1
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Li ZM, Kannan K. Mass loading, removal and emission of 27 quaternary ammonium compounds, including metabolites of benzalkonium, in a wastewater treatment plant in New York state, USA. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135934. [PMID: 39326142 DOI: 10.1016/j.jhazmat.2024.135934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Benzylalkyldimethylammonium (BACs), dialkyldimethylammonium (DDACs), and alkyltrimethylammonium compounds (ATMACs) are quaternary ammonium compounds (QACs) widely used in industrial and consumer products. Nevertheless, little is known about their fates in wastewater treatment plants (WWTPs). We detected 7 BACs, 6 DDACs, 6 ATMACs, and 8 hydroxy- and carboxyl- metabolites of BACs (BACm) in wastewater collected from a WWTP in New York State. The median concentrations of ∑All (sum concentration of all 27 analytes) in influent and final effluent were 31900 and 545 ng/L, respectively, which corresponded to a removal efficiency of 98 %. C14-BAC, C10-DDAC, C18-DDAC, and C16-ATMAC were the major compounds found in influent (collectively accounting for 62 % of ∑All), suggestive of their prevalent usage in consumer products. BACm were detected for the first time in wastewater (median: 1720 ng/L in influent), and they comprised 8-11 % of ∑All in wastewater, which highlighted the importance of monitoring QAC metabolites in wastewater. The mass loadings of QACs into the WWTP were in the range of 1480-10700 mg/d/1000 inhabitants, whereas the corresponding emission rates were in the range of 119-7720 mg/d/1000 inhabitants. QACs present in final effluents may exert low to moderate risks on aquatic organisms, which warrants more attention.
Collapse
Affiliation(s)
- Zhong-Min Li
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States.
| |
Collapse
|
3
|
Belova L, Caballero-Casero N, Ballesteros A, Poma G, van Nuijs ALN, Covaci A. Trapped and drift-tube ion-mobility spectrometry for the analysis of environmental contaminants: Comparability of collision cross-section values and resolving power. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9901. [PMID: 39198935 DOI: 10.1002/rcm.9901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE Ion-mobility (IM)-derived collision cross-section (CCS) values can serve as a valuable additional identification parameter within suspect and non-target screening studies of environmental contaminants. However, these applications require to assess the reproducibility of CCS calculations between different IM set-ups. Especially for the comparison of trapped and drift-tube IM (TIMS/DTIM) derived CCS values, data for environmental applications is lacking. METHODS The presented study assessed the bias of TIMS derived CCSN2 (TIMSCCSN2) values of 48 environmental contaminants from three classes in comparison to a previously established DTIM database. Based on two sets of isomeric bisphenols, the resolving power of both systems was compared, addressing the instrumental settings which influence the resolution of TIMS measurements. RESULTS For 91% of the datapoints, bias between TIMSCCSN2 and DTCCSN2 values (latter set as reference) were < 2%, indicating a good inter-platform reproducibility. TIMS resolving power was dependent on the selected mobility window and ramping times whereby a resolution of up to 116 was achieved. Similar resolving power was observed for multiplexed DTIMS data if a high-resolution post-processing step was implemented. CONCLUSIONS These results provide valuable insights in CCSN2 reproducibility facilitating database transfer in future TIMS based studies. Knowledge on the influence of acquisition settings on robustness of TIMSCCSN2 calculations and resolving power can ease method development supporting efficient development and reliable identifications of emerging environmental contaminants.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Noelia Caballero-Casero
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Ana Ballesteros
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Bobic L, Harbolic A, Warner GR. Reproductive & developmental toxicity of quaternary ammonium compounds†. Biol Reprod 2024; 111:742-756. [PMID: 38959857 PMCID: PMC11473915 DOI: 10.1093/biolre/ioae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Quaternary ammonium compounds are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, quaternary ammonium compounds have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. Quaternary ammonium compounds are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of quaternary ammonium compounds in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday quaternary ammonium compound exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of quaternary ammonium compounds on reproduction are largely limited to high-dose studies, which may not be predictive of low-dose, daily exposure, especially as quaternary ammonium compounds may be endocrine-disrupting chemicals. This review analyzes recent studies on quaternary ammonium compound effects on reproductive health, identifies knowledge gaps, and recommends future directions in quaternary ammonium compound-related research. Summary Sentence Quaternary ammonium compounds, a class of disinfecting compounds that have skyrocketed in usage during the COVID-19 pandemic, are emerging as reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Leyla Bobic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Allison Harbolic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
5
|
Belova L, Musatadi M, Gys C, Roggeman M, den Ouden F, Olivares M, van Nuijs ALN, Poma G, Covaci A. In Vitro Metabolism of Quaternary Ammonium Compounds and Confirmation in Human Urine by Liquid Chromatography Ion-Mobility High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264360 DOI: 10.1021/acs.est.4c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Quaternary ammonium compounds (QACs) are high-production chemicals used as cleaning and disinfecting agents. Due to their ubiquitous presence in the environment and several toxic effects described, human exposure to these chemicals gained increasing attention in recent years. However, very limited data on the biotransformation of QACs is available, hampering exposure assessment. In this study, three QACs (dimethyl dodecyl ammonium, C10-DDAC; benzyldimethyl dodecylammonium, C12-BAC; cetyltrimethylammonium, C16-ATMAC) commonly detected in indoor microenvironments were incubated with human liver microsomes and cytosol (HLM/HLC) simulating Phase I and II metabolism. Thirty-one Phase I metabolites were annotated originating from 19 biotransformation reactions. Four metabolites of C10-DDAC were described for the first time. A detailed assessment of experimental fragmentation spectra allowed to characterize potential oxidation sites. For each annotated metabolite, drift-tube ion-mobility derived collision cross section (DTCCSN2) values were reported, serving as an additional identification parameter and allowing the characterization of changes in DTCCSN2 values following metabolism. Lastly, eight metabolites, including four metabolites of both C12-BAC and C10-DDAC, were confirmed in human urine samples showing high oxidation states through introduction of up to four oxygen atoms. This is the first report of higher oxidized C10-DDAC metabolites in human urine facilitating future biomonitoring studies on QACs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| | - Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia 48620, Spain
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia 48620, Spain
| | | | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
6
|
Nguyen R, Seguin RP, Ross DH, Chen P, Richardson S, Liem J, Lin YS, Xu L. Development and Application of a Multidimensional Database for the Detection of Quaternary Ammonium Compounds and Their Phase I Hepatic Metabolites in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6236-6249. [PMID: 38534032 PMCID: PMC11008582 DOI: 10.1021/acs.est.3c10845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.
Collapse
Affiliation(s)
- Ryan Nguyen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan P. Seguin
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dylan H. Ross
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Pengyu Chen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sean Richardson
- Department
of Mathematics, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer Liem
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Yvonne S. Lin
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Li ZM, Lee C, Kannan K. An exposure assessment of 27 quaternary ammonium compounds in pet dogs and cats from New York State, USA. ENVIRONMENT INTERNATIONAL 2024; 184:108446. [PMID: 38252984 DOI: 10.1016/j.envint.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Benzylalkyldimethylammonium (BACs), dialkyldimethylammonium (DDACs), and alkyltrimethylammonium compounds (ATMACs) are quaternary ammonium compounds (QACs) used widely as biocides, disinfectants, and sanitizers. Owing to their toxicity, human exposure to this class of chemicals is a concern. Pet animals are sentinels of human exposure to several indoor environmental chemicals. For the first time, we measured 7 BACs, 6 DDACs, 6 ATMACs, and 8 metabolites of BACs in urine and feces of pet dogs and cats from New York State, USA. We found widespread occurrence of QACs in feces, with median concentration of ∑All (sum concentration of all 27 QAC analytes) at 9680 and 1260 ng/g dry weight (dw) in dog and cat feces, respectively. BACs were the most abundant compounds among the four types of QACs, accounting for 64 % and 57 % of ∑All in dog and cat feces, respectively, followed by DDACs (33 % and 34 %, respectively), ATMACs (4 % and 9 %, respectively), and BAC metabolites (0.2 % and 0.3 %, respectively). However, in urine, only ω-carboxylic acid metabolites of BACs were found at median concentrations at 2.08 and 0.28 ng/mL in dogs and cats, respectively. Samples collected from animal shelters contained elevated levels of QACs than those from homes of pet owners. A significant positive correlation was found among the four types of QACs analyzed, which suggested usage of these chemicals in combination as mixtures. Based on the concentrations measured in feces, and through a reverse dosimetry approach, the median cumulative daily intakes (CDIs) of QACs were estimated to be 49.4 and 4.75 µg/kg body weight (BW)/day for dogs and cats, respectively. This study provides first evidence that pet dogs and cats are exposed to QACs at significant levels that warrant further attention.
Collapse
Affiliation(s)
- Zhong-Min Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Conner Lee
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12237, United States.
| |
Collapse
|
8
|
Cheng Y, Liu C, Lv Z, Liang Y, Xie Y, Wang C, Wan S, Leng X, Hu M, Zheng G. High-Resolution Mass Spectrometry Screening of Quaternary Ammonium Compounds (QACs) in Dust from Homes and Various Microenvironments in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38276914 DOI: 10.1021/acs.est.3c09942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 μg/g with a median concentration of 42.2 μg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 μg/g vs 58.3 μg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 μg/g vs 32.6 μg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.
Collapse
Affiliation(s)
- Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|