were frequently detected in the four freshwater fish species collected from Poyang Lake. Median concentrations of 6:2 Cl-PFESA and OBS in fish tissues were 0.046-6.0 and 0.46-5.1 ng/g wet weight, respectively. The highest concentrations of 6:2 Cl-PFESA was found in fish livers, whereas OBS was found in the pancreas, brain, gonads, and skin. The tissue distribution pattern of 6:2 Cl-PFESA is similar to that of PFOS. The tissue/liver ratios of OBS were higher than those of PFOS, suggesting that OBS has a greater tendency to transfer from the liver to other tissues. The logarithmic bioaccumulation factors (log BAFs) of 6:2 Cl-PFESA in three carnivorous fish species were greater than 3.7, whereas those of OBS were less than 3.7, indicating that 6:2 Cl-PFESA had a strong bioaccumulation potential. Notably, sex- and tissue-specific bioaccumulation of OBS has also been observed in catfish. Most tissues (except the gonads) exhibited higher OBS concentrations in males than in females. However, no differences were found for 6:2 Cl-PFESA and PFOS. Maternal transfer efficiency of OBS was higher than that of 6:2 Cl-PFESA and PFOS in catfish (p < 0.05), indicating that OBS presents a higher risk of exposure to males and offspring through maternal offloading.
Collapse
Affiliation(s)
- Xiandong Wang
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yongming Wu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
20
|
Chaney C, Wiley KS. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999-2018. ENVIRONMENTAL RESEARCH 2023; 227:115714. [PMID: 36965790 DOI: 10.1016/j.envres.2023.115714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are endocrine disrupting chemicals that have myriad effects on human physiology. Estrogenic PFASs may influence biological aging by mimicking the activity of endogenous estrogens, which can decrease inflammation and oxidative stress and enhance telomerase activity. We hypothesized that PFAS exposure would be differentially associated with measures of biological aging based on biological sex and reproductive stage. METHODS We analyzed associations between serum PFAS levels and measures of biological aging for pre- and postmenopausal women and men (n = 3193) using data from the 2003 to 2018 waves of the National Health and Nutrition Examination Survey. Examining PFASs both individually and in mixture models, we investigated four measures of clinical aging (Homeostatic Dysregulation, the Klemera-Doubal Method, Phenotypic Age Acceleration, and Allostatic Load), oxidative stress, and telomere length. RESULTS PFOA and PFOS were negatively associated with Phenotypic Age Acceleration (e.g. decelerated aging) for men B = -0.22, 95% CI: -0.32, -0.12; B = -0.04, 95% CI: -0.06, -0.03) , premenopausal women (B = -0.58, 95% CI: -0.83, -0.32; B = -0.15, 95% CI: -0.20, -0.09), and postmenopausal women (B= -0.22, 95% CI: -0.43, -0.01; B = -0.05, 95% CI: -0.08, -0.02). In mixture models, we found net negative effects for Phenotypic Age Acceleration and Allostatic Load for men, premenopausal women, and postmenopausal women. We also found significant mixture effects for the antioxidants bilirubin and albumin among the three sample groups. We found no evidence to support effects on telomere length. DISCUSSION Our findings suggest that PFAS exposure may be inversely associated with some measures of biological aging at the relatively low levels of exposure in this sample, regardless of reproductive stage and sex, which does not support our hypothesis. This research provides insights into how PFAS exposure may variably influence aging measures depending on the physiological process investigated.
Collapse
Affiliation(s)
- C Chaney
- Department of Anthropology, Yale University, New Haven, CT, USA.
| | - K S Wiley
- Department of Anthropology, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Seli DA, Taylor HS. The impact of air pollution and endocrine disruptors on reproduction and assisted reproduction. Curr Opin Obstet Gynecol 2023; 35:210-215. [PMID: 36924404 DOI: 10.1097/gco.0000000000000868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Rapid increase in world population accompanied by global industrialization has led to an increase in deployment of natural resources, resulting in growing levels of pollution. Here, we review recent literature on the impact of environmental pollution on human reproductive health and assisted reproduction outcomes, focusing on two of the most common: air pollution and endocrine disruptors. RECENT FINDINGS Air pollution has been associated with diminished ovarian reserve, uterine leiomyoma, decreased sperm concentration and motility. Air pollution also correlates with decreased pregnancy rates in patients undergoing infertility treatment using in-vitro fertilization (IVF). Similarly, Bisphenol A (BPA), a well studied endocrine disrupting chemical, with oestrogen-like activity, is associated with diminished ovarian reserve, and abnormal semen parameters, while clinical implications for patients undergoing infertility treatment remain to be established. SUMMARY There is convincing evidence that environmental pollutants may have a negative impact on human health and reproductive potential. Air pollutions and endocrine disrupting chemicals found in water and food seem to affect male and female reproductive function. Large-scale studies are needed to determine the threshold values for health impact that may drive targeted policies.
Collapse
Affiliation(s)
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Shan L, Chai Y, Gao T, Li K, Yu J, Liang F, Ni Y, Sun P. Perfluorooctane sulfonate and perfluorooctanoic acid inhibit progesterone-responsive capacitation through cAMP/PKA signaling pathway and induce DNA damage in human sperm. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104165. [PMID: 37245612 DOI: 10.1016/j.etap.2023.104165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two persistent organic pollutants harmful to human health. They induce negative effects on male reproduction by influencing male hormones, spermatogenesis, and sperm quality. However, their effects and mechanisms on human sperm capacitation and fertilization remain unclear. Here, human sperm were incubated with different concentrations of PFOS or PFOA with progesterone during capacitation. Both PFOS and PFOA inhibited human sperm hyperactivation, sperm acrosome reaction, and protein tyrosine phosphorylation levels. PFOS and PFOA decreased intracellular Ca2+ concentration in the presence of progestrone, and subsequently decreased cAMP level, and PKA activity. PFOS and PFOA increased reactive oxygen species production and sperm DNA fragmentation duing the only 3h capacitation incubation. Conclusively, PFOA and PFOS may inhibit human sperm capacitation via the Ca2+-mediated cAMP/PKA signaling pathway in the presence of progesterone, and induce sperm DNA damage through increased oxidative stress, which is not conducive to fertilization.
Collapse
Affiliation(s)
- Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhao Chai
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
24
|
Pan Z, Guo Y, Zhou Q, Wang Q, Pan S, Xu S, Li L. Perfluoroalkyl substance exposure is associated with asthma and innate immune cell count in US adolescents stratified by sex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52535-52548. [PMID: 36840869 DOI: 10.1007/s11356-023-26065-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Exposure to perfluoroalkyl substances (PFAS) may be harmful to humans; however, previous studies have been inconsistent regarding the potential for PFAS-induced immunosuppresion. This study explored the relationship between PFAS exposure and risks of asthma, wheezing, and immunosuppression in 12-19 year-olds using the National Health and Nutrition Examination Survey (NHANES) data. Logistic regression models were used to reveal associations between serum PFAS levels and risks of asthma, wheezing, asthma attack, and emergency department visits. Pearson's correlation was used to determine the relationship between serum PFAS levels and leukocyte count. Data were also stratified by sex. We found that medium-low levels of serum perfluorooctane sulfonate (PFOS) (6.90-12.40 ng/mL) and serum perfluorooctanoic acid (PFOA) (2.43-3.60 ng/mL) were negatively related, respectively, to current asthma and wheezing in boys, and to wheezing in girls. Meanwhile, boys with medium-high levels (1.50-3.00 ng/mL) of serum perfluorohexanesulfonate (PFHxS) had a high risk of wheezing. Among asthmatic participants, both medium-high levels (3.75-5.07 ng/mL) of serum PFOA and high levels (> 3.92 ng/mL) of PFHxS correlated with asthma attacks in boys; likewise, medium-low levels (0.70-0.99 ng/mL) of serum PFNA correlated with asthma attacks in girls. Also, PFOA and PFNA levels were weakly positively correlated with basophil count, whereas PFOS levels were weakly negatively correlated with eosinophils in asthmatic boys, indicating that basophils may be important in the immune response to PFAS exposure among asthmatics.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Yun Guo
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qin Zhou
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qian Wang
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Shanshan Pan
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Shiyao Xu
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Ling Li
- Department of Pediatric Respiratory, Wuxi Children's Hospital affiliated to Jiangnan University, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China.
| |
Collapse
|
25
|
Guo J, Huang S, Yang L, Zhou J, Xu X, Lin S, Li H, Xie X, Wu S. Association between polyfluoroalkyl substances exposure and sex steroids in adolescents: The mediating role of serum albumin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114687. [PMID: 36857915 DOI: 10.1016/j.ecoenv.2023.114687] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polyfluoroalkyl substances (PFASs) are an emerging class of contaminants with endocrine disrupting hazards. The impact of PFASs exposure on sex steroids remain inconclusive. METHODS This study used data from the 2013-2016 National Health and Nutrition Examination Survey (NHANES), including 525 adolescents aged 12-19. We explored the association between serum PFASs and sex steroids using multiple linear regression, weighted quantified sum (WQS) regression, and Bayesian kernel machine regression (BKMR). Mediation analyses were performed to assess whether serum albumin mediates the effects of PFASs on sex steroids. RESULTS Single exposure to perfluorohexane sulfonic acid (PFHxS) or n-perfluorooctanoic acid (n-PFOA) was found to be inversely associated with sex hormone binding protein (SHBG) after adjustment for confounders. Results from both the WQS and BKMR models showed that mixed exposure to the five PFASs was negatively associated with SHBG and testosterone (TT) in all adolescents, while only in the WQS model, the mixed exposure to PFASs was negatively correlated with E2 and FAI in boys and negatively correlated with TT and SHBG in girls. Serum albumin was found to possibly mediate 9.7 % of the association between mixed PFAS exposure and TT, and 9.7 % of the association between mixed PFAS exposure and SHBG. CONCLUSION Our study demonstrates a negative association between mixed exposure to PFASs and adolescent TT and SHBG levels, and suggests that albumin may merit further study as a potential target for PFAS harm reduction.
Collapse
Affiliation(s)
- Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Shuna Huang
- Department of Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Le Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jungu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Shaowei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
26
|
Li K, Cui K, Wang Q. Adverse outcome pathway network approach to identify endocrine disruptor-induced reproductive toxicity. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
27
|
Sadia M, Nollen I, Helmus R, ter Laak TL, Béen F, Praetorius A, van Wezel AP. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3062-3074. [PMID: 36779784 PMCID: PMC9979608 DOI: 10.1021/acs.est.2c06015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Ingeborg Nollen
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Rick Helmus
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Thomas L. ter Laak
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Frederic Béen
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Annemarie P. van Wezel
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
28
|
Zeng XW, Bloom MS, Wei F, Liu L, Qin J, Xue L, Wang S, Huang G, Teng M, He B, Mao X, Chu C, Lin S, Dong GH, Tan W. Perfluoroalkyl Acids in Follicular Fluid and Embryo Quality during IVF: A Prospective IVF Cohort in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27002. [PMID: 36723383 PMCID: PMC9891133 DOI: 10.1289/ehp10857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/16/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAA) have been measured in ovarian follicular fluid from women using in vitro fertilization (IVF), although associations between follicular fluid PFAA and IVF outcomes have been inconsistent. OBJECTIVES We investigated the association between follicular fluid PFAA and embryo quality in women undergoing IVF. METHODS We prospectively enrolled 729 women undergoing IVF treatment in Guangxi province, China, from July 2018 to December 2018. We measured 32 PFAA, including branched isomers, in follicular fluid using ultra-performance liquid chromatography coupled to tandem mass spectrometry. We applied restricted cubic splines, linear regression, and log-binominal regression models to investigate associations between follicular fluid PFAA and embryo quality, adjusting for confounding variables and investigated oocyte maturity as an intervening variable using causal mediation analysis. We further estimated the overall effect of the PFAA mixture on outcomes using Bayesian kernel machine regression (BKMR). RESULTS We detected 8 of 32 measured PFAA in >85% of follicular fluid samples. Higher PFAA concentrations were associated with fewer high-quality embryos from IVF. The high-quality embryo rates at the 50th percentile of linear perfluoro-1-octanesulfonate acid (n-PFOS), all branched PFOS isomers (Br-PFOS) and linear perfluoro-n-octanoic acid (n-PFOA) were -6.34% [95% confidence interval (CI): -9.45, -3.32%], -16.78% (95% CI: -21.98, -11.58%) and -8.66% (95% CI: -11.88, -5.43%) lower, respectively, than the high quality embryo rates at the reference 10th percentile of PFAA. Oocyte maturity mediated 11.76% (95% CI: 3.18, 31.80%) and 14.28% (95% CI: 2.95, 31.27%) of the n-PFOS and n-PFOA associations, respectively. The results of the BKMR models showed a negative association between the PFAA mixture and the probability of high-quality embryos, with branched PFOS isomers having posterior inclusion probabilities of 1 and accounting for the majority of the association. DISCUSSION Exposure to higher PFAA concentrations in follicular fluid was associated with poorer embryo quality during IVF. Branched PFOS isomers may have a stronger effect than linear PFOS isomers. More studies are needed to confirm these findings and to directly estimate the effects on pregnancy and live-birth outcomes. https://doi.org/10.1289/EHP10857.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Sun Yat-sen University, Guangzhou, China
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Fu Wei
- Department of Anatomy and Embryology. Leiden University Medical Center, Leiden, The Netherlands
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Liling Liu
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jie Qin
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lintao Xue
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shikai Wang
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guolan Huang
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Min Teng
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Bing He
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xianbao Mao
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Chu Chu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Sun Yat-sen University, Guangzhou, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, 12 Albany, NY, USA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, 12 Albany, NY, USA
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Sun Yat-sen University, Guangzhou, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
29
|
Li X, Yu X, Luo K, Liu H, Fan X, Yin X, Zhao Q, Liu X, Yang Y. Exposure to metals and the disruption of sex hormones in 6-19 years old children: An exploration of mixture effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114477. [PMID: 36586165 DOI: 10.1016/j.ecoenv.2022.114477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Individual metals have been linked to sex hormones disruption, but the associations of metals mixture are rarely examined among children. METHODS A total of 1060 participants of 6-19-year-old who participated in the National Health and Nutrition Examination Survey (2013-2016) were included. Eighteen metals were quantified in the whole blood and urine. Sex hormones were measured in serum, including total testosterone (TT), estradiol (E2), and sex hormone binding globulin (SHBG). In addition, free androgen index (FAI) and the ratio of TT to E2 were calculated. Bayesian kernel machine regression and latent class analysis were performed to assess the associations of metals mixture and exposure patterns of metals at varied levels with sex hormones while adjusting for selected covariates. All analyses were conducted by sex-age and sex-puberty groups to explore the potential sex-dimorphic effects. RESULTS Exposure to metals mixture was associated with elevated levels of FAI and E2 among 12-19 years old girls. Moreover, the exposure pattern of metals that was characterized by high levels of blood and urinary cadmium, blood manganese, and urinary cobalt was associated with elevated E2 and reduced TT/E2 levels among girls of 12-19 years old. However, the associations of metals mixture with sex hormones were overall nonsignificant among boys. Nevertheless, metals exposure pattern that was characterized by high levels of blood lead, urinary barium, strontium, and lead but comparatively low levels of the other metals was consistently associated with reduced levels of FAI and E2 but elevated levels of TT/E2 and SHBG among boys of 12-19 years old. CONCLUSION Metals mixture and exposure patterns that were dominated by high levels of certain metals were associated with sex hormones imbalance among 12-19 years old children in a sex-dimorphic pattern, with the identified individual metals that drove the associations of metals mixture varied by sex.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaohan Yu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huajian Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qi Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
30
|
Luo K, Liu X, Zhou W, Nian M, Qiu W, Yang Y, Zhang J. Preconception exposure to perfluoroalkyl and polyfluoroalkyl substances and couple fecundity: A couple-based exploration. ENVIRONMENT INTERNATIONAL 2022; 170:107567. [PMID: 36240624 DOI: 10.1016/j.envint.2022.107567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Numerous studies have examined the adverse health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) but it remains unclear whether preconception exposure to PFAS affects couple fecundity. This prospective preconception cohort study with 936 Chinese couples aimed to comprehensively assess the effects of PFAS on couple fecundity [measured by the time to pregnancy (TTP)] and infertility (i.e., TTP > 12 menstrual cycles) with a focus on the effects of partner-specific exposure and joint-effects of couple-based exposure. Twenty-five PFAS were quantified in plasma from each partner, including seven branched isomers, two chlorinated polyfluoroalkyl ether sulfonic acids, four emerging PFAS replacements [i.e., 6:2 fluorotelomer phosphate diester (6:2 diPAP) and three short-chain alternatives: perfluoro-n-butanoicacid, perfluorobutane sulfonate and perfluoroheptanoic acid (PFHpA)]. Using a two-phase regression approach composed of elastic net regression and principal component analysis, we found that exposure to 6:2 diPAP and PFHpA rather than legacy PFAS in women and the couple-based exposure patterns characterized by high level of female 6:2 diPAP were significantly associated with reduced couple fecundity, which was independent of the adjustment of co-exposed PFAS homogenous from both partners. For example, a ln unit increase in female 6:2 diPAP was associated with 15 % [fecundity odds ratio (FOR) = 0.85, 95 %CI: 0.76, 0.96)] lower odds of couple fecundability (i.e., longer TTP) and 45 % increased risk of infertility [OR = 1.45 (95 %CI: 1.16, 1.81)], respectively. While most PFAS in men were not associated with couple fecundity, certain PFAS (e.g., perfluorohexane sulfonic acid) in men were negatively associated with infertility risk. However, the combined effects of PFAS mixture in couples were nonsignificant. Our findings suggest that PFAS in men and women may exert different impacts on couple fecundity. Preconception exposure to 6:2 diPAP and PFHpA in women may have the potential to impair couple fecundity.
Collapse
Affiliation(s)
- Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaotu Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wei Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Qiu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
31
|
Yang Z, Roth K, Ding J, Kassotis CD, Mor G, Petriello MC. Exposure to a mixture of per-and polyfluoroalkyl substances modulates pulmonary expression of ACE2 and circulating hormones and cytokines. Toxicol Appl Pharmacol 2022; 456:116284. [PMID: 36270329 PMCID: PMC10325118 DOI: 10.1016/j.taap.2022.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 01/01/2023]
Abstract
Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
32
|
Li J, Yang L, He G, Wang B, Miao M, Ji H, Wen S, Cao W, Yuan W, Liang H. Association between prenatal exposure to perfluoroalkyl substances and anogenital distance in female neonates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114130. [PMID: 36182800 DOI: 10.1016/j.ecoenv.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) have been reported to exert reproductive toxicity. Anogenital distance (AGD) is a biomarker of intrauterine androgen exposure and an indicator of genital development. An animal study reported that female neonatal rats exposed to perfluorooctanoic acid or perfluorooctane sulfonate (PFOS) during postnatal days 1-5 exhibited a longer AGD, while epidemiological studies have shown inconsistent results. This study aimed to examine the effects of prenatal exposure to PFASs on the AGD in female neonates. METHODS PFAS levels were measured in plasma samples obtained from pregnant women at 12-16 gestational weeks using high-performance liquid chromatography/mass spectrometry. The AGD of each female neonate was measured within 3 days after delivery. The anogenital index (AGI), calculated as AGD divided by weight, was also determined. A total of 362 motherinfant pairs were included in this study. A multivariate linear regression model was used to examine the association between prenatal ln-transformed concentrations of PFASs and AGD/AGI. In addition, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were used to assess the overall effects of a mixture of PFASs on the AGD/AGI and to identify important contributors to the overall effect. RESULTS There was a consistent pattern of association between maternal PFAS concentrations and increased AGDanus to posterior fourchette (AF), AGDanus to clitoris (AC), and AGIAF lengths at birth. Statistical significance was found between maternal ln-transformed concentrations of perfluorohexane sulfonate (PFHxS), perfluorododecanoic acid, and perfluorotridecanoic acid and AGDAF, with β values (95% confidence interval [CI]) of 0.83 (0.16, 1.51), 0.32 (0.05, 0.59), and 0.25 (0.00, 0.51) mm, respectively; between PFOS and AGDAC, with a β value (95% CI) of 0.63 (0.04, 1.21) mm; and between PFHxS and AGIAF, with a β value (95% CI) of 0.22 (0.02, 0.43) mm/kg. Similarly, the WQSR and BKMR models showed that an increase in the AGDAF/AGIAF at birth was associated with co-exposure to a mixture of PFASs. CONCLUSION High maternal concentrations of PFASs were associated with increased AGD in female neonates, indicating that PFASs may impair reproductive development in female offspring in early life.
Collapse
Affiliation(s)
- Jincan Li
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Limei Yang
- The First People's Hospital of Jiashan, Jiaxing Zhejiang Province 314199, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, China
| | - Maohua Miao
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China.
| |
Collapse
|
33
|
Zhu Y, Li X, Lousang-zhaxi, Suolang-zhaxi, Suolang, Ciyang, Sun G, Cidan-yangji, Basang-wangdui. House feeding pattern increased male yak fertility by improving gut microbiota and serum metabolites. Front Vet Sci 2022; 9:989908. [PMID: 36118356 PMCID: PMC9478890 DOI: 10.3389/fvets.2022.989908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Yaks usually live in an extremely harsh natural environment resulting in low reproductive performance, so the production of yak cannot meet local demand in China. In order to solve this problem, the experiment aims to explore the effect of different feeding modes on the semen quality of male yaks, so as to provide a theoretical basis for improving the yield of yaks in Tibet. We used the combined analysis of metabolomics and microbial sequencing to explore the underlying mechanisms that affect the differences in semen quality between the house feeding (HF) system and the free range (FR). The results showed that the sperm motility (P < 0.001) and sperm concentration (P < 0.05) in the HF group were significantly higher than the FR group, and the abnormal sperm rate (P < 0.01) in HF was significantly lower compared to FR. House feeding modes increased some beneficial materials in blood and testis especially some antioxidants, unsaturated fatty acids, and amino acids. House feeding group increased some gut microbiota at genus level namely Rikenellaceae, Bacteroides, Prevotellaceae_UCG-004, Bacteroidales_RF16, and Alloprevotella, DgA-11. It was interesting that blood metabolites, testicular metabolites, and fecal microbiota were well-correlated with sperm parameters. Meanwhile, the blood metabolites and testicular metabolites were well-correlated with microbes. The result indicated that the HF model was beneficial for yak semen quality by improving the gut microbiota and blood metabolism to increase yak fertility.
Collapse
|
34
|
Petersen KU, Hærvig KK, Flachs EM, Bonde JP, Lindh C, Hougaard KS, Toft G, Ramlau-Hansen CH, Tøttenborg SS. Per- and polyfluoroalkyl substances (PFAS) and male reproductive function in young adulthood; a cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 212:113157. [PMID: 35318009 DOI: 10.1016/j.envres.2022.113157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a large family of persistent industrial chemicals with endocrine disrupting properties. OBJECTIVES To examine biomarkers of reproductive function in young adult males according to current environmental exposure to single and combined PFAS. METHODS The study population consisted of young men (n = 1041, age 18-21) from the Fetal Programming of Semen Quality (FEPOS) cohort. These men were recruited from pregnancies included in the Danish National Birth Cohort (DNBC) between 1996 and 2002. From 2017 to 2019, participants answered an online questionnaire, completed a clinical examination and provided a blood and a semen sample. Exposure to 15 PFAS was measured in plasma. Six compounds were quantified above the limit of detection in at least 80% of the participants. We applied negative binomial regression and weighted quantile sum (WQS) regression models to assess associations between single and combined exposure to PFAS and measures of semen quality, testicular volume and reproductive hormones among the young men. RESULTS We found no consistent associations between plasma concentrations of PFAS, semen quality and testicular volume. Higher levels of single and combined PFAS were associated with slightly higher levels of follicle-stimulating hormone (FSH) (WQS 4% difference, 95% confidence interval: 0, 9). Perfluorooctanoic acid (PFOA) was the main contributor to this finding with positive signals also from perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS). DISCUSSION We examined exposure to a range of common PFAS in relation to biomarkers of male reproductive function and found an association with higher levels of FSH among young men from the general population in Denmark. Further studies on especially combined exposure to PFAS are needed to expand our understanding of potential endocrine disruption from both legacy and emerging compounds in relation to male reproductive function.
Collapse
Affiliation(s)
- Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Katia Keglberg Hærvig
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Luo K, Huang W, Zhang Q, Liu X, Nian M, Wei M, Wang Y, Chen D, Chen X, Zhang J. Environmental exposure to legacy poly/perfluoroalkyl substances, emerging alternatives and isomers and semen quality in men: A mixture analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155158. [PMID: 35421474 DOI: 10.1016/j.scitotenv.2022.155158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/OBJECTIVES Multiple studies have examined the relationship between PFAS and semen quality, but none has explored the associations of PFAS mixture that includes emerging alternatives and branched isomers. METHODS 22 PFAS, including 10 linear legacy PFAS, 7 branched isomers, 3 short chain alternatives and 2 components of F53B [e.g., 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFESA)] were quantified in blood plasma among 740 healthy men. Five semen quality parameters (i.e., volume, count, concentration, total motility and progressive rate) were assessed. Multiple linear regression and three multiple pollutant models (i.e., adaptive elastic net regression, quantile based g-computation, and XGBoost method) were used to assess the associations of individual PFAS and PFAS mixture with semen quality and the potential interactive effects among congeners. RESULTS After adjusting for selected confounders, perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) presented significant and negative associations with sperm count [βAENET = -0.09 (95%CI: -0.14, -0.03) for PFBS, and -0.16 (95%CI: -0.25, -0.07) for PFHxS] and sperm concentration [-0.04 (95%CI: -0.08, -0.001) for PFBS and -0.11 (95%CI: -0.17, -0.04) for PFHxS]. 6:2 Cl-PFESA showed negative associations with total motility (-2.33, 95%CI: -3.80, -0.86) and progressive rate (-1.46, 95%CI: -2.79, -0.12). But perfluoroheptanesulfonic acid (PFHpS) was positively associated with sperm count and concentration. These associations were supported by the importance assessment of these four congeners in XGBoost analyses. However, no associations were found between PFAS mixture or branched isomers and semen quality; nor were there significant interactions among PFAS congeners. CONCLUSIONS In the current cross-sectional study, we found that two emerging PFAS replacements (i.e., 6:2 Cl-PFESA and PFBS) and PFHxS exposure were associated with reduced semen concentration, total sperm count and motility in men. Meanwhile, significant positive associations between PFHpS and sperm count and concentration were also observed. But there were no consistent associations between PFAS mixture, branched isomers and semen quality.
Collapse
Affiliation(s)
- Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Wei Huang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Xiaotu Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mengdan Wei
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Hainan Women and Children's Medical Center, Haikou, Hainan 570100, China.
| |
Collapse
|
36
|
Tang Y, Ying Y, Zou C, Yan H, Wang Y, Li H, Li X, Xu Z, Lv J, Ge RS. Leydig cell function in adult male rats is disrupted by perfluorotetradecanoic acid through increasing oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1790-1802. [PMID: 35385208 DOI: 10.1002/tox.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/26/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a long-chain perfluoroalkyl compound with increased applications. Its effect on Leydig cell function and its underlying mechanism remain unclear. Male Sprague-Dawley rats (60 days old) were gavaged with PFTeDA at doses of 0, 1, 5, and 10 mg/kg/day from 60 to 87 days after birth. PFTeDA significantly reduced serum testosterone levels at 1 mg/kg and higher doses, while markedly increasing serum luteinizing hormone level at 10 mg/kg and follicle-stimulating hormone at ≥1 mg/kg. PFTeDA significantly reduced the sperm number at the cauda of epididymis at ≥1 mg/kg. PFTeDA also reduced the number of CYP11A1-positive Leydig cells due to increased apoptosis shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. PFTeDA significantly repressed the expression of Cyp17a1 and Star and their proteins at 1-10 mg/kg, while it increased the expression of Srd5a1 and its protein (an immature Leydig cell biomarker) at 10 mg/kg. PFTeDA markedly increased testicular malondialdehyde level, while inhibiting antioxidants (SOD1, SOD2, and CAT), triggering oxidative stress, thereby further inducing BAX and CASP3 while inhibiting BCL2, which led to cell apoptosis. PFTeDA also reduced DHH level secreted by Sertoli cells, which indirectly affected Leydig cell function. PFTeDA inhibited testosterone secretion in primary Leydig cells in vitro by increasing reactive oxygen species and inducing apoptosis at 50 μM. In conclusion, PFTeDA inhibits the function of Leydig cells by inducing oxidative stress and subsequently stimulating cell apoptosis.
Collapse
Affiliation(s)
- Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangye Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
37
|
Zhao Z, Li J, Zhang X, Wang L, Wang J, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49513-49533. [PMID: 35593984 DOI: 10.1007/s11356-022-20755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been frequently detected in groundwater globally. With the phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanate (PFOA) due to their risk to the ecosystem and human population, various novel PFASs have been used as replacements and detected in groundwater. In order to summarize the current understanding and knowledge gaps on PFASs in groundwater, we reviewed the studies about environmental occurrence, transport, and risk of legacy and novel PFASs in groundwater published from 1999 to 2021. Our review suggests that PFOS and PFOA could still be detected in groundwater due to the long residence time and the retention in the soil-groundwater system. Firefighting training sites, industrial parks, and landfills were commonly hotspots of PFASs in groundwater. More novel PFASs have been detected via nontarget analysis using high-resolution mass spectrometry. Some novel PFASs had concentrations comparable to that of PFOS and PFOA. Both legacy and novel PFASs can pose a risk to human population who rely on contaminated groundwater as drinking water. Transport of PFASs to groundwater is influenced by various factors, i.e., the compound structure, the hydrochemical condition, and terrain. The exchange of PFASs between groundwater and surface water needs to be better characterized. Field monitoring, isotope tracing, nontarget screening, and modeling are useful approaches and should be integrated to get a comprehensive understanding of PFASs sources and behaviors in groundwater.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Leien Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jamin Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
38
|
Luo K, Meng X, Liu X, Nian M, Zhang Q, Tian Y, Chen D, Zhang J. Environmental Exposure to 6:2 Polyfluoroalkyl Phosphate Diester and Impaired Testicular Function in Men. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8290-8298. [PMID: 35536153 DOI: 10.1021/acs.est.1c07184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
6:2 polyfluoroalkyl phosphate diester (6:2 diPAP) has been demonstrated to disrupt reproductive endocrine functions using experimental studies. However, evidence from humans is not available yet. This cross-sectional study aims to assess the relationship between 6:2 diPAP exposure and the testicular function among adult men. A total of 902 men seeking preconception care were included. Plasma 6:2 diPAP concentrations were determined, while the testicular function was assessed via semen quality and reproductive hormones in serum. The association was assessed by multiple linear regression. Stratified analyses by age and body mass index (BMI) were conducted to assess the potential effect modification by these two variables. Regression analyses revealed that 6:2 diPAP exposure was significantly inversely associated with androgens [i.e., total testosterone (TT) and free androgen index (FAI)], markers of testosterone production potential [i.e., TT/luteinizing hormone (LH) and FAI/LH], estradiol, and insulin-like factor 3, a biomarker of Leydig cell function. These associations were robust in sensitivity analyses. However, age and BMI did not modify these associations, and no association was observed between 6:2 diPAP and semen quality. Our study suggests that exposure to 6:2 diPAP may inhibit androgen synthesis and impair Leydig cell function in adult men.
Collapse
Affiliation(s)
- Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xi Meng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
- Hainan Women and Children's Medical Center, Haikou, Hainan 570100, China
| |
Collapse
|
39
|
Liu X, Luo K, Zhang J, Yu H, Chen D. Exposure of Preconception Couples to Legacy and Emerging Per- and Polyfluoroalkyl Substances: Variations Within and Between Couples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6172-6181. [PMID: 35016501 DOI: 10.1021/acs.est.1c07422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploration of the exposure of preconception couples to per- and polyfluoroalkyl substances (PFAS), as well as the most important influencing factors, promotes the understanding of the joint effects of parental exposure on reproductive health. In the present study, a total of 938 preconception couples recruited through the Shanghai Birth Cohort were investigated for the variations of PFAS exposure and contributing factors within and between couples. While linear perfluorooctanoic acid (n-PFOA, median 20.4 ng/mL) and linear perfluorooctanesulfonic acid (n-PFOS, 12.1 ng/mL) remained dominant in plasma, emerging PFAS, particularly 6:2 chlorinated polyfluorinated ether sulfonate (10.5 ng/mL), 6:2 polyfluoroalkyl phosphate diester (0.41 ng/mL), and branched PFOS or PFOA isomers, were also frequently detected. Although individual PFAS were generally correlated within couples, gender differences significantly existed in the concentrations of most individual PFAS and isomer profiles of PFOS and PFOA. Men generally exhibited higher plasma concentrations than their partners, likely reflecting gender-specific elimination pathway and kinetics. Couple-based PFAS exposure also varied greatly. After adjustment for individual factors, several household factors, including annual household income, dwelling floor type, drinking water source, and living near farmlands, were found to be associated with couple-based PFAS exposure. Our study constitutes one of the few studies addressing couple-based exposure to PFAS and lays a solid ground for further assessment of the impacts of parental exposure on reproductive health.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Hao Yu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
40
|
Marlatt VL, Bayen S, Castaneda-Cortès D, Delbès G, Grigorova P, Langlois VS, Martyniuk CJ, Metcalfe CD, Parent L, Rwigemera A, Thomson P, Van Der Kraak G. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. ENVIRONMENTAL RESEARCH 2022; 208:112584. [PMID: 34951986 DOI: 10.1016/j.envres.2021.112584] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in aquatic and terrestrial environments. The main objective of this review was to summarize the current knowledge of the impacts of EDCs on reproductive success in wildlife and humans. The examples selected often include a retrospective assessment of the knowledge of reproductive impacts over time to discern how the effects of EDCs have changed over the last several decades. Collectively, the evidence summarized here within reinforce the concept that reproduction in wildlife and humans is negatively impacted by anthropogenic chemicals, with several altering endocrine system function. These observations of chemicals interfering with different aspects of the reproductive endocrine axis are particularly pronounced for aquatic species and are often corroborated by laboratory-based experiments (i.e. fish, amphibians, birds). Noteworthy, many of these same indicators are also observed in epidemiological studies in mammalian wildlife and humans. Given the vast array of reproductive strategies used by animals, it is perhaps not surprising that no single disrupted target is predictive of reproductive effects. Nevertheless, there are some general features of the endocrine control of reproduction, and in particular, the critical role that steroid hormones play in these processes that confer a high degree of susceptibility to environmental chemicals. New research is needed on the implications of chemical exposures during development and the potential for long-term reproductive effects. Future emphasis on field-based observations that can form the basis of more deliberate, extensive, and long-term population level studies to monitor contaminant effects, including adverse effects on the endocrine system, are key to addressing these knowledge gaps.
Collapse
Affiliation(s)
- V L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - D Castaneda-Cortès
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Delbès
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Grigorova
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - V S Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - C J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C D Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Parent
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Thomson
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
41
|
Ducatman A, LaPier J, Fuoco R, DeWitt JC. Official health communications are failing PFAS-contaminated communities. Environ Health 2022; 21:51. [PMID: 35538533 PMCID: PMC9092686 DOI: 10.1186/s12940-022-00857-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Environmental health agencies are critical sources of information for communities affected by chemical contamination. Impacted residents and their healthcare providers often turn to federal and state agency webpages, fact sheets, and other documents to weigh exposure risks and interventions. MAIN BODY This commentary briefly reviews scientific evidence concerning per- and polyfluoroalkyl substances (PFAS) for health outcomes that concern members of affected communities and that have compelling or substantial yet differing degree of scientific evidence. It then features official documents in their own language to illustrate communication gaps, as well as divergence from scientific evidence and from best health communication practice. We found official health communications mostly do not distinguish between the needs of heavily contaminated communities characterized by high body burdens and the larger population with ubiquitous but substantially smaller exposures. Most health communications do not distinguish levels of evidence for health outcomes and overemphasize uncertainty, dismissing legitimate reasons for concern in affected communities. Critically, few emphasize helpful approaches to interventions. We also provide examples that can be templates for improvement. CONCLUSIONS Immediate action should be undertaken to review and improve official health communications intended to inform the public and health providers about the risks of PFAS exposure and guide community and medical decisions.
Collapse
Affiliation(s)
- Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV, USA.
| | - Jonas LaPier
- Green Science Policy Institute, Berkeley, CA, USA
| | | | - Jamie C DeWitt
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
42
|
Xiong X, Chen B, Wang Z, Ma L, Li S, Gao Y. Association between perfluoroalkyl substances concentration and bone mineral density in the US adolescents aged 12-19 years in NHANES 2005-2010. Front Endocrinol (Lausanne) 2022; 13:980608. [PMID: 36277702 PMCID: PMC9581310 DOI: 10.3389/fendo.2022.980608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reports on the association of perfluoroalkyl substances (PFASs) exposure with adolescent bone health are scarce, and studies have primarily targeted maternal serum. OBJECTIVE We evaluated the relationship between autologous serum perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) levels and bone mineral density (BMD) in adolescents. METHODS We analyzed data from 1228 adolescents aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES) 2005-2010 and used multiple regression analysis to identify the relationship between serum PFOA, PFOS, PFHxS, and PFNA concentrations and total femur, femoral neck, and lumbar spine BMD, in addition to multiple stratified subgroup analyses. RESULTS The mean age of participants was 15 years, males had higher serum PFAS concentrations than females. The results of multiple regression analysis showed that the natural log(ln)-transformed serum PFOA, PFOS, and PFNA concentrations were negatively correlated with total femur, femoral neck, and lumbar spine BMD (all p < 0.05), and ln-PFHxS was positively correlated with total femur and femoral neck BMD (all p< 0.05). In males, ln-PFOA was negatively associated with total femur and lumbar spine BMD (all p< 0.05), ln-PFOS was associated with the reduced total femur, femoral neck, and lumbar spine BMD (all p< 0.05), while ln-PFHxS and ln-PFNA were not observed to correlate with BMD at these three sites. In females, both ln-PFOA and ln-PFOS were negatively correlated with total femur and lumbar spine BMD (all p< 0.05), ln-PFHxS is associated with the increased total femur and femoral neck BMD (all p< 0.05), and ln-PFNA was negatively correlated with total femur and femoral neck BMD (all p< 0.05), most of the associations were confined to females. The associations of ln-PFOS with femoral neck BMD and ln-PFNA with total femur BMD were more significant in those who were overweight/obese and had anemia, respectively (all p for interaction < 0.05). CONCLUSIONS In this representative sample of US adolescents aged 12-19 years, certain PFAS were associated with lower bone mineral density, and most of the associations were confined to females. The negative effect of PFAS on BMD is more pronounced in those who are overweight/obese and have anemia. However, further studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Xianmei Xiong
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baihang Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqing Wang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liqiong Ma
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijia Gao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yijia Gao,
| |
Collapse
|
43
|
Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, Wang ZB, Dong PX, Ou YQ, Xiong SM, Shen XB, Zhou PE, Yang BY, Chu C, Li QQ, Zeng XW, Feng WR, Zhou YZ, Dong GH. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. ENVIRONMENT INTERNATIONAL 2022; 158:106913. [PMID: 34624590 DOI: 10.1016/j.envint.2021.106913] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies on the associations of legacy per- and polyfluoroalkyl substances (PFASs) and glucose homeostasis remain discordant. Understanding of PFAS alternatives is limited, and few studies have reported joint associations of PFASs and PFAS alternatives. OBJECTIVES To investigate associations of novel PFAS alternatives (chlorinated perfluoroalkyl ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) and two legacy PFASs (Perfluorooctanoic acid, PFOA and perfluorooctane sulfonate, PFOS) with glucose-homeostasis markers and explore joint associations of 13 legacy and alternative PFASs with the selected outcomes. METHODS We used cross-sectional data of 1,038 adults from the Isomers of C8 Health Project in China. Associations of PFASs and PFAS alternatives with glucose-homeostasis were explored in single-pollutant models using generalized linear models with natural cubic splines for PFASs. Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint associations of exposures and outcomes. Sex-specific analyses were also conducted to evaluate effect modification. RESULTS After adjusting for confounders, both legacy (PFOA, PFOS) and alternative (Cl-PFESAs and PFBA) PFASs were positively associated with glucose-homeostasis markers in single-pollutant models. For example, in the total study population, estimated changes with 95% confidence intervals (CI) of fasting glucose at the 95th percentile of 6:2Cl-PFESA and PFOS against the thresholds were 0.90 (95% CI: 0.59, 1.21) and 0.44 (95% CI: 0.26, 0.62). Positive joint associations were found in BKMR models with 6:2Cl-PFESA contributing most. Sex-specific associations existed in both single- and multi-pollutant models. CONCLUSIONS Legacy and alternative PFASs were positively associated with glucose-homeostasis markers. 6:2Cl-PFESA was the primary contributor. Sex-specific associations were also identified. These results indicate that joint associations and effect modification should be considered in risk assessment. However, further studies are recommended to strengthen our findings and to elucidate the mechanisms of action of legacy and alternative PFASs.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peng-Xin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Pei-En Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
44
|
Chambers WS, Hopkins JG, Richards SM. A Review of Per- and Polyfluorinated Alkyl Substance Impairment of Reproduction. FRONTIERS IN TOXICOLOGY 2021; 3:732436. [PMID: 35295153 PMCID: PMC8915888 DOI: 10.3389/ftox.2021.732436] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
In this review article, we compiled peer-reviewed literature describing PFAS exposure and reproductive effects in animals and humans. The aim was to compare environmental occurrence and effects of the most prominent long-chain PFAS compounds and their short-chain replacements. Long-chain PFAS compounds are known to persist in the environment due to their chemical stability, and also known to bioaccumulate; hence, these compounds are being replaced globally. Indeed, PFOA and PFOS are considered long-chain "forever pollutants," and thus the potential reproductive risk may continue for decades. Much less is known about their short-chain replacements despite the fact that they becoming more widespread in the environment. Short-chain PFAS are generally less bioaccumulative than long-chain, but they are more mobile and persistent in aquatic ecosystems. The three most prominent of these are commonly referred to as GenX, ADONA and F53B. The short-chain PFAS have similar physical and chemical properties as their predecessors; however, because they are relatively new, much less is known about the potential to disrupt reproduction. Indeed, high-quality epidemiological studies are needed to determine associations between short-chain PFAS exposure and effects on reproductive health. However, epidemiological evidence is mounting that long-chain PFAS exposure is associated with reproductive effects (i.e., decrease in fertility, reduced fetal growth and birth weight, pregnancy-induced hypertension and preeclampsia, thyroid hormone disruption during pregnancy, and preterm birth). Evidence from animal models and human cell lines indicates that short-chain PFAS similarly affect reproductive endpoints; however, epidemiological studies are scarce and inconsistent. Although short-chain PFAS have been quantified in drinking water and sediment worldwide, most of these studies did not focus on quantitation of GenX, ADONA, and F53B. There are also many other short-chain PFAS byproducts of manufacturing that have yet to be identified and studied. When sum total concentration of long- and short-chain PFAS are considered, the concentration rises by an order or magnitude or greater, as will the risk of exposure and subsequent reproductive effects.
Collapse
Affiliation(s)
- Weston S. Chambers
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jaida G. Hopkins
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Sean M. Richards
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, Chattanooga, TN, United States
| |
Collapse
|