1
|
Ighalo JO, Ajala OJ, Adeniyi AG, Babatunde EO, Ajala MA. Ecotoxicology of glyphosate and recent advances in its mitigation by adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2655-2668. [PMID: 33164125 DOI: 10.1007/s11356-020-11521-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/02/2020] [Indexed: 05/25/2023]
Abstract
Glyphosate (N-[phosphonomethyl]glycine) is one of the most popular herbicides now used in agricultural practice. The aim of this paper was to discuss the research progress and innovations in recent years on the mitigation of glyphosate (GLY) from aqueous media by adsorption. The ecotoxicology of GLY was discussed in the domain of its chronic and sub-chronic toxicity, genotoxicity, reproductive toxicity, and carcinogenicity, and potential risks of food contamination were discussed. It was observed that polymers and resins are the best class of adsorbents for GLY adsorption from aqueous media. GLY adsorption was best fit to either Freundlich or Langmuir isotherm depending on the nature of the adsorbent. The pseudo-second-order kinetics was also the best fit for modelling the kinetics of GLY adsorption. A review of the thermodynamics revealed that GLY adsorption was usually spontaneous and exothermic. Research trends and knowledge gaps are in the area of chemical mobility in environmental systems (especially in the presence of other chemical species), the use of heavy metal-laden adsorbent and molecular modelling. Furthermore, it was observed that the ecotoxicology of GLY still has some contentious areas where there is no conclusive stance.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Oluwaseun Jacob Ajala
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria.
| | - Adewale George Adeniyi
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Esther O Babatunde
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| | - Mary A Ajala
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B 1515, Ilorin, Nigeria
| |
Collapse
|
2
|
Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114874. [PMID: 32599332 DOI: 10.1016/j.envpol.2020.114874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol 2020; 96:390-398. [PMID: 32805371 DOI: 10.1016/j.reprotox.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Glyphosate-based formulations are the most popular herbicide used around the world. These herbicides are widely applied in agriculture to control weeds on genetically modified crops. Although there is much evidence showing that glyphosate-based herbicides induce toxic effect on reproductive and hepatic systems, and also cause oxidative damage on cells, studies from recent years revealed that the nervous system may represent a key target for their toxicity. In the present work, we evaluated the effect of glyphosate (without adjuvants) in neonate rats after gestational exposure. Particularly, we examined whether glyphosate during gestation affected the nervous system function at early development. Pregnant Wistar rats were treated with 24 or 35 mg/kg of pure glyphosate every 48 h and neurobehavioral studies were performed. Our results indicated that gestational exposure to glyphosate induced changes in reflexes development, motor activity and cognitive function, in a dose-dependent manner. To go further, we evaluated whether prenatal exposure to glyphosate affected the Ca+2-mediated Wnt non-canonical signaling pathway. Results indicated that embryos exposed to glyphosate showed an inhibition of Wnt5a-CaMKII signaling pathway, an essential cascade controlling the formation and integration of neural circuits. Taken together, these findings suggest that gestational exposure to glyphosate leads to a downregulation of Wnt/Ca+2 pathway that could induce a developmental neurotoxicity evidenced by deficits at behavioral and cognitive levels in rat pups.
Collapse
Affiliation(s)
- Romina Coullery
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Alejandra M Pacchioni
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina.
| |
Collapse
|
4
|
Lescano MR, Masin CE, Rodríguez AR, Godoy JL, Zalazar CS. Earthworms to improve glyphosate degradation in biobeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27023-27031. [PMID: 32382913 DOI: 10.1007/s11356-020-09002-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, earthworm effect on the efficiency of biobeds for glyphosate degradation was studied. Three biomixtures with and without the addition of earthworms (Eisenia fetida species) were evaluated. The initial concentration of glyphosate was 1000 mg/kg biomixture. Glyphosate and biological parameters were measured as a function of time. Earthworm survival, biomass, and reproduction were evaluated as well. All biomixtures that contain earthworms reached 90% of glyphosate degradation at 90 days in comparison with the biomixtures without earthworms that reached 80% approximately at the same time. Also, within the biomixtures that contained earthworms, glyphosate degradation rate was significantly higher in the one made up with soil and wheat stubble (Ws-E) showing excellent capacity for aminomethylphosphonic acid (AMPA) degradation, the main metabolite of glyphosate degradation. In addition, a study performed after the vermiremediation process showed that E. fetida can tolerate high glyphosate concentration without modifications in its life traits. It can be concluded that the use of E. fetida within the biobeds is an excellent combination to improve glyphosate and AMPA removal.
Collapse
Affiliation(s)
- Maia R Lescano
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
- Departamento de Ciencias Naturales, FHUC-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Carolina E Masin
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
| | - Alba R Rodríguez
- Departamento de Ciencias Naturales, FHUC-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - José L Godoy
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
| | - Cristina S Zalazar
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina.
- Departamento de Medioambiente, FICH-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| |
Collapse
|
5
|
Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, Milesi MM, Varayoud J, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 2019; 482:45-56. [PMID: 30550814 DOI: 10.1016/j.mce.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to compare the effect of oral and subcutaneous exposure to a glyphosate-based herbicide (GBH) on the female reproductive system, specifically in the ovaries and uterus of prepubertal lambs. To this end, ewe lambs were exposed to a s.c. (n: 5) or an oral (n: 5) environmentally relevant dose of GBH (2 mg/kg/day) or to vehicle (controls, n: 12), from postnatal day (PND) 1 to PND14. Serum glyphosate and aminomethylphosphonic acid (AMPA) concentrations were measured on PND15 and PND45. The ovaries and uterus were obtained and weighed on PND45. Ovarian follicular dynamics and uterine morphological features were determined by picrosirius-hematoxylin staining. The proliferation marker Ki67 was evaluated by immunohistochemistry in ovarian and uterine samples. Glyphosate but not AMPA was detected in serum of exposed lambs on PND15, whereas neither glyphosate nor AMPA were detected on PND45. Controls were negative for glyphosate and AMPA on PND15 and PND45. GBH exposure did not affect ovarian or uterine weight. However, on PND45, the ovary of GBH-exposed lambs showed altered follicular dynamics, increased proliferation of granulosa and theca cells, and decreased mRNA expression of FSHR and GDF9, whereas their uterus showed decreased cell proliferation but no alterations in the histomorphology or gene expression. In conclusion, GBH exposure altered the ovarian follicular dynamics and gene expression, and the proliferative activity of the ovaries and uterus of lambs. It is noteworthy that all the adverse effects found in the ovaries and uterus of both GBH-exposed groups were similar, independently of the administration route.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
6
|
Lescano MR, Pizzul L, Castillo MDP, Zalazar CS. Glyphosate and aminomethylphosphonic acid degradation in biomixtures based on alfalfa straw, wheat stubble and river waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:451-457. [PMID: 30245269 DOI: 10.1016/j.jenvman.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/24/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The aim of the work was to evaluate novel biomixtures for their use on biopurification systems (BPS) in Argentina also called biobeds. Glyphosate and aminomethylphosphonic acid (AMPA) degradation was evaluated on biomixtures containing local materials: alfalfa straw (As), wheat stubble (Ws), river waste (Rw) and soil. Glyphosate, AMPA concentrations and biological activity were followed with time. Soil was used as control. Glyphosate initial concentration was 1000 mg kg-1. Glyphosate disappeared almost completely after 63 days in all tested biomixtures. For Ws, WsRw and AsRw glyphosate degradation was around 99% and for As 85%. The biomixture Ws showed the highest glyphosate degradation rate. In all cases AMPA was formed and degraded to concentrations between 60 and 100 mg kg-1. In the control with only soil, glyphosate was degraded 53% and AMPA concentration at the end of the test was 438 mg kg-1. We conclude that alfalfa straw, wheat stubble and river waste are local materials that can be used in the preparation of biomixtures since they showed higher glyphosate degradation capacity and less AMPA accumulation compared to the soil alone. Also, the presence of river waste did enhance the water retention capacity.
Collapse
Affiliation(s)
- M R Lescano
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
| | - L Pizzul
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - M D P Castillo
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - C S Zalazar
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina; Dep. Medioambiente, FICH-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| |
Collapse
|
7
|
Ehrl B, Mogusu EO, Kim K, Hofstetter H, Pedersen JA, Elsner M. High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7259-7268. [PMID: 29790342 PMCID: PMC7193547 DOI: 10.1021/acs.est.8b01004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/22/2023]
Abstract
Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp (pH 7.0) = 3.7 (±0.3) × 10-7 m·s-1 to Papp (pH 4.1) = 4.2 (±0.1) × 10-6 m·s-1. The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIEcarbon, of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.
Collapse
Affiliation(s)
- Benno
N. Ehrl
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Emmanuel O. Mogusu
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Department
of Chemistry, Mwenge Catholic University, P.O. Box 1226, Moshi, Tanzania
| | - Kyoungtea Kim
- Molecular
and Environmental Toxicology Center, University
of Wisconsin, Madison, Wisconsin 53706, United States
| | - Heike Hofstetter
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Molecular
and Environmental Toxicology Center, University
of Wisconsin, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Departments
of Soil Science and Civil & Environmental Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Institute
of Hydrochemistry, Chair for Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
8
|
Flores FM, Torres Sánchez RM, Dos Santos Afonso M. Some aspects of the adsorption of glyphosate and its degradation products on montmorillonite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18138-18146. [PMID: 29691751 DOI: 10.1007/s11356-018-2073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The most worldwide used herbicide is glyphosate, phosphonomethylglycine (PMG). Consequently, a significant amount of PMG, its metabolites (sarcosine, SAR, and aminomethylphosphonic acid, AMPA) and the degradation product, methylphosphonic acid (MPA), reaches the soil, which acts as final sink. Because clays are one of the most reactive components of soils, expansive clays such as montmorillonite (Mt) are used to retain agriculture contaminants with some success. In this work, as a preliminary step for the evaluation of the risk that PMG, SAR, AMPA, and MPA occurrence could have on the environment, their adsorption on Mt surface was performed. The adsorption process was analyzed at constant adsorbate concentrations and two pH values to take into account the different protonation states of the amino group. DTA, XRD, zeta potential measurements, and XPS were used to identify the interactions or association mechanisms with the clay surface, the entry of adsorbates into the Mt interlayer, and electric charge changes on the Mt surface, and evaluate the acid-base surface complex constants, respectively. The interlayer thickness in acid media indicated that adsorbates are able to enter the interlayer in planar form. Besides, for the Mt-PMG sample, some PMG molecules could be also inserted as a bilayer or with a tilt angle of 52.4° in the interlayer. However, in alkaline media, the interlayer thickness indicated that the adsorbate arrangement differed from that of acidic media where PMG and MPA could have more than one orientation. The surface complex deprotonation constants were determined for the =NH+2 ⇆ =NH+H+ process, being 3.0, 5.0, and 7.3 for PMG, AMPA, and SAR, respectively.
Collapse
Affiliation(s)
- Federico M Flores
- CETMIC (Centro de Tecnología en Minerales y Cerámica) CONICET-CCT La Plata-CICBA, Camino Centenario y 506, B1897ZCA, M. B. Gonnet, Argentina
| | - Rosa M Torres Sánchez
- CETMIC (Centro de Tecnología en Minerales y Cerámica) CONICET-CCT La Plata-CICBA, Camino Centenario y 506, B1897ZCA, M. B. Gonnet, Argentina.
| | - Maria Dos Santos Afonso
- Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Rebolledo-Leiva R, Angulo-Meza L, Iriarte A, González-Araya MC. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:36-46. [PMID: 28342416 DOI: 10.1016/j.scitotenv.2017.03.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions.
Collapse
Affiliation(s)
- Ricardo Rebolledo-Leiva
- School of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Camino a Los Niches km 1, Curicó, Chile
| | - Lidia Angulo-Meza
- Production Engineering Department, Universidade Federal Fluminense, Rua Passo da Patria 156, São Domingos, Niterói 24210-240, Brazil
| | - Alfredo Iriarte
- Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Camino a Los Niches km 1, Curicó, Chile; Chilean Food Processing Research Center, CEAP (Centro de Estudios en Alimentos Procesados), Avenida Lircay s/n. Campus Talca, Universidad de Talca, Talca, Chile
| | - Marcela C González-Araya
- Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Camino a Los Niches km 1, Curicó, Chile.
| |
Collapse
|
10
|
Druart C, Gimbert F, Scheifler R, de Vaufleury A. A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:240-249. [PMID: 28395863 DOI: 10.1016/j.envpol.2017.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/14/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
A full life-cycle (240 days) bioassay using the terrestrial snail, Cantareus aspersus, allowing exposure during embryogenesis and/or the growth and reproduction phases, was used to assess the effects of Bypass®, a glyphosate-based herbicide (GlyBH), on a range of endpoints, including parameters under endocrine control. As a positive control, a mixture (R-A) made of diquat (Reglone®) and nonylphenols (NP, Agral®), known for its endocrine disrupting effects in other organisms, was tested. At environmental concentrations, both pesticides (R-A mixture and GlyBH) enhanced growth but reduced reproduction. The R-A mixture acted mainly on the fecundity through a delay in egg-laying of approximately 20 days and a strongly reduced number of clutches. This latter dysfunction may be caused by a permanent eversion of the penis, suggesting a disrupting effect at the neuro-endocrine level, which prevented normal mating. GlyBH acted on fertility, possibly due to a decrease in the fertilization of eggs laid by adults exposed during their embryonic development. These results, associated with the absence of observed effects on gonad histology of GlyBH exposed snails, suggested that the underlying mechanisms are neuro-endocrine.
Collapse
Affiliation(s)
- Coline Druart
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Frédéric Gimbert
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Renaud Scheifler
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Annette de Vaufleury
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| |
Collapse
|
11
|
Guerrero Schimpf M, Milesi MM, Ingaramo PI, Luque EH, Varayoud J. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus. Toxicology 2017; 376:2-14. [PMID: 27287056 DOI: 10.1016/j.tox.2016.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased the expression of Wnt7a in the stromal and glandular epithelial cells on PND21. Neonatal exposure to GBH disrupts the postnatal uterine development at the neonatal and prepubertal period. All these changes may alter the functional differentiation of the uterus, affecting the female fertility and/or promoting the development of neoplasias.
Collapse
Affiliation(s)
- Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| |
Collapse
|
12
|
Napoli M, Marta AD, Zanchi CA, Orlandini S. Transport of Glyphosate and Aminomethylphosphonic Acid under Two Soil Management Practices in an Italian Vineyard. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1713-1721. [PMID: 27695744 DOI: 10.2134/jeq2016.02.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Worldwide, glyphosate is the most widely used herbicide in controlling the growth of annual and perennial weeds. An increasing number of studies have highlighted the environmental risk resulting from the use of this molecule in aquatic and terrestrial ecosystems. The objective of the study was to determine the transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), through runoff and transported sediment from a vineyard under two different soil management systems: harrowed inter-row (HR) and permanent grass covered inter-row (GR). The study was performed over a period of 4 yr. Glyphosate and AMPA concentrations were found to be higher in runoff and in transported sediment from HR compared with GR, regardless of the amount of runoff and transported sediment. The mean annual percentages of glyphosate loss, via runoff and transported sediment, were about 1.37 and 0.73% for HR and GR, respectively. Aminomethylphosphonic acid represented approximately 30.9 and 40.0% of the total glyphosate losses in GR and HR, respectively. Moreover, results suggested that rains occurring within 4 wk after treatment could cause the transport of glyphosate and AMPA in high concentrations. Soil analyses indicated that glyphosate content was below detection within 1 yr, whereas AMPA remained in the soil profiles along the vine row and in the inter-row. Results indicated that GR can reduce soil and herbicide loss by runoff in vineyard cropping system.
Collapse
|
13
|
Yang X, Wang F, Bento CPM, Meng L, van Dam R, Mol H, Liu G, Ritsema CJ, Geissen V. Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:87-95. [PMID: 26026412 DOI: 10.1016/j.scitotenv.2015.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED The decay characteristics and erosion-related transport of glyphosate and aminomethylphosphonic acid (AMPA) were monitored for 35 d at different slope gradients and rates of application in plots with loess soil on the Loess Plateau, China. The initial glyphosate decayed rapidly (half-life of 3.5d) in the upper 2 cm of soil following a first-order rate of decay. AMPA content in the 0-2 cm soil layer correspondingly peaked 3d after glyphosate application and then gradually decreased. The residues of glyphosate and AMPA decreased significantly with soil depth (p<0.05) independently of the slope inclination and application rate. About 0.36% of the glyphosate initially applied was transported from plots after one erosive rain 2d after the application. Glyphosate and AMPA concentrations in runoff were low while the contents in the sediment were much higher than in the upper 2 cm of the soil. CAPSULE Although the rate of glyphosate decay is rapid in Chinese loess soil, the risks of glyphosate and AMPA need to be taken into account especially in the area with highly erosive rainfall.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China.
| | - Célia P M Bento
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Lei Meng
- College of Geography and Environment, Baoji University of Arts and Sciences, 712300 Baoji, Shaanxi, China
| | - Ruud van Dam
- Institute of Food Safety (RIKILT), Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Hans Mol
- Institute of Food Safety (RIKILT), Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
14
|
Stewart M, Olsen G, Hickey CW, Ferreira B, Jelić A, Petrović M, Barcelo D. A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:202-210. [PMID: 24029692 DOI: 10.1016/j.scitotenv.2013.08.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Increasing urbanisation in the future will put mounting stresses on the receiving environments around those urban centres due to increased sedimentation and contaminant runoff. Emerging contaminants (ECs) are an extensive array of chemicals and many are not under regulatory action. Within New Zealand likely future pressures from ECs will be in both urban centres and rural areas due to intensive agriculture, although at present there is a lack of information on the state of the environment in both sectors. This study was initiated to gauge the distribution of ECs in the urban environment by measuring concentrations of flame retardants, plasticisers, alkylphenols, herbicides and pesticides, steroid oestrogens, pharmaceuticals and heavy metals in sediment from 13 estuarine sites around Auckland, New Zealand's biggest city. Total polybrominated diphenyl ether (PBDE) flame retardant concentrations ((7)ΣPBDE) ranged from 0.55 to 573 ng/g (dw). The phthalate plasticiser di(2-ethylhexyl)phthalate (DEHP) was measured at up to 11,500 ng/g from one site. Nonylphenol (NP) was found at up to 32,000 ng/g at one site adjacent to the city's major wastewater treatment plant (WWTP). However, median concentrations of NP were 153 ng/g, suggesting this site was not representative of the region. Nonylphenol mono- and di-ethoxylates (NPEO1,2) had highest concentrations (1600 ng/g) at a marina. Highest glyphosate concentrations (up to 950 ng/g) were observed at residential sites. Steroid oestrogens were detected at extremely low concentrations (maximum 2.2 ng/g), while all other pesticides or herbicides were not detected at any sites. Multi-residue analysis of 46 pharmaceuticals showed presence of 21 compounds at one or more sites, with average concentrations ranging from 0.16 to 7.66 ng/g. Generally, environmental concentrations of ECs were similar to those reported world-wide. However, comparisons for pharmaceuticals were problematic, due to very few studies on pharmaceutical concentrations in estuarine sediments, with most focussed on sewage and stream water phases.
Collapse
Affiliation(s)
- Michael Stewart
- National Institute of Water and Atmospheric Research, PO Box 11 115, Hamilton 3251, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wagner N, Reichenbecher W, Teichmann H, Tappeser B, Lötters S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1688-700. [PMID: 23637092 DOI: 10.1002/etc.2268] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/20/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.
Collapse
Affiliation(s)
- Norman Wagner
- Biogeography Department, Trier University, Trier, Germany.
| | | | | | | | | |
Collapse
|
16
|
Scientific Opinion on an application (EFSA‐GMO‐NL‐2005‐24) for the placing on the market of the herbicide tolerant genetically modified soybean 40‐3‐2 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste CM, Chaabane H, Cooper JF. Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. PEST MANAGEMENT SCIENCE 2012; 68:340-7. [PMID: 21919184 DOI: 10.1002/ps.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/24/2011] [Accepted: 06/24/2011] [Indexed: 05/26/2023]
Abstract
BACKGROUND The dissipation kinetics of the herbicide sulcotrione sprayed 4 times on a French soil was studied using a laboratory microcosm approach. An advanced cultivation-based method was then used to isolate the bacteria responsible for biotransformation of sulcotrione. Chromatographic methods were employed as complementary tools to define its metabolic pathway. RESULTS Soil microflora was able quickly to biotransform the herbicide (DT(50) ≈ 8 days). 2-Chloro-4-mesylbenzoic acid, one of its main metabolites, was clearly detected. However, no accelerated biodegradation process was observed. Eight pure sulcotrione-resistant strains were isolated, but only one (1OP) was capable of degrading this herbicide with a relatively high efficiency and to use it as a sole source of carbon and energy. In parallel, another sulcotrione-resistant strain (1TRANS) was shown to be incapable of degrading the herbicide. Amplified ribosomal restriction analysis (ARDRA) and repetitive extragenic palendromic PCR genomic (REP-PCR) fingerprinting of strains 1OP and 1TRANS gave indistinguishable profiles. CONCLUSION Sequencing and aligning analysis of 16S rDNA genes of each pure strain revealed identical sequences and a close phylogenetic relationship (99% sequence identity) to Pseudomonas putida. Such physiological and genetic properties of 1OP to metabolise sulcotrione were probably governed by mobile genetic elements in the genome of the bacteria.
Collapse
Affiliation(s)
- Christophe Calvayrac
- Laboratoire de Chimie des Biomolécules et de l'Environnement, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
19
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
20
|
Shipitalo MJ, Owens LB. Comparative losses of glyphosate and selected residual herbicides in surface runoff from conservation-tilled watersheds planted with corn or soybean. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1281-9. [PMID: 21712598 DOI: 10.2134/jeq2010.0454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.
Collapse
|