1
|
Malla MA, Dubey A, Kori RK, Sharma V, Kumar A, Yadav S, Kumari S. GC-MS based untargeted metabolomics reveals the metabolic response of earthworm (Eudrilus eugeniae) after chronic combinatorial exposure to three different pesticides. Sci Rep 2023; 13:8583. [PMID: 37237073 DOI: 10.1038/s41598-023-35225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In this study GC-MS-based untargeted metabolomics was used to identify the metabolic response of earthworm; Eudrilus eugeniae exposed to sub-lethal concentrations of chlorpyrifos-CHL, cypermethrin-CYP, Glyphosate-GLY, and Combined-C (all three pesticides) at the concentrations of 3, 6, and 12 mg/kg. Principal component analysis of the obtained datasets revealed a clear distinction between the control and treatment groups. The mean weight of the worms in the treated groups decreased significantly (p < 0.05). Among the identified metabolites, oleic acid (~ 93.47%), lysine (~ 92.20%), glutamic acid (~ 91.81%), leucine (~ 90.20%), asparagine (~ 94.20%), methionine (~ 92.27%), malic acid (~ 93.37%), turanose (~ 95.04%), maltose (~ 92.36%), cholesta-3,5-diene (~ 86.11%), galactose (~ 93.20%), cholesterol (~ 91.56%), tocopherol (~ 85.09%), decreased significantly (p < 0.05), whereas myoinositol (~ 83%) and isoleucine (78.09%) increased significantly (p < 0.05) upon exposure to the CHL, CYP, GLY, and C. Overall, the findings suggest that earthworms might be a new entry point for the pesticides into the food chain. The present study highlights that metabolomics can be a reliable approach to understand the effect of different xenobiotics including pesticides on the metabolic response of earthworms.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
| | - Rajeesh Kumar Kori
- IRMS, National Dope Testing Laboratory, Ministry of Youth and Sports, GOI, New Delhi, India
| | - Vandana Sharma
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180 001, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India.
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, UP, 211002, India.
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| |
Collapse
|
2
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
3
|
Dani VD, Lankadurai BP, Nagato EG, Simpson AJ, Simpson MJ. Comparison of metabolomic responses of earthworms to sub-lethal imidacloprid exposure in contact and soil tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18846-18855. [PMID: 31065987 DOI: 10.1007/s11356-019-05302-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Eisenia fetida earthworms were exposed to sub-lethal levels of imidacloprid for 48 h via contact filter paper tests and soil tests. After the exposure, 1H nuclear magnetic resonance (NMR) metabolomics was used to measure earthworm sub-lethal responses by analyzing the changes in the polar metabolite profile. Maltose, glucose, malate, lactate/threonine, myo-inositol, glutamate, arginine, lysine, tyrosine, leucine, and phenylalanine relative concentrations were altered with imidacloprid exposure in soil. In addition to these metabolites (excluding leucine and phenylalanine), fumarate, ATP, inosine, betaine, scyllo-inositol, glutamine, valine, tryptophan, alanine, tyrosine, and isoleucine relative concentrations shifted with imidacloprid exposure during contact tests. Metabolite changes in E. fetida earthworms exposed to imidacloprid showed a non-linear concentration response and an upregulation in gluconeogenesis. Overall, imidacloprid exposure in soil induces a less pronounced response in metabolites glucose, maltose, fumarate, adenosine-5'-triphosphate (ATP), inosine, scyllo-inositol, lactate/threonine, and tyrosine in comparison to the response observed via contact tests. Thus, our study highlights that tests in soil can result in a different metabolic response in E. fetida and demonstrates the importance of different modes of exposure and the extent of metabolic perturbation in earthworms. Our study also emphasizes the underlying metabolic disruption of earthworms after acute sub-lethal exposure to imidacloprid. These observations should be further examined in different soil types to assess the sub-lethal toxicity of imidacloprid to soil-dwelling earthworms.
Collapse
Affiliation(s)
- Vivek D Dani
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Brian P Lankadurai
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Edward G Nagato
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
4
|
Liang R, Chen J, Shi Y, Lu Y, Sarvajayakesavalu S, Xu X, Zheng X, Khan K, Su C. Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:653-660. [PMID: 29775942 DOI: 10.1016/j.envpol.2018.04.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.
Collapse
Affiliation(s)
- Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suriyanarayanan Sarvajayakesavalu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Vinayaka Mission's Research Foundation (Deemed to be University), Salem 636308, Tamil Nadu, India
| | - Xiangbo Xu
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100059, China
| | - Xiaoqi Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100059, China
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | - Chao Su
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Dani VD, Simpson AJ, Simpson MJ. Analysis of earthworm sublethal toxic responses to atrazine exposure using 1 H nuclear magnetic resonance (NMR)-based metabolomics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:473-480. [PMID: 28888035 DOI: 10.1002/etc.3978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/10/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Atrazine toxicity to earthworms is still not fully understood, particularly at sublethal concentrations. Because of the ubiquity of atrazine in the environment, it is imperative to understand the impacts of atrazine presence to soil-dwelling organisms. To examine this in detail, we used 1 H nuclear magnetic resonance (NMR)-based metabolomics to elucidate earthworm (Eisenia fetida) responses after 48 h of atrazine exposure in contact tests. Earthworms were exposed to 4 sublethal concentrations of 362.4, 181.2, 90.6, and 45.3 ng/cm2 , which correspond to 1/8th, 1/16th, 1/32nd, and 1/64th of the median lethal concentration (LC50) values, respectively. After exposure, polar metabolites were isolated from earthworm tissues and analyzed using 1 H NMR spectroscopy. Sublethal atrazine exposure induced a nonmonotonic response with respect to exposure concentration and caused an overall suppression in earthworm metabolism. Maltose, fumarate, malate, threonine/lactate, adenosine-5'-triphosphate (ATP), betaine, scyllo-inositol, glutamate, arginine, and glutamine were the metabolites identified as most sensitive to atrazine exposure. These observed fluctuations in the metabolic profile suggest that atrazine reduced ATP synthesis and negatively impacted the health of earthworms after acute sublethal exposure. Our study also demonstrates the utility of NMR-based metabolomics for the basic assessment of sublethal toxicity, which can then be used for more targeted approaches with other molecular techniques. Environ Toxicol Chem 2018;37:473-480. © 2017 SETAC.
Collapse
Affiliation(s)
- Vivek D Dani
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Shi Y, Xu X, Chen J, Liang R, Zheng X, Shi Y, Wang Y. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:245-251. [PMID: 28951040 DOI: 10.1016/j.envpol.2017.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Hexabromocyclododecane (HBCD), a ubiquitous suspected contaminant, is one of the world's most prominent brominated flame retardants (BFRs). In the present study, earthworms (Eisenia fetida) were exposed to HBCD. The expression of selected antioxidant enzyme genes was measured, and the metabolic responses were assessed using nuclear magnetic resonance (NMR) to identify the molecular mechanism of the antioxidant stress reaction and the metabolic reactions of earthworms to HBCD. A significant up-regulation (p < 0.05) of superoxide dismutase (SOD) gene expression was detected, with the highest gene expression level of SOD appearing at a dose of 400 mg kg-1 dw (2.06-fold, p < 0.01). However, the glutathione transferase (GST) gene expression levels did not differ significantly (p > 0.05). Principal component analysis (PCA) of the metabolic responses showed that all groups could be clearly differentiated, and the highest concentration dose group was the most distant from the control group. Except for fumarate, the measured metabolites, which included adenosine triphosphate (ATP), valine, lysine, glycine, betaine and lactate, revealed significant (p < 0.05) increases after 14 days of exposure to HBCD. HBCD likely induces high levels of anaerobic respiration, which would result in high levels of ATP and lead to the disintegration of proteins into amino acids, including valine and lysine, to produce energy. The observed changes in osmotic pressure were indicative of damage to the membrane structure. Furthermore, this study showed that NMR-based metabolomics was a more sensitive tool than measuring the gene expression levels for elucidating the mode of toxicity of HBCD in earthworm exposure studies.
Collapse
Affiliation(s)
- Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangbo Xu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Juan Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yajing Shi
- School of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
| | - Yurong Wang
- School of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
| |
Collapse
|
7
|
Tang R, Ding C, Ma Y, Wang J, Zhang T, Wang X. Time-dependent responses of earthworms to soil contaminated with low levels of lead as detected using1H NMR metabolomics. RSC Adv 2017. [DOI: 10.1039/c7ra04393g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR-based metabolomics was used to profile the time-dependent metabolic responses of earthworms (Eisenia fetida) that were exposed to low-Pb-contaminated-soil (L-Pb-CS) for 28 days using an indoor culture.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing
- People's Republic of China
| |
Collapse
|
8
|
Brown JN, Samuelsson L, Bernardi G, Gooneratne R, Larsson DGJ. Aqueous and lipid nuclear magnetic resonance metabolomic profiles of the earthworm Aporrectodea caliginosa show potential as an indicator species for environmental metabolomics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2313-2322. [PMID: 24995628 DOI: 10.1002/etc.2680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/13/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The common pasture earthworm Aporrectodea caliginosa has often been neglected in environmental metabolomics in favor of species easily bred in the laboratory. The present study assigns aqueous metabolites in A. caliginosa using high-resolution 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. In total, 51 aqueous metabolites were identified, including typical amino acids (alanine, leucine, asparagine, phenylalanine), sugars (maltose, glucose), the dominant earthworm-specific 2-hexyl-5-ethyl-furansulfonate, and several previously unreported metabolites (oxoglutarate, putrescine). Examining the lesser-known earthworm lipid metabolome showed various lipid fatty acyl chains, cholesterol, and phosphatidylcholine. To briefly test if the NMR metabolomic techniques could differentiate A. caliginosa from different sites, earthworms were collected from 2 adjacent farms. Orthogonal partial least squares discriminant analysis detected metabolomic differences, suggesting the worms from the 2 sites differed in their energy metabolism, as indicated by altered levels of alanine, glutamine, glutamate, malate, fumarate, and lipids. Evidence of greater utilization of lipid energy reserves and onset of protein catabolism was also present. While the precise cause of the metabolomic differences could not be determined, the results show the potential of this species for further environmental metabolomic studies.
Collapse
Affiliation(s)
- Jeffrey N Brown
- Institute for Neurosciences and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
9
|
Aja M, Jaya M, Vijayakumaran Nair K, Joe IH. FT-IR spectroscopy as a sentinel technology in earthworm toxicology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:534-541. [PMID: 24374480 DOI: 10.1016/j.saa.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
FT-IR spectroscopy is a useful tool for determining the biomolecular profile of micro-samples of body fluids such as coelomic fluid of earthworms. The present study focuses on the usefulness of the earthworm (Perionyx sansibaricus) coelomic fluid for observing pathologically induced biochemical changes. Compared to controls, appreciable changes in expression of peaks were observed in worms exposed to seven selected xenobiotics (pesticides, heavy metals, herbicides and detergents). Observation of bands in the region 1600-1690 cm(-1) indicates the presence of amide I band in all the worms. The peak at 2364 cm(-1) present as a weak band on day 7 of treatment, is shifted to 2358/2359 cm(-1) and more pronounced in most of the treated groups on day 14. Presence of band at 1663 cm(-1) in controls is attributed to CO stretching vibration representing the amino acid, glutamic acid. Under toxicological conditions vibration in this region is absent. Presence of the amino acid arginine (1633 cm(-1)) and lysine (1629 cm(-1)) and absence of glutamic acid (1663 cm(-1)) under toxicological stress were characteristic. FT-IR spectra of the coelomic fluid were similar under the sublethal and lethal concentrations of the test chemicals. The potential use of FT-IR spectral information as baseline data for toxicological studies and for monitoring the quality of the environment is recommended.
Collapse
Affiliation(s)
- M Aja
- Department of Zoology, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala, India
| | - M Jaya
- Department of Zoology, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala, India
| | - K Vijayakumaran Nair
- Department of Zoology, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala, India
| | - I Hubert Joe
- Centre of Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala, India.
| |
Collapse
|
10
|
Whitfield Åslund M, Stephenson GL, Simpson AJ, Simpson MJ. Comparison of earthworm responses to petroleum hydrocarbon exposure in aged field contaminated soil using traditional ecotoxicity endpoints and 1H NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:263-268. [PMID: 23938450 DOI: 10.1016/j.envpol.2013.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
(1)H NMR metabolomics and conventional ecotoxicity endpoints were used to examine the response of earthworms exposed to petroleum hydrocarbons (PHCs) in soil samples collected from a site that was contaminated with crude oil from a pipeline failure in the mid-1990s. The conventional ecotoxicity tests showed that the soils were not acutely toxic to earthworms (average survival ≥ 90%), but some soil samples impaired reproduction endpoints by >50% compared to the field control soil. Additionally, metabolomics revealed significant relationships between earthworm metabolic profiles (collected after 2 or 14 days of exposure) and soil properties including soil PHC concentration. Further comparisons by partial least squares regression revealed a significant relationship between the earthworm metabolomic data (collected after only 2 or 14 days) and the reproduction endpoints (measured after 63 days). Therefore, metabolomic responses measured after short exposure periods may be predictive of chronic, ecologically relevant toxicity endpoints for earthworms exposed to soil contaminants.
Collapse
Affiliation(s)
- Melissa Whitfield Åslund
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4; Intrinsik Environmental Sciences Inc., 6605 Hurontario Street, Suite 500, Mississauga, Ontario, Canada L5T 0A3
| | | | | | | |
Collapse
|
11
|
Lankadurai BP, Furdui VI, Reiner EJ, Simpson AJ, Simpson MJ. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil. Metabolites 2013; 3:718-40. [PMID: 24958147 PMCID: PMC3901287 DOI: 10.3390/metabo3030718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/15/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022] Open
Abstract
1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined.
Collapse
Affiliation(s)
- Brian P Lankadurai
- Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Vasile I Furdui
- Ontario Ministry of the Environment, 125 Resources Road, Toronto, Ontario M9P 3V6, Canada.
| | - Eric J Reiner
- Ontario Ministry of the Environment, 125 Resources Road, Toronto, Ontario M9P 3V6, Canada.
| | - André J Simpson
- Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
12
|
Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:35-44. [PMID: 23333485 DOI: 10.1016/j.envpol.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
One-dimensional (1-D) and two-dimensional (2-D) nuclear magnetic resonance (NMR)-based metabolomics was used to investigate the toxic mode of action (MOA) of endosulfan, an organochlorine pesticide, and its degradation product, endosulfan sulfate, to Eisenia fetida earthworms in soil. Three soil concentrations (0.1, 1.0 and 10.0 mg/kg) were used for both endosulfan and endosulfan sulfate. Both earthworm coelomic fluid (CF) and tissues were extracted and then analyzed using (1)H and (1)H-(13)C NMR techniques. A similar separation trajectory was observed for endosulfan and endosulfan sulfate-exposed earthworms in the mean principal component analysis (PCA) scores plot for both the earthworm CF and tissue extracts. A neurotoxic and apoptotic MOA was postulated for both endosulfan and endosulfan sulfate exposed earthworms as significant fluctuations in glutamine/GABA-glutamate cycle metabolites and spermidine were detected respectively. This study highlights the application of NMR-based metabolomics to understand molecular-level toxicity of persistent organochlorine pesticides and their degradation products directly in soil.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | | |
Collapse
|
13
|
McKelvie JR, Whitfield Åslund M, Celejewski MA, Simpson AJ, Simpson MJ. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:75-81. [PMID: 23337355 DOI: 10.1016/j.envpol.2012.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/05/2012] [Accepted: 12/16/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida.
Collapse
Affiliation(s)
- Jennifer R McKelvie
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, Ontario M1C 1A4, Canada
| | | | | | | | | |
Collapse
|
14
|
Agbo SO, Lemmetyinen J, Keinänen M, Keski-Saari S, Akkanen J, Leppänen MT, Wang Z, Wang H, Price DA, Kukkonen JVK. Response of Lumbriculus variegatus transcriptome and metabolites to model chemical contaminants. Comp Biochem Physiol C Toxicol Pharmacol 2013. [PMID: 23178640 DOI: 10.1016/j.cbpc.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assessment of the underlying molecular events leading to xenobiotic toxicity is challenging especially when techniques are applied in isolation. We examined transcriptional and metabolic changes in Lumbriculus variegatus exposed to benzo(a)pyrene (B(a)P), cadmium (Cd) or pentachlorophenol (PCP) by DNA microarrays (7422 ESTs) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the DNA damage response of worms exposed to B(a)P was assessed by a capillary electrophoresis laser induced fluorescence (CE-LIF) immunoassay. We found elevated expression of oxidative stress responsive genes, which correlated positively with the changes in antioxidant vitamin precursors including alpha-tocopherol and cholecalciferol. Other genes with strong differential expressions were mostly involved in actin related processes and proteolysis, despite an apparent delayed Cd response. Phosphates, sugars and fatty acids were effectively reduced and suggested that chemical treatments may have interfered with energy metabolism. The increased amount of B(a)P diol-epoxide (BPDE)-DNA adducts in exposed worms appeared to correlate with the variability in uridine, inosine and xanthine, which are key components of nucleoside metabolism. This suggests that DNA damage was imminent or peaked within 6h. The results conformed to transcriptional changes in B(a)P exposed worms and compliment other approaches to elucidate underlying molecular changes.
Collapse
Affiliation(s)
- Stanley O Agbo
- Department of Biology, University of Eastern Finland, P. O. Box 111, FI-80101 Joensuu, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Whitfield Åslund M, Simpson MJ, Simpson AJ, Zeeb BA, Rutter A. Earthworm metabolomic responses after exposure to aged PCB contaminated soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1947-56. [PMID: 22623111 DOI: 10.1007/s10646-012-0928-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 05/02/2023]
Abstract
(1)H NMR metabolomics was used to measure earthworm sub-lethal responses to polychlorinated biphenyls (PCBs) in historically contaminated (>30 years) soils (91-280 mg/kg Aroclor 1254/1260) after two and 14 days of exposure. Although our previous research detected a distinct earthworm metabolic response to PCBs in freshly spiked soil at lower concentrations (0.5-25 mg/kg Aroclor 1254), the results of this study suggest only weak or non-significant relationships between earthworm metabolic profiles and soil PCB concentrations. This concurs with the expectation that decades of contaminant aging have likely decreased PCB bioavailability and toxicity in the field. Instead of being influenced by soil contaminant concentration, earthworm metabolic profiles were more closely correlated to soil properties such as total soil carbon and soil inorganic carbon. Overall, these results suggested that (1)H NMR metabolomics may be capable of detecting both site specific responses and decreased contaminant bioavailability to earthworms after only two days of exposure, whereas traditional toxicity tests require much more time (e.g. 14 days for acute toxicity and >50 days for reproduction tests). Therefore, there is significant opportunity to develop earthworm metabolomics as a sensitive tool for rapid assessment of the toxicity associated with contaminated field soils.
Collapse
Affiliation(s)
- Melissa Whitfield Åslund
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | | | | | | | | |
Collapse
|
16
|
Ye Y, Wang X, Zhang L, Lu Z, Yan X. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1314-1324. [PMID: 22437205 DOI: 10.1007/s10646-012-0885-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.
Collapse
Affiliation(s)
- Yangfang Ye
- School of Marine Science, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | | | | | | | | |
Collapse
|
17
|
Yuk J, Simpson MJ, Simpson AJ. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1301-1313. [PMID: 22451197 DOI: 10.1007/s10646-012-0884-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, Scarborough College, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | | |
Collapse
|
18
|
Whitfield Åslund ML, McShane H, Simpson MJ, Simpson AJ, Whalen JK, Hendershot WH, Sunahara GI. Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by ¹H NMR metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1111-1118. [PMID: 22148900 DOI: 10.1021/es202327k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
¹H NMR-based metabolomics was used to examine the response of Eisenia fetida earthworms raised from juveniles for 20-23 weeks in soil spiked with either 20 or 200 mg/kg of a commercially available uncoated titanium dioxide (TiO(2)) nanomaterial (nominal diameter of 5 nm). To distinguish responses specific to particle size, soil treatments spiked with a micrometer-sized TiO(2) material (nominal diameter, <45 μm) at the same concentrations (20 and 200 mg/kg) were also included in addition to an unspiked control soil. Multivariate statistical analysis of the (1)H NMR spectra for aqueous extracts of E. fetida tissue suggested that earthworms exhibited significant changes in their metabolic profile following TiO(2) exposure for both particle sizes. The observed earthworm metabolic changes appeared to be consistent with oxidative stress, a proposed mechanism of toxicity for nanosized TiO(2). In contrast, a prior study had observed no impairment of E. fetida survival, reproduction, or growth following exposure to the same TiO(2) spiked soils. This suggests that (1)H NMR-based metabolomics provides a more sensitive measure of earthworm response to TiO(2) materials in soil and that further targeted assays to detect specific cellular or molecular level damage to earthworms caused by chronic exposure to TiO(2) are warranted.
Collapse
Affiliation(s)
- Melissa L Whitfield Åslund
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | | | | | | | | | | | |
Collapse
|
19
|
McKelvie JR, Wolfe DM, Celejewski MA, Alaee M, Simpson AJ, Simpson MJ. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3620-3626. [PMID: 21856054 DOI: 10.1016/j.envpol.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.
Collapse
Affiliation(s)
- Jennifer R McKelvie
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Lankadurai BP, Wolfe DM, Simpson AJ, Simpson MJ. 1H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2845-2851. [PMID: 21620543 DOI: 10.1016/j.envpol.2011.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 05/30/2023]
Abstract
(1)H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm(2) of phenanthrene (1/64th of the LC(50)) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by (1)H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies.
Collapse
Affiliation(s)
- Brian P Lankadurai
- Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada
| | | | | | | |
Collapse
|
21
|
Whitfield Åslund ML, Simpson AJ, Simpson MJ. 1H NMR metabolomics of earthworm responses to polychlorinated biphenyl (PCB) exposure in soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:836-846. [PMID: 21424327 DOI: 10.1007/s10646-011-0638-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
(1)H NMR-based metabolomics was used to examine the metabolic profile of D(2)O-buffer extracted tissues of Eisenia fetida earthworms exposed for 2 days to an artificial soil spiked with sub-lethal concentrations of polychlorinated biphenyls (PCBs) (0, 0.5, 1, 5, 10, or 25 mg/kg Aroclor 1254). Univariate statistical analysis of the identified metabolites revealed a significant increase in ATP concentration in earthworms exposed to the highest soil PCB concentration, but detected no significant changes in other metabolites. However, a multivariate approach which considers alterations in multiple metabolites simultaneously, identified a significant linear relationship between earthworm metabolic profiles and PCB concentration (cross-validated PLS-regression with 7 components, R(2)X = 0.99, R(2)Y = 0.77, Q(2)Y = 0.45, P < 0.001). Significant changes in pair-wise metabolic correlations were also detected as PCB concentration increased. For example, lysine and ATP concentrations showed no apparent correlation in control earthworms (r = 0.22, P = 0.54), but were positively correlated in earthworms from the 25 mg/kg treatment (r = 0.87, P = 0.001). Overall, the observed metabolic responses suggest that PCBs disrupted both carbohydrate (energy) metabolism and membrane (osmolytic) function in E. fetida. The ability of (1)H NMR-based metabolomics to detect these responses suggests that this method offers significant potential for direct assessment of sub-lethal PCB toxicity in soil.
Collapse
Affiliation(s)
- Melissa L Whitfield Åslund
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | | | | |
Collapse
|
22
|
Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:97-175. [PMID: 21397118 DOI: 10.1016/j.pnmrs.2010.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Affiliation(s)
- André J Simpson
- Environmental NMR Center, Department of Chemistry, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
23
|
Whitfield Slund M, Celejewski M, Lankadurai BP, Simpson AJ, Simpson MJ. Natural variability and correlations in the metabolic profile of healthy Eisenia fetida earthworms observed using ¹H NMR metabolomics. CHEMOSPHERE 2011; 83:1096-1101. [PMID: 21316730 DOI: 10.1016/j.chemosphere.2011.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
¹H NMR metabolomics can be used to assess the sub-lethal toxicity of contaminants to earthworms by identifying alterations in the metabolic profiles of contaminant- exposed earthworms in contrast to those of healthy (control) individuals. In support of this method this study sought to better characterize the baseline metabolic profile of healthy, mature earthworms of the species, Eisenia fetida, which is recommended for both acute and sub-lethal toxicity testing for soil contaminants. Profiles of D(2)O-buffer extracted metabolites were determined using (1)H NMR spectroscopy and both inter-individual metabolic variability and pair-wise metabolic correlations were assessed. The control earthworm extracts exhibited low overall inter-individual metabolic variability, with a spectrum-wide median relative standard deviation (%RSD=standard deviation/mean×100) of 14%, which suggests that the metabolic profile of E. fetida earthworms is well controlled in laboratory conditions and supports further use of this organism in environmental metabolomics research. In addition, strong positive correlations were detected between the levels of maltose, betaine, glycine, and glutamate as well as between the levels of lactate, valine, leucine, alanine, lysine, tyrosine, and phenylalanine which had not previously been reported. Since comparison of pair-wise metabolic correlations between control and treated organisms can reveal changes in the underlying pattern of biochemical relationships between the metabolites, identification of these significant metabolic correlations in control earthworms provides an additional characteristic that may be applied to delineate between control and treated earthworms in future NMR-based metabolomic studies.
Collapse
Affiliation(s)
- Melissa Whitfield Slund
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, Ontario, Canada M1C 1A4
| | | | | | | | | |
Collapse
|