1
|
Dymova AA, Kovalev MA, Silantyev AS, Borzykh AA, Osipova PJ, Poddubko SV, Mitkevich VA, Karpov DS, Kostina NV. Unusual Genomic and Biochemical Features of Paenarthrobacter lasiusi sp. nov-A Novel Bacterial Species Isolated from Lasius niger Anthill Soil. Int J Mol Sci 2024; 26:67. [PMID: 39795926 PMCID: PMC11719660 DOI: 10.3390/ijms26010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
The black garden ant (Lasius niger) is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with L. niger remains poorly investigated. In the present study, we isolated a novel species, Paenarthrobacter lasiusi, from the soil of the L. niger anthill. The genome of P. lasiusi S21 was sequenced, annotated, and searched for groups of genes of physiological, medical, and biotechnological importance. Subsequently, a series of microbiological, physiological, and biochemical experiments were conducted to characterize P. lasiusi S21 with respect to its sugar metabolism, antibiotic resistance profile, lipidome, and capacity for atmospheric nitrogen fixation, among others. A notable feature of the P. lasiusi S21 genome is the presence of two prophages, which may have horizontally transferred host genes involved in stress responses. P. lasiusi S21 synthesizes a number of lipids, including mono- and digalactosyldiacylglycerol, as well as steroid compounds that are typically found in eukaryotic organisms rather than prokaryotes. P. lasiusi S21 exhibits resistance to penicillins, lincosamides, fusidins, and oxazolidinones, despite the absence of specific genes conferring resistance to these antibiotics. Genomic data and physiological tests indicate that P. lasiusi S21 is nonpathogenic to humans. The genome of P. lasiusi S21 contains multiple operons involved in heavy metal metabolism and organic compound inactivation. Consequently, P. lasiusi represents a novel species with an intriguing evolutionary history, manifesting in distinctive genomic, metabolomic, and physiological characteristics. This species may have potential applications in the bioaugmentation of contaminated soils.
Collapse
Affiliation(s)
- Alexandra A. Dymova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (A.A.D.); (A.A.B.); (P.J.O.); (S.V.P.)
- Faculty of Soil Science, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia;
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.K.); (V.A.M.)
| | - Artemiy S. Silantyev
- The Institute of Personalized Cardiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Anna A. Borzykh
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (A.A.D.); (A.A.B.); (P.J.O.); (S.V.P.)
| | - Pamila J. Osipova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (A.A.D.); (A.A.B.); (P.J.O.); (S.V.P.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (A.A.D.); (A.A.B.); (P.J.O.); (S.V.P.)
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.K.); (V.A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (A.A.D.); (A.A.B.); (P.J.O.); (S.V.P.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.A.K.); (V.A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia V. Kostina
- Faculty of Soil Science, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia;
| |
Collapse
|
2
|
Guo N, Wang M, Shen Y, Li B, Zhao D, Zou S, Yang Y. Detection of extracellular antibiotic resistance genes in river water: Application of ultrafiltration-magnetic beads method. ENVIRONMENTAL RESEARCH 2024; 263:120259. [PMID: 39476925 DOI: 10.1016/j.envres.2024.120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Antibiotic resistance genes (ARGs) are widespread contaminants that pose significant threats to public health. Rivers play a crucial role in the dissemination of ARGs within the aquatic environment. However, there are limitations in the current research on the differentiation of intracellular ARGs (iARGs) and extracellular ARGs (eARGs) in river water. In this study, we developed a method combining ultrafiltration and adsorption of silica-hydroxy magnetic beads for efficient extraction of extracellular DNA (eDNA) from river water. The conditions of adsorption, washing, desorption, and pretreatment were optimized to enhance eDNA recovery. By using only 90 mL of water sample, our method could collect sufficient eDNA for subsequent detection of eARGs through qPCR analysis. The eDNA recovery rate ranged from 51.4% to 69.8%. The occurrence of five prevalent ARGs (tetC, sulI, blaTEM, ermB, qnrS) as well as integrase gene intl1 were investigated in both iDNA and eDNA extracted from river water samples collected from two tributaries of the Pearl River. Our results revealed that the absolute abundance levels of eARGs ranged from 10-1 to 105 copies/mL, which were significantly higher than those observed for iARGs ranging from 10-1 to 104 copies/mL. Moreover, there was a significant difference in contamination profiles for ARGs between two tributaries. The ultrafiltration-magnetic beads method overcomes challenges associated with low efficiency extraction when working with water samples containing low nucleic acid concentrations. This approach provides an improved technique for extracting eARGs from river water while also generating valuable data supporting assessments related to eARG contamination in such environments.
Collapse
Affiliation(s)
- Nairong Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Minyan Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yijing Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Danna Zhao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
3
|
Zhang H, Ouyang W, Lin C, Wang L, Guo Z, Pei J, Zhang S, He M, Liu X. Anthropogenic activities drive the distribution and ecological risk of antibiotics in a highly urbanized river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173596. [PMID: 38810736 DOI: 10.1016/j.scitotenv.2024.173596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Although antibiotics are widely detected in river water, their quantitative relationships with influencing factors in rivers remain largely unexplored. Here, 15 widely used antibiotics were comprehensively analyzed in the Dongjiang River of the Pearl River system. The total antibiotic concentration in river water ranged from 13.84 to 475.04 ng/L, with fluoroquinolones increasing from 11 % in the upstream to 38 % in the downstream. The total antibiotic concentration was high downstream and significantly correlated with the spatial distribution of population density, animal production, and land-use type. The total risk quotient of antibiotics for algae was higher than that for crustaceans and fish. Based on the optimized risk quotient method, amoxicillin, ofloxacin, and norfloxacin were identified as priority antibiotics. The key predictors of antibiotic levels were screened through Mantel test, correlation analysis, and multiple regression models. Water physicochemical parameters significantly impacted antibiotics and could be used as easy-to-measure surrogates associated with elevated antibiotics. Cropland negatively affected fluoroquinolones and sulfonamides, whereas urban land exerted positive impacts on fluoroquinolones, β-lactam, and sulfonamides. In the main stream, population, animal production, urbanization status, and economic development had key effects on the distribution of florfenicol, norfloxacin, ofloxacin, and sulfadiazine.
Collapse
Affiliation(s)
- He Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lei Wang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jietong Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Soni K, Jyoti K, Kumar A, Chandra R. Coexistence of multidrug resistance and ESBL encoding genes - bla TEM, bla SHV, and bla CTX-M; its amplification and dispersion in the environment via municipal wastewater treatment plant. CHEMOSPHERE 2024; 362:142829. [PMID: 38992444 DOI: 10.1016/j.chemosphere.2024.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anil Kumar
- State Level Water Analysis Laboratory, UP Jal Nigam (Urban) 6, Rana Pratap Marg, Lucknow, 226001, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
5
|
Jyoti K, Soni K, Chandra R. Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107019. [PMID: 39002428 DOI: 10.1016/j.aquatox.2024.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
The interaction of the environment with the effluent of wastewater treatment plants, having antibiotics, multidrug-resistant (MDR) bacteria, and biofilm-forming genes (BFGs), has vast environmental risks. Antibiotic pollution bottlenecks environmental bacteria and has the potential to significantly lower the biodiversity of environmental bacteria, causing an alteration in ecological equilibrium. It can induce selective pressure for antibiotic resistance (AR) and can transform the non-resistant environmental bacteria into a resistant form through HGT. This study investigated the occurrence of MDR bacteria, showing phenotypic and genotypic characteristics of biofilm. The bacteria were isolated from the pharmaceutical wastewater treatment plants (WWTPs) of Dehradun and Haridwar (India), located in the pharmaceutical areas. The findings of this study demonstrate the coexistence of BFGs and MDR clinical bacteria in the vicinity of pharmaceutical industrial wastewater treatment plants. A total of 47 bacteria were isolated from both WWTPs and tested for antibiotic resistance to 13 different antibiotics; 16 isolates (34.04 %) tested positive for MDR. 5 (31.25 %) of these 16 MDR isolates were producing biofilm and identified as Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Burkholderia cepacia. The targeted BFGs in this study were ompA, bap and pslA. The most common co-occurring gene was ompA (80 %), with pslA (40 %) being the least common. A. baumannii contains all three targeted genes, whereas B. cepacia only has bap. Except for B. cepacia, all the biofilm-forming MDR isolates show AR to all the tested antibiotics and prove that the biofilm enhances the AR potential. The samples of both wastewater treatment plants also showed the occurrence of tetracycline, ampicillin, erythromycin and chloramphenicol, along with high levels of BOD, COD, PO4-3, NO3-, heavy metals and organic pollutants. The co-occurrence of MDR and biofilm-forming tendency in the clinical strain of bacteria and its environmental dissemination may have an array of hazardous impacts on human and environmental health.
Collapse
Affiliation(s)
- Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
6
|
Shamsizadeh Z, Nikaeen M, Mohammadi F, Farhadkhani M, Mokhtari M, Ehrampoush MH. Wastewater surveillance of antibiotic resistance and class 1 integron-integrase genes: Potential impact of wastewater characteristics on genes profile. Heliyon 2024; 10:e29601. [PMID: 38765125 PMCID: PMC11098788 DOI: 10.1016/j.heliyon.2024.e29601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
Antibiotic resistance (AR) is a major global health concern, but current surveillance efforts primarily focus on healthcare settings, leaving a lack of understanding about AR across all sectors of the One Health approach. To bridge this gap, wastewater surveillance provides a cost-effective and efficient method for monitoring AR within a population. In this study, we implemented a surveillance program by monitoring the wastewater effluent from two large-scale municipal treatment plants situated in Isfahan, a central region of Iran. These treatment plants covered distinct catchment regions and served a combined population about two million of residents. Furthermore, the effect of physicochemical and microbial characteristics of wastewater effluent including biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), temperature, total coliforms and Escherichia coli concentration on the abundance of ARGs (blaCTX-M, tetW, sul1, cmlA, and ermB) and class 1 integron-integrase gene (intI1) were investigated. Sul1 and blaCTX-M were the most and least abundant ARGs in the two WWTPs, respectively. Principal Component Analysis showed that in both of the WWTPs all ARGs and intI1 gene abundance were positively correlated with effluent temperature, but all other effluent characteristics (BOD, COD, TSS, total coliforms and E. coli) showed no significant correlation with ARGs abundance. Temperature could affect the performance of conventional activated sludge process, which in turn could affect the abundance of ARGs. The results of this study suggest that other factors than BOD, COD and TSS may affect the ARGs abundance. The predicted AR could lead to development of effective interventions and policies to combat AR in the clinical settings. However, further research is needed to determine the relationship between the AR in wastewater and clinical settings as well as the effect of other influential factors on ARGs abundance.
Collapse
Affiliation(s)
- Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Farhadkhani
- Educational Development Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Chen H, Ng C, Tran NH, Haller L, Goh SG, Charles FR, Wu Z, Lim JX, Gin KYH. Removal efficiency of antibiotic residues, antibiotic resistant bacteria, and genes across parallel secondary settling tank and membrane bioreactor treatment trains in a water reclamation plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171723. [PMID: 38492595 DOI: 10.1016/j.scitotenv.2024.171723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Antimicrobial resistance is recognized as a potent threat to human health. Wastewater treatment facilities are viewed as hotspots for the spread of antimicrobial resistance. This study provides comprehensive data on the occurrences of 3 different antibiotic resistant opportunistic pathogens (with resistance to up to 5 antibiotics), 13 antibiotic resistant genes and intI1, and 22 different antimicrobial residues in a large water reclamation plant (176 million gallons per day) that runs a conventional Modified Ludzack-Ettinger (MLE) reactor followed by a secondary settling tank (SST) and membrane bioreactor (MBR) in parallel. All the antibiotic resistant bacteria and most of the antibiotic resistance genes were present in the raw influent, ranging from 2.5 × 102-3.7 × 106 CFU/mL and 1.2× 10-1-6.5 × 1010 GCN/mL, respectively. MBR outperformed the SST system in terms of ARB removal as the ARB targets were largely undetected in MBR effluent, with log removals ranging from 2.7 to 6.8, while SST only had log removals ranging from 0.27 to 4.6. Most of the ARG concentrations were found to have significantly higher in SST effluent than MBR permeate, and MBR had significantly higher removal efficiency for most targets (p < 0.05) except for sul1, sul2, blaOXA48, intI1 and 16S rRNA genes (p > 0.05). As for the antibiotic residues (AR), there was no significant removal from the start to the end of the treatment process, although MBR had higher removal efficiencies for azithromycin, chloramphenicol, erythromycin, erythromycin-H2O, lincomycin, sulfamethoxazole and triclosan, compared to the SST system. In conclusion, MBR outperformed SST in terms of ARB and ARGs removal. However low removal efficiencies of most AR targets were apparent.
Collapse
Affiliation(s)
- Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Laurence Haller
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Francis Rathinam Charles
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Zhixin Wu
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jit Xin Lim
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Block E1A-07-03, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
8
|
Tong X, Goh SG, Mohapatra S, Tran NH, You L, Zhang J, He Y, Gin KYH. Predicting Antibiotic Resistance and Assessing the Risk Burden from Antibiotics: A Holistic Modeling Framework in a Tropical Reservoir. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6781-6792. [PMID: 38560895 PMCID: PMC11025116 DOI: 10.1021/acs.est.3c10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.
Collapse
Affiliation(s)
- Xuneng Tong
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Shin Giek Goh
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Sanjeeb Mohapatra
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
- Northeast
Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Shenzhen
Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen518055,China
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| |
Collapse
|
9
|
Singh A, Singh E, Khan N, Shukla S, Bhargava PC. Effect of biochar on the fate of antibiotic resistant genes and integrons in compost amended agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23535-23548. [PMID: 38421542 DOI: 10.1007/s11356-024-32600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The persistence and transmission of emerging pollutants such as antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) have caused concern to scientific community. Composting practises are often adapted for the reduction of organic waste or to enhance fertility in agriculture soil but its continuous usage has posed a potential risk of increased abundance of ARGs in soil. Thus, the present study scrutinises the emerging risk of ARGs and MGEs in agriculture soil and its potential mitigation using biochar owing to its proven environmental sustainability and performance. After 30 days incubation, ARG distribution of SulI, SulII, dfrA1, dfrA12, tetA, flor, and ErmA was 50, 37.5, 37.5, 62.5, 42.11, 62.5, and 52.63% in control samples whereas it was 5, 15.78, 21.05, 15.79, 10.53, 21.05, and 31.58%, respectively, for biochar amended samples. Similarly, IntI1 and IntI2 in control and biochar amended samples were 18.75 and 6.25% and 10.53 and 5.26%, respectively. Principal component analysis (PCA) factor suggests that biochar amendment samples showed enhanced value for pH, organic matter, and organic carbon over control samples. Furthermore, Pearson's correlation analysis performed between detected ARGs and MGEs demonstrated the positive and significant correlation at p < 0.05 for both control and biochar amended samples.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
10
|
Kim H, Yoo K. Marine plastisphere selectively enriches microbial assemblages and antibiotic resistance genes during long-term cultivation periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123450. [PMID: 38280464 DOI: 10.1016/j.envpol.2024.123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Several studies have focused on identifying and quantifying suspended plastics in surface and subsurface seawater. Microplastics (MPs) have attracted attention as carriers of antibiotic resistance genes (ARGs) in the marine environment. Plastispheres, specific biofilms on MP, can provide an ideal niche to spread more widely through horizontal gene transfer (HGT), thereby increasing risks to ecosystems and human health. However, the microbial communities formed on different plastic types and ARG abundances during exposure time in natural marine environments remain unclear. Four types of commonly used MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) were periodically cultured (46, 63, and 102 d) in a field-based marine environment to study the co-selection of ARGs and microbial communities in marine plastispheres. After the first 63 d of incubation (p < 0.05), the initial 16S rRNA gene abundance of microorganisms in the plastisphere increased significantly, and the biomass subsequently decreased. These results suggest that MPs can serve as vehicles for various microorganisms to travel to different environments and eventually provide a niche for a variety of microorganisms. Additionally, the qPCR results showed that MPs selectively enriched ARGs. In particular, tetA, tetQ, sul1, and qnrS were selectively enriched in the PVC-MPs. The abundances of intl1, a mobile genetic element, was measured in all MP types for 46 d (5.22 × 10-5 ± 8.21 × 10-6 copies/16s rRNA gene copies), 63 d (5.90 × 10-5 ± 2.49 × 10-6 copies/16s rRNA gene copies), and 102 d (4.00 × 10-5 ± 5.11 × 10-6 copies/16s rRNA gene copies). Network analysis indicated that ARG profiles co-occurred with key biofilm-forming bacteria. This study suggests that the selection of ARGs and their co-occurring bacteria in MPs could potentially accelerate their transmission through HGT in natural marine plastics.
Collapse
Affiliation(s)
- Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
11
|
Sharan S, Khare P, Shankar R, Mishra NK, Tyagi A. Bimetal-oxide (Fe/Co) modified bagasse-waste carbon coated on lead oxide-battery electrode for metronidazole removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119104. [PMID: 37793292 DOI: 10.1016/j.jenvman.2023.119104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Current study covers the preparation and application of a commercial modified lead oxide battery electrode (LBE) in electrochemical oxidation (ECO) of metronidazole (MNZ) in an aqueous phase. Modified electrode is prepared by doping of bimetal-oxide (Fe and Zn) nanoparticles (NPs) & single metal-oxide (Fe/Zn) on bagasse-waste carbon (bwc) which is further coated on LBE. The modified LBE electrode surface was examined for metal-oxide NPs through X-ray diffraction analysis (XRD). Different electrodes are prepared by varying combinations of two metal-oxide based on molar ratio and tested for electrochemical characterization and MNZ removal test. Based on large oxygen evolution potential in a linear sweep volumetry (LSV) analysis and high MNZ removal rate, the best electrode has been represented as Fe1:Co2-bwc/LBE which contains Fe & Co molar ratio of 1:2. Moreover, equilibrium attained at faster rate in degradation process of MNZ, where pseudo first order kinetics of 2.29 × 10-2 min-1 was obtained under optimized condition of (MNZ:100 mg/L, pH:7, CD: 30 mA/cm2 and electrolyte: 0.05 M Na2SO4). Maximum MNZ removal, total organic carbon removal (TOC), mineralization current efficiency (MCE) & energy consumption (EC) of 98.7%, 85.3%, 62.2% & 96.143 kW h/kg-TOC removed are found in 180 min of treatment time for Fe1:Co2-bwc/LBE electrode. Accelerated service life test confirms that the stability of modified electrode is enhanced by 1.5 times compared to pristine LBE. Repeatability test confirms that modified LBE (Fe1:Co2-bwc/LBE) can be utilized up to 3 times.
Collapse
Affiliation(s)
- Shambhoo Sharan
- Department of Chemical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, Uttar Pradesh, India.
| | - Prateek Khare
- Department of Chemical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, Uttar Pradesh, India.
| | - Ravi Shankar
- Department of Chemical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, Uttar Pradesh, India.
| | - Navneet Kumar Mishra
- Department of Chemical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, Uttar Pradesh, India
| | - Ankit Tyagi
- Department of Chemical Engineering, Indian Institute of Technology Jammu, 181221, India.
| |
Collapse
|
12
|
Yu T, Rajasekar A, Zhang S. A decennial study of the trend of antibiotic studies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121338-121353. [PMID: 37996597 DOI: 10.1007/s11356-023-30796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Antibiotics are one of the greatest inventions in human history and are used worldwide on an enormous scale. Besides its extensive usage in medical and veterinary arenas to treat and prevent the infection, its application is very prominent in other fields, including agriculture, aquaculture, and horticulture. In recent decades, the increased consumption of antibiotics in China saw a vast increase in its production and disposal in various environments. However, in this post-antibiotic era, the abuse and misuse of these valuable compounds could lead to the unreversible consequence of drug resistance. In China, antibiotics are given a broad discussion in various fields to reveal their impact on both human/animals health and the environment. To our knowledge, we are the first paper to look back at the development trend of antibiotic-related studies in China with qualitative and quantitative bibliometric analysis from the past decades. Our study identified and analyzed 5559 papers from its inception (1991) to December 6, 2021, from the Web of Science Core Collection database. However, with few authors and institutions focusing on long-term studies, we found the quality of contributions was uneven. Studies mainly focused on areas such as food science, clinical research, and environmental studies, including molecular biology, genetics and environmental, ecotoxicology, and nutrition, which indicate possible primary future trends. Our study reports on including potentially new keywords, studies' milestones, and their contribution to antibiotic research. We offer potential topics that may be important in upcoming years that could help guide future research.
Collapse
Affiliation(s)
- Tong Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC‑AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
13
|
Fadare FT, Fadare TO, Okoh AI. Prevalence, molecular characterization of integrons and its associated gene cassettes in Klebsiella pneumoniae and K. oxytoca recovered from diverse environmental matrices. Sci Rep 2023; 13:14373. [PMID: 37658232 PMCID: PMC10474106 DOI: 10.1038/s41598-023-41591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
The high prevalence of infections arising from Klebsiella species is related to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as integrons. We assessed the prevalence, diversity, and associated gene cassettes (GCs) of integrons in Klebsiella species. The isolates recovered from wastewater and hospital effluents, rivers, and animal droppings were identified using the conventional Polymerase Chain Reaction (PCR) with primers targeting the gryA, pehX, and 16S-23S genes. The antimicrobial resistance profile and the Extended-Spectrum and Metallo β-lactamases production were carried out using standard microbiological techniques. PCR, DNA sequencing analyses, and Restriction Fragment Length Polymorphism were used to characterize the integrons and their associated GCs. Furthermore, the genotypic relationships between the different isolated K. pneumoniae were determined using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. About 98% (51/52) of the confirmed isolates harboured an integrase gene, with 80% intI1, while the remaining 20% concurrently harboured intI1 and intI2, with no intI3 observed. About 78% (40/51) of the bacterial strains were positive for a promoter, the P2R2, investigated, while 80% (41/51) harboured at least one of the qacEΔ1 and sul1. Three different GCs arrangements identified were aac(6')-Ib, aadA1-dfrA1, and dfrA1-sat2. At a similarity index of 60%, the ERIC-PCR fingerprints generated were categorized into nine clusters. Our study is the first to reveal the features of integrons in Klebsiella spp. recovered from environmental sources in the Eastern Cape Province, South Africa. We conclude that the organisms' sources are repositories of integrons harbouring various gene cassettes, which can be readily mobilized to other microorganisms in similar or varied niches.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Taiwo Olawole Fadare
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
14
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
15
|
An R, Qi Y, Zhang XX, Ma L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects. WATER RESEARCH 2023; 231:119629. [PMID: 36689882 DOI: 10.1016/j.watres.2023.119629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.
Collapse
Affiliation(s)
- Ran An
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuting Qi
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
16
|
Liu W, Xu Y, Slaveykova VI. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160516. [PMID: 36470380 DOI: 10.1016/j.scitotenv.2022.160516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Limited information exists on how bacterial resistance to antibiotics is acquired and altered in response to short-term metal stress, and what the prevailing pathways are. Here the precursor mechanisms of development of bacterial antibiotic resistance mediated by oxidative stress induce under sub-lethal Cu2+ exposure were explored. The results showed that the overall level of antibiotic resistance in wild-type Escherichia coli and antibiotic-resistant E. coli was enhanced under 4 and 20 mg/L Cu2+ exposure, as demonstrated by the 2- to 8-fold increase in minimum inhibitory concentration (MIC). The MIC correlated with the increase of the cellular ROS generation and the enhancement of the antioxidant enzyme activity (p < 0.05), suggesting that changes in antibiotic resistance under sub-lethal Cu2+ exposure could be associated with oxidative stress. Likewise, enhanced cell membrane permeability and an increase in the number of bacteria entering the viable but non culturable (VBNC) state contributed to bacterial resistance to antibiotics. Moreover, the variance partitioning analysis demonstrated that the alterations of the antibiotic resistance phenotype of wild-type E. coli was mainly caused by oxidative stress-mediated increase in cell membrane permeability and entry into the VBNC state. The development of antibiotic resistance in resistant E. coli was primarily attributed to changes in the abundance and horizontal transfer ability of its antibiotic resistance genes, both of which contributed up to 20 %. Taken together the results allowed to propose a conseptual scheme on developing bacterial antibiotic resistance mediated by oxidative stress under sub-lethal Cu2+ exposure. This result provided a strong basis for reduction of early bacterial resistance.
Collapse
Affiliation(s)
- Wei Liu
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Fukang Road 31, Tianjin, China.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland.
| |
Collapse
|
17
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
18
|
Wu T, Zhang Y, Wang B, Chen C, Cheng Z, Li Y, Wang B, Li J. Antibiotic resistance genes in Chishui River, a tributary of the Yangtze River, China: Occurrence, seasonal variation and its relationships with antibiotics, heavy metals and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157472. [PMID: 35870598 DOI: 10.1016/j.scitotenv.2022.157472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The large-scale use and release of antibiotics may create selective pressure on antibiotic resistance genes (ARGs), causing potential harm to human health. River ecosystems have long been considered repositories of antibiotics and ARGs. Therefore, the distribution characteristics and seasonal variation in antibiotics and ARGs in the surface water of the main stream and tributaries of the Chishui River were studied. The concentrations of antibiotics in the dry season and rainy season were 54.18-425.74 ng/L and 66.57-256.40 ng/L, respectively, gradually decreasing along the river direction. The results of antibiotics in the dry season and rainy season showed that livestock and poultry breeding were the main sources in the surface water of the Chishui River basin. Risk assessments indicated high risk levels of OFL in both seasons. In addition, analysis of ARGs and microbial community diversity showed that sul1 and sul3 were the main ARGs in the two seasons. The highest abundance of ARGs was 7.70 × 107 copies/L, and intl1 was significantly positively correlated with all resistance genes (p< 0.01), indicating that it can significantly promote the transmission of ARGs. Proteobacteria were the dominant microorganisms in surface water, with a higher average abundance in the dry season (60.64 %) than in the rainy season (39.53 %). Finally, correlation analyses were performed between ARGs and antibiotics, microbial communities and heavy metals. The results showed that there was a significant positive correlation between ARGs and most microorganisms and heavy metals (p< 0.01), indicating that occurrence and transmission in the environment are influenced by various environmental factors and cross-selection. In conclusion, the persistent residue and transmission of ARGs and their transfer to pathogens are a great threat to human health and deserve further study and attention.
Collapse
Affiliation(s)
- Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
19
|
Cai YY, Zhang QQ, Yan XT, Zhai YQ, Guo Z, Li N, Ying GG. Antibiotic pollution in lakes in China: Emission estimation and fate modeling using a temperature-dependent multimedia model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156633. [PMID: 35716758 DOI: 10.1016/j.scitotenv.2022.156633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The high use of antibiotics worldwide has poses a serious threat to both human and environmental health. Lakes are served as reservoirs for antibiotics, however, there is a lack of information available on antibiotics emissions and the subsequent pollution. Here, the emission and fate of 34 frequently detected antibiotics were studied in 226 Chinese lakes, via the built emission estimation method and a temperature-dependent multimedia lake model. It has been estimated that totally 5711 tons antibiotic were discharged into the lakes of China in 2019. Antibiotics emissions are due to human activities, with 3800-fold higher emissions in the Eastern China than that in Western China. The antibiotic fate in lakes has been successfully modelled by simulating the lake stratification, freeze-melt cycles and the stable condition throughout the year. Both stratification and freeze-melt cycles can lead to increased antibiotic concentrations in lake water. Deep-water lakes were shown to serve as a highly effective natural storage medium for antibiotics. The reliability of the model was confirmed by published measured concentrations and Monte Carlo method. This is the first study to comprehensively investigate the antibiotic fate in lakes of China, providing valuable guidance for the remediation of contaminated lakes.
Collapse
Affiliation(s)
- Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yun-Qiu Zhai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhao Guo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Nan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhang L, Yan C, Wang D, Zhen Z. Spatiotemporal dynamic changes of antibiotic resistance genes in constructed wetlands and associated influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119176. [PMID: 35306086 DOI: 10.1016/j.envpol.2022.119176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
A better understanding of the spatiotemporal dynamics and influencing factors of sulfonamide antibiotic resistance genes (ARGs) distribution in subsurface flow constructed wetlands is essential to improve the ARGs removal efficiency. The spatiotemporal dynamics of sulfonamide ARGs were explored in the vertical upflow subsurface flow constructed wetland (VUSFCW). The results showed that the absolute abundance of ARGs presented a trend of bottom layer > middle layer > top layer. The relative abundance of ARGs decreased significantly from the bottom layer to the middle layer, but increased in the top layer. The bottom layer was the main stage to remove ARGs. The absolute abundance of ARGs at each point in summer was significantly higher than that in winter. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic change was explored by the partial least square path analysis model. The results showed that physical-chemical factors, microorganisms and antibiotics indirectly affected the spatiotemporal distribution of ARGs mainly through mobile genetic elements. The indirect influence coefficients of physical-chemical factors, microorganisms and antibiotics on the spatiotemporal distribution of ARGs were 0.505, 0.221 and 0.98 respectively. The direct influence coefficient of MGEs on the spatiotemporal distribution of ARGs was 0.895. The results of network analysis showed that the potential host species of ARGs in summer were more abundant than those in winter. The selection mode of sulfonamide ARGs to potential hosts was nonspecific. There is a risk of sulfonamide ARGs infecting pathogens in VUSFCW. Fortunately, VUSFCW has proven effective in reducing the absolute abundance of ARGs and the potential risk of pathogens carrying ARGs. These findings provide a model simulation and theoretical basis for effectively reducing the threat of ARGs.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Dapeng Wang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
21
|
Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health 2022; 10:794513. [PMID: 35356018 PMCID: PMC8960044 DOI: 10.3389/fpubh.2022.794513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.
Collapse
Affiliation(s)
- Chui Wei Bong
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Chui Wei Bong ;
| | - Kyle Young Low
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lay Ching Chai
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Wang Q, Guo S, Hou Z, Lin H, Liang H, Wang L, Luo Y, Ren H. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149260. [PMID: 34352459 DOI: 10.1016/j.scitotenv.2021.149260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is common in bacterial communities and appears to be correlated with human activities. However, the source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in remote regions remains unclear. In this study, we examined the abundance of ARGs in fine particulate matter (PM2.5) as a carrier throughout the rainfall process (4 mm rain/h) to observe the effects of rainfall on the transmission of ARGs. The results suggested that rainwater served as a reservoir that facilitated the spread of ARGs and that wind and particulate matter (PM) concentrations might be meteorological parameters that influence the distribution of ARGs in rainwater. In addition, soil microcosm experiments were performed to investigate the influence of rainfall on antibiotic resistance in soils with different environmental backgrounds. Rainwater facilitated the proliferation of ARGs and mobile genetic elements (MGEs) from ambient air to soil, and this influence was more obvious in heavy metal-contaminated soil. This is the first study to investigate the routes by which rainfall acts as a mobile reservoir to facilitate the transmission and proliferation of ARGs, and the results indicate the potential source of ARGs in remote regions where humans rarely interfere.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shaoyue Guo
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Zelin Hou
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Haiyin Liang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
23
|
Crettels L, Burlion N, Breyer R, Mainil J, Servais P, Korfer J, Thiry D. Antimicrobial resistance of Escherichia coli isolated from freshwaters and hospital effluents in Belgium. Lett Appl Microbiol 2021; 74:411-418. [PMID: 34870856 DOI: 10.1111/lam.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
The purpose of this work was to evaluate the level of antimicrobial resistant Escherichia coli isolates in freshwaters and hospital effluents in Belgium. The samples were collected from 24 locations along the Ourthe, Vesdre, Amblève and Meuse rivers and in the wastewater effluents of several hospitals. The sampling stations in rivers were classified according to the dominant land covers of the rivers (rural, urban and forest areas). Two sampling campaigns were organized in May and October 2019 to highlight a possible seasonal effect. A total of 938 E. coli strains were is olated on Chromogenic Selective Tryptone Bile X-glucuronide (TBX) and TBX supplemented with amoxicillin (TBX+AMX) media. Disk diffusion assays were performed following the EUCAST's recommendations to assess the antimicrobial resistance against 12 antibiotics. A total of 32·7% of strains were at least resistant to one antibiotic and 24·6% were multiple antimicrobial resistant strains on TBX. The highest resistance rates were found for ampicillin (AMP), amoxicillin coupled with clavulanic acid (AMC) and sulfamethoxazole/trimethoprim (SXT). The lowest resistance rates were observed for meropenem (MEM) and ertapenem (ETP), which are last resort antibiotics. No significant difference was observed between both campaigns for the resistance rate to antibiotics.
Collapse
Affiliation(s)
- L Crettels
- Department of Microbiology, ISSeP, Scientific Institute of Public Service, Liège, Belgium
| | - N Burlion
- Department of Microbiology, ISSeP, Scientific Institute of Public Service, Liège, Belgium
| | - R Breyer
- Department of Microbiology, ISSeP, Scientific Institute of Public Service, Liège, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège (ULiège), Liège, Belgium
| | - P Servais
- Ecology of Aquatic Systems, Université Libre de Bruxelles, Brussels, Belgium
| | - J Korfer
- Department of Microbiology, ISSeP, Scientific Institute of Public Service, Liège, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
24
|
Zhu Z, Jiang S, Qi M, Liu H, Zhang S, Liu H, Zhou Z, Wang L, Wang C, Luo Y, Ren Z, Ma X, Cao S, Shen L, Wang Y, Fu H, Geng Y, He C, Gu X, Xie Y, Peng G, Zhong Z. Prevalence and characterization of antibiotic resistance genes and integrons in Escherichia coli isolates from captive non-human primates of 13 zoos in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149268. [PMID: 34333432 DOI: 10.1016/j.scitotenv.2021.149268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) has become a public health concern; but antibiotic resistance genes (ARGs) and integrons that link to AMR of Escherichia coli from non-human primates remain largely unknown. This study aimed to investigate antibiotic resistance, emerging environmental pollutants ARGs, and integrons factors (intI1, intI2 and intI3) in 995 E. coli isolates obtained from 50 species of captive non-human primates of 13 zoos in China. Our result showed 83.62% of the E. coli isolates were resistant to at least one antibiotic and 47.94% isolates showed multiple drug resistances (MDR). The E. coli isolates mainly showed resistance to tetracycline (tetracycline 62.71%, doxycycline 61.11%), β-lactams (ampicillin 54.27%, amoxicillin 52.36%), and sulfonamide (trimethoprim-sulfamethoxazole 36.78%). A total of 423 antibiotic resistance patterns were observed, of which DOX/TET (49 isolates, 4.92%) was the most common pattern. Antibiotic resistance rates among 13 zoos had a significant difference (P < 0.01). We further detected 22 ARGs in the 995 E. coli isolates, of which tetA had the highest occurrence (70.55%). The presence of integrons class 1 and 2 were 24.22% and 1.71%, respectively, while no class 3 integron was found. Significant positive associations were observed among integrons and antibiotics, of which the strongest association was observed for integrons / Gentamicin (OR, 2.642) and integrons / Cefotaxime (OR, 2.512). In addition, cassette arrays were detected in 64 strains of class 1 integron-positive isolates (26.56%) and 10 strains of class 2 integron-positive isolates (58.82%). Eighteen cassette arrays were found within 64 class 1 integron isolates, while 3 cassette arrays were identified within 10 class 2 integron isolates. Our results indicate a high diversity of antibiotic resistance phenotypes in non-human primate E. coli isolates, which carry multiple ARGs and integrons. Corresponding preventive measures should be taken to prevent the spread of integron-mediated ARGs in non-human primates and their living environments in zoos.
Collapse
Affiliation(s)
- Ziqi Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Mingyu Qi
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu 610081, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China.
| |
Collapse
|
25
|
Research on the drug resistance mechanism of foodborne pathogens. Microb Pathog 2021; 162:105306. [PMID: 34822970 DOI: 10.1016/j.micpath.2021.105306] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022]
Abstract
Foodborne diseases caused by foodborne pathogens are one of the main problems threatening human health and safety. The emergence of multi-drug resistant strains due to the abuse of antibiotics has increased the difficulty of clinical treatment. Research on the drug resistance mechanism of foodborne pathogens has become an effective method to solve multi-drug resistant strains. In this paper, the four main drug resistance mechanisms, including reduced cell membrane permeability, efflux pump mechanism, target site mutation mechanism, and enzymatic hydrolysis, were used to systematically analyze the drug resistance of Salmonella, Listeria monocytogenes, and Escherichia coli. And the new methods were discussed that may be used to solve the drug resistance of foodborne pathogens such as CRISPR and bacteriophages. This review provided a certain theoretical basis for the treatment of foodborne diseases.
Collapse
|
26
|
Shamsizadeh Z, Ehrampoush MH, Nikaeen M, Mokhtari M, Gwenzi W, Khanahmad H. Antibiotic resistance and class 1 integron genes distribution in irrigation water-soil-crop continuum as a function of irrigation water sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117930. [PMID: 34391043 DOI: 10.1016/j.envpol.2021.117930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for fresh water coupled with the need to recycle water and nutrients has witnessed a global increase in wastewater irrigation. However, the development of antibiotic resistance hotspots in different environmental compartments, as a result of wastewater reuse is becoming a global health concern. The effect of irrigation water sources (wastewater, surface water, fresh water) on the presence and abundance of antibiotic resistance genes (ARGs) (blaCTX-m-32, tet-W, sul1, cml-A, and erm-B) and class 1 integrons (intI1) were investigated in the irrigation water-soil-crop continuum using quantitative real-time PCR (qPCR). Sul1 and blaCTX-m-32 were the most and least abundant ARGs in three environments, respectively. The abundance of ARGs and intI1 significantly decreased from wastewater to surface water and then fresh water. However, irrigation water sources had no significant effect on the abundance of ARGs and intI1 in soil and crop samples. Principal component analysis (PCA) showed that UV index and air temperature attenuate the abundance of ARGs and intI1 in crop samples whereas the air humidity and soil electrical conductivity (EC) promotes the ARGs and intI1. So that the climate condition of semi-arid regions significantly affects the abundance of ARGs and intI1 in crop samples. The results suggest that treated wastewater might be safely reused in agricultural practice in semi-arid regions without a significant increase of potential health risks associated with ARGs transfer to the food chain. However, further research is needed for understanding and managing ARGs transfer from the agricultural ecosystem to humans through the food chain.
Collapse
Affiliation(s)
- Zahra Shamsizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, Harare, Zimbabwe
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Wu C, Zhang G, Xu W, Jian S, Peng L, Jia D, Sun J. New Estimation of Antibiotic Resistance Genes in Sediment Along the Haihe River and Bohai Bay in China: A Comparison Between Single and Successive DNA Extraction Methods. Front Microbiol 2021; 12:705724. [PMID: 34616375 PMCID: PMC8488291 DOI: 10.3389/fmicb.2021.705724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Sediment is thought to be a vital reservoir for antibiotic resistance genes (ARGs). Often, studies describing and comparing ARGs and their potential hosts in sediment are based on single DNA extractions. To date, however, no study has been conducted to assess the influence of DNA extraction efficiency on ARGs in sediment. To determine whether the abundance of ARGs is underestimated, we performed five successive extraction cycles with a widely used commercial kit in 10 sediment samples collected from the Haihe River and Bohai Bay. Our results showed that accumulated DNA yields after five extractions were 1.8–3.1 times higher than that by single DNA extractions. High-throughput sequencing showed that insufficient DNA extraction could generate PCR bias and skew community structure characterization in sediment. The relative abundances of some pathogenic bacteria, such as Enterobacteriales, Lactobacillales, and Streptomycetales, were significantly different between single and successive DNA extraction samples. In addition, real-time fluorescent quantitative PCR (qPCR) showed that ARGs, intI1, and 16S rRNA gene abundance strongly increased with increasing extraction cycles. Among the measured ARGs, sulfonamide resistance genes and multidrug resistance genes were dominant subtypes in the study region. Nevertheless, different subtypes of ARGs did not respond equally to the additional extraction cycles; some continued to have linear growth trends, and some tended to level off. Additionally, more correlations between ARGs and bacterial communities were observed in the successive DNA extraction samples than in the single DNA extraction samples. It is suggested that 3–4 additional extraction cycles are required in future studies when extracting DNA from sediment samples. Taken together, our results highlight that performing successive DNA extractions on sediment samples optimizes the extractable DNA yield and can lead to a better picture of the abundance of ARGs and their potential hosts in sediments.
Collapse
Affiliation(s)
- Chao Wu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Wenzhe Xu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Shan Jian
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Liyin Peng
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Dai Jia
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China.,College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
28
|
Characterization of Integrons and Quinolone Resistance in Clinical Escherichia coli Isolates in Mansoura City, Egypt. Int J Microbiol 2021; 2021:6468942. [PMID: 34527054 PMCID: PMC8437661 DOI: 10.1155/2021/6468942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons (P < 0.0001). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive (P ≤ 0.0005). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6′)-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons' variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons' presence, which contributes to the widespread of quinolone resistance in Egypt.
Collapse
|
29
|
Shamsizadeh Z, Ehrampoush MH, Nikaeen M, Mokhtari M, Rahimi M, Khanahmad H, Mohammadi F. Tracking antibiotic resistance genes and class 1 integrons in Escherichia coli isolates from wastewater and agricultural fields. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1182-1189. [PMID: 34534115 DOI: 10.2166/wst.2021.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering high concentrations of multidrug-resistant bacteria and antibiotic resistance genes (ARGs) in wastewater, agricultural reuse of treated wastewater may be a public health threat due to ARG dissemination in different environmental compartments, including soil and edible parts of crops. We investigated the presence of antibiotic-resistant Escherichia coli as an indicator bacterium from secondary treated wastewater (STWW), water- or wastewater-irrigated soil and crop samples. ARGs including blaCTX-m-32, blaOXA-23, tet-W, sul1, cml-A, erm-B, along with intI1 gene in E. coli isolates were detected via molecular methods. The most prevalent ARGs in 78 E. coli isolates were sul1 (42%), followed by blaCTX-m-32 (19%), and erm-B (17%). IntI1 as a class 1 integrons gene was detected in 46% of the isolates. Cml-A was detected in STWW isolates but no E. coli isolate from wastewater-irrigated soil and crop samples contained this gene. The results also showed no detection of E. coli in water-irrigated soil and crop samples. Statistical analysis showed a correlation between sul1 and cml-A with intI1. The results suggest that agricultural reuse of wastewater may contribute to the transmission of antibiotic-resistant bacteria to soil and crop. Further research is needed to determine the potential risk of ARB associated with the consumption of wastewater-irrigated crops.
Collapse
Affiliation(s)
- Zahra Shamsizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran E-mail: ; Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahsa Rahimi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran E-mail:
| |
Collapse
|
30
|
Piyaviriyakul P, Boontanon N, Boontanon SK. Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:920-927. [PMID: 34270386 DOI: 10.1080/10934529.2021.1941558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination raises concerns over antibiotic resistance genes (ARGs), which can severely impact the human health and environment. Sulfamethoxazole (SMX) is a widely used antibiotic that is incompletely metabolized in the body. In this study, the research objectives were (1) to isolate the native strain of Trichoderma sp. from the environment and analyze the tolerance toward SMX concentration by evaluating fungal growth, and (2) to investigate the potential of SMX removal by fungi. The potential fungi isolated from rotten tree bark showed 97% similarity to Trichoderma harzianum (Accession no. MH707098.1). The whole cell of fungi was examined in vitro; the strain Trichoderma harzianum BGP115 eliminated 71% of SMX after 7 days, while the white rot fungi Trametes versicolor, demonstrated 90% removal after 10 days. Furthermore, the tolerance of fungal growth toward SMX concentration at 10 mg L-1 was analyzed, which indicated that Trichoderma harzianum BGP115 (the screened strain) exhibited more tolerance toward SMX than Trametes versicolor (the reference strain). The screened fungi isolated from rotted tree bark demonstrated the ability of SMX bioremoval and the potential to be tolerant to high concentrations of SMX.
Collapse
Affiliation(s)
- Pitchaya Piyaviriyakul
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Yang SH, Chen CH, Chu KH. Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124953. [PMID: 33445049 DOI: 10.1016/j.jhazmat.2020.124953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of BlaTEM and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of BlaTEM and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chih-Hung Chen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
32
|
Chaturvedi P, Chowdhary P, Singh A, Chaurasia D, Pandey A, Chandra R, Gupta P. Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. CHEMOSPHERE 2021; 273:129693. [PMID: 33524742 DOI: 10.1016/j.chemosphere.2021.129693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| |
Collapse
|
33
|
Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, Zhang P, Zhang P, Zhou A, Wang A, Li X. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. WATER RESEARCH 2021; 194:116926. [PMID: 33618108 DOI: 10.1016/j.watres.2021.116926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The effects of anaerobic digestion (AD) on the abundance of antibiotic resistance genes (ARGs) are highly related to operational temperature. However, the removal performance of ARGs in psychrophilic AD and changed temperatures simulating variable seasonal temperatures is poorly understood. Herein, we investigated the fate of ARGs, correlated bacterial communities and physicochemical properties of AD operation at psychrophilic (15 ℃), mesophilic (35 ℃), and temperature changed conditions (15 to 35 ℃ and 35 to 15 ℃). The results indicated that ammonia release was positively correlated with temperature. The mesophilic AD facilitated phosphorous intake and ARGs proliferation and selection with oxytetracycline (OTC), while psychrophilic AD was conducive to the removal and control of ARGs if no OTC existed. The diversity and composition of AD bacterial communities were influenced more by temperature than OTC. The dominant genera like Candidatus_Microthrix and Acinetobacter had dramatical abundance discrepancies at different temperatures and were obviously positively correlated with ARGs (tet39, tetC and mexD), mobile genetic elements (MGEs) intI, insert sequences (IS) and plasmid. The physicochemical properties of AD influenced the bacterial richness, which in turn significantly correlated with the ARGs abundances. Therefore, ARGs removal could be potentially optimized by eliminating bacterial hosts with deteriorated living conditions and decreased nutrients. This study clarified the response of antibiotic resistome to different temperature variation and highlighted the potential strategies for improved ARGs removal in AD.
Collapse
Affiliation(s)
- Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yangcheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China
| | - Pengyun Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
34
|
Tang X, Shen M, Zhang Y, Zhu D, Wang H, Zhao Y, Kang Y. The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. CHEMOSPHERE 2021; 266:128985. [PMID: 33228990 DOI: 10.1016/j.chemosphere.2020.128985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs.
Collapse
Affiliation(s)
- Xingyao Tang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Min Shen
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yanzhou Zhang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Dewei Zhu
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Huanli Wang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yongqiang Zhao
- Yancheng National Nature Reserve for Rare Birds, Yancheng, Jiangsu, PR China
| | - Yijun Kang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
35
|
Singh NS, Singhal N, Kumar M, Virdi JS. High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Front Microbiol 2021; 12:621564. [PMID: 33633708 PMCID: PMC7899961 DOI: 10.3389/fmicb.2021.621564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of blaCTX–M–15 was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, blaTEM–1 was present in 95% of the strains, followed by qnrS1 and armA (17% each), blaCTX–M–15 (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where blaCTX–M–15 was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of blaCTX–M–15 was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of blaCTX–M–15. The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.,Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
36
|
Chaturvedi P, Singh A, Chowdhary P, Pandey A, Gupta P. Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142217. [PMID: 33181985 DOI: 10.1016/j.scitotenv.2020.142217] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Global use of antibiotics has exceedingly enhanced in agricultural, veterinary and prophylactic human use in recent days. Hence, these antibiotics can easily be found in the environment. This study revealed the occurrence of emerging MDR and ESBL producing strains, pollution profile, and factors integrons (intI1 and intI2) and environmental factors associated, in the riverine systems under different ecological and geo-climatic zones were investigated. The samples were collected based on anthropogenic intervention such as discharge of domestic wastes, industrial wastes, hospital, and municipal wastes. Among 160bacterial morphotypes, 121 (75.62%) exhibited MDR trait with maximum resistance towards lincosamide (CD = 71.3%), beta-lactams (P = 70.6%; AMX = 66.3%), cephalosporin (CZ = 60.6%; CXM = 34.4%), sulfonamide (COT = 50.6%; TR = 43.8%) followed by macrolide (E = 29.4%), tetracycline (TET = 18.8%), aminoglycosides (S = 18.8%; GEN = 6.3%), fluoroquinolones (NX = 18.1%; OF = 4.4%) and carbapenem (IPM = 5.0%). IntI1 gene was detected in 73 (60.3%) of isolates, whereas intI2 was found in 11 (9.09%) isolates. Eight (6.61%) isolates carried both integron genes (intI1 and intI2). sul1 and dfrA1 genes were detected in 53 (72.6%) and 63 (86.3%) isolates, respectively. A total of 103 (85.1%) were found ESBL positive with the presence of ESBL genes in 100 (97.08%) isolates. In riverine systems most prevalent ESBL gene blaTEM (93.0%) was detected alone as well as in combination with bla genes. The data can be utilized for public awareness and regulation of guidelines by local governing bodies as an alarming threat to look-out against the prevalent resistance in environment thereby assisting in risk management during epidemics. This study is a comprehensive investigation of emerging antibiotic pollutants and its resistance in bacteria associated with factors integrons-integrase responsible for its dissemination. It may also assist in global surveillance of antibiotic resistance and policies to curtail unnecessary antibiotic use.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|
37
|
Dzomba P, Zaranyika MF. Persistence and fate of chlortetracycline in the aquatic environment under sub-tropical conditions: generation and dissipation of metabolites. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:181-187. [PMID: 33378246 DOI: 10.1080/03601234.2020.1854009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The persistence of chlortetracycline in the aquatic environment, including the generation and dissipation of its metabolites, were investigated over a period of 90 days using microcosm experiments, with a view to establishing the metabolites generated and their persistence under conditions closely resembling the actual aquatic environment in terms of chemical and microbial composition. The concentrations of chlortetracycline and its metabolites were monitored in the water phase as well as the sediment phase. Data are presented showing that the degradation of chlortetracycline in each phase conforms to a triphasic linear rate law, confirming the existence of three speciation forms in each phase, attributed to one free dissolved form, and two colloidal particle adsorbed forms. Data are also presented showing that the two adsorbed forms are the most persistent, with life-times of 204.1 and 20.3 days respectively in the water phase, and 215.1 and 19.8 days respectively in the sediment phase. Life-times of 5.01 and 3.7 days respectively were obtained for the free dissolved forms in the water phase and sediment phase respectively. Data are further presented showing that of the several metabolites of chlortetracycline reported previously, only 4-epi-chlortetracycline and iso-chlortetracycline could be detected, and that these two degradation products undergo microbial mineralization without transformation to other intermediate degradation products in significant or detectable amounts.
Collapse
Affiliation(s)
- Pamhidzai Dzomba
- Faculty of Science, Chemistry Department, University of Zimbabwe, Harare, Zimbabwe
- Faculty of Science, Chemistry Department, Bindura University of Science Education, Bindura, Zimbabwe
| | | |
Collapse
|
38
|
He Y, Tian Z, Yi Q, Zhang Y, Yang M. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment. WATER RESEARCH 2020; 187:116408. [PMID: 32949826 DOI: 10.1016/j.watres.2020.116408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
In this study, two parallel-operated up-flow anaerobic sludge bed reactors, one used to treat synthetic wastewater spiked with oxytetracycline and the other used to treat the same wastewater after enhanced hydrolysis, were used to evaluate the impact of oxytetracycline on anaerobic digestion and resistance development and the efficacy of enhanced hydrolysis pretreatment on the elimination of adverse effects. The reactors were operated under a constant organic-loading rate (10 g/L/d) with increasing oxytetracycline doses (0 mg/L to 200 mg/L) over a period of 15 months. For the reactor without pretreatment, the chemical oxygen demand removal reached up to 89.5%%at oxytetracycline doses ranging from 0 mg/L to 100 mg/L, which collapsed at higher oxytetracycline doses. Miseq sequencing showed that a diverse hydrolysis/fermentation/acetogenesis bacterial community was maintained as the oxytetracycline dose was increased from 0 mg/L to 100 mg/L, while extreme dominance of Macellibacteroides (65.70%%- 71.56%) was found to occur at higher oxytetracycline doses. The total abundance of antibiotic resistance genes increased from 1.3 × 10-1 copies per cell to 2.6 × 10-1 copies per cell with increasing oxytetracycline dose from 0 mg/L to 5 mg/L, remained unchanged at oxytetracycline doses ranging from 25 mg/L to 100 mg/L, and then increased to 4.8 × 10-1 copies per cell and 1.3 copies per cell at oxytetracycline doses of 150 mg/L and 200 mg/L, respectively. Multidrug resistance developed in response to oxytetracycline treatment at 200 mg/L. Poor chemical oxygen demand removal and a marked enrichment in antibiotic resistance genes was validated using a full-scale up-flow anaerobic sludge bed system fed with an influent oxytetracycline concentration of approximately 200 mg/L. For the reactor treating wastewater pretreated with enhanced hydrolysis (85 °C for 6 h), the chemical oxygen demand removal rate and antibiotic resistance genes level over the whole oxytetracycline dose range were found to be similar to those achieved with zero oxytetracycline treatment. These results demonstrated that the control of conventional pollutants and ARGs could be achieved simultaneously in the UASB reactor by employing enhanced hydrolysis pretreatment.
Collapse
Affiliation(s)
- Yupeng He
- State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qizhen Yi
- State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
A multiresponsive luminescent probe of antibiotics, pesticides, Fe3+ and ascorbic acid with a Cadmium(II) metal-organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Zhang S, Abbas M, Rehman MU, Huang Y, Zhou R, Gong S, Yang H, Chen S, Wang M, Cheng A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115260. [PMID: 32717638 DOI: 10.1016/j.envpol.2020.115260] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab, 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yahui Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Zhou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Siyue Gong
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuling Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
41
|
Zhou M, Xu Y, Ouyang P, Ling J, Cai Q, Du Q, Zheng L. Spread of resistance genes from duck manure to fish intestine in simulated fish-duck pond and the promotion of cefotaxime and As. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138693. [PMID: 32408202 DOI: 10.1016/j.scitotenv.2020.138693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Integrated culture is a widespread culture mode in South China, in which resistance genes (RGs) also spread in the circulation system with nutrients. Accordingly, the aim of the present study was to investigate the spread of RGs in a fish-duck pond and the RGs and bacterial community of fish intestines. Five fish tanks, including a control tank and four experimental tanks (duck manure, duck manure + cefotaxime, duck manure + As, and duck manure + cefotaxime + As), were tested for 100 days. The results showed that duck manure increased both the diversity and relative abundance of RGs in fish intestines, and the addition of stress factors (cefotaxime, As) increased the relative abundance of RGs by one to two orders of magnitude. The stress-inducing effect of cefotaxime was greater than that of As. Tetracycline resistance genes were more sensitive to stress factors and were the predominant RGs in fish intestines. RGs in duck manure preferentially spread from the water to biofilm and then to fish intestines, whereas co-stress of cefotaxime and As obviously promoted the spread of RGs to fish intestines. In comparison to the control tank, duck manure and stress factors significantly changed the bacterial community of fish intestines. Correlation analysis also revealed that arsB, MOX, tetA and sul1 were significantly correlated with intI1 (P < 0.01), which hinted a potentially dissemination risk of RGs in fish intestines. These findings provide a theoretical basis for further investigating the dissemination of RGs in integrated culture systems and for evaluating the ecological risk of antibiotic and As use in aquaculture.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Pengqian Ouyang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qiujie Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
42
|
Li XD, Chen YH, Liu C, Hong J, Deng H, Yu DJ. Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China. MICROBIAL ECOLOGY 2020; 80:1-13. [PMID: 31838570 DOI: 10.1007/s00248-019-01464-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance (AMR) in the aquatic environment has received increasing attention in recent years, and growing eutrophication problems may contribute to AMR in aquatic ecosystems. To evaluate whether and how eutrophication affects AMR, 40 surface water samples were collected from the Minjiang River, Fujian Province, China. Total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (CODMn) were measured as eutrophication factors. Additionally, enterococci species were isolated and their resistance to six common antibiotics was tested. Eutrophication generally showed a trend of increasing with the flow direction of the Minjiang River, with 25 sites (62.5%) having a TN/TP value over the Redfield value (16:1), which indicated that eutrophication in this region was of phosphorus limitation. High nutrition sites were in or near urban areas. Poor quality water was found in the middle and lower reaches of the Minjiang River system. The resistance frequency of 40 enterococci isolates to the six antibiotics tested was as follows: oxytetracycline > erythromycin > ciprofloxacin > chloramphenicol > ampicillin > vancomycin (70, 50, 17.5, 12.5, 2.5, 0%), and the multi-resistant rate reached 50% with eight resistance phenotypes. AMR also increased along the direction of water flow downstream, and most of the sites with the highest AMR were in or near urban areas, as was true for nutrition levels. Positive correlations between AMR and eutrophication factors (TN, TP, and CODMn) were identified using the Pearson's correlation coefficient, and TN/TP generally was negatively related to AMR. These results indicated that eutrophication may induce or selective for resistance of water-borne pathogens to antibiotics, with a high resistance level and a wide resistance spectrum.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Hong Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Hong
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dao-Jin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
43
|
Wang Q, Liu L, Hou Z, Wang L, Ma D, Yang G, Guo S, Luo J, Qi L, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137055. [PMID: 32065888 DOI: 10.1016/j.scitotenv.2020.137055] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Recent studies have consistently demonstrated increasing abundances of antibiotic resistance genes (ARGs) in the absence of antibiotic use. There is a large amount of quantitative data that has correlated the elevated ARGs levels with the concentrations of heavy metals in environments with anthropogenic impact. However, the mechanisms by which heavy metals facilitate the proliferation and horizontal gene transfer of ARGs among environmental bacteria were still unknown. This study validated effects of four typical heavy metals (Cu, Cd, Pb, Zn) on the plasmid RP4 mediated conjugative transfer of ARGs in freshwater microcosms. The results suggested that the typical heavy metals including Cu, Pb and Zn would promote conjugative transfer of the plasmid RP4, and Cu (5.0 μg/L) had the greatest ability to increase conjugative transfer by 16-fold higher than the control groups. In conjugative transfer microcosms, the species of each cultivable transconjugant were isolated, and their minimum inhibitory concentrations (MICs) were assessed via antibiotic susceptibility testing. The mechanism of the increased conjugative transfer of Cu was that Cu induced cell damage and the reduced conjugative transfer of Cd was that Cd increased the content of extracellular polymers substances (EPS). This study confirms that heavy metal Cu facilitates the conjugative transfer of environmental-mediated plasmid RP4 by cell damage effect, therefore accelerating the transmission and proliferation of ARGs.
Collapse
Affiliation(s)
- Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Lei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zelin Hou
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Dan Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guang Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shaoyue Guo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jinghui Luo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Liying Qi
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
44
|
Wu DL, Zhang M, He LX, Zou HY, Liu YS, Li BB, Yang YY, Liu C, He LY, Ying GG. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136975. [PMID: 32018106 DOI: 10.1016/j.scitotenv.2020.136975] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 05/21/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in the water environment has become an increasing concern. There have been many reports on ARGs in surface water, but little is known about ARGs in groundwater. In this study, we investigated the profiles and abundance of ARGs in groundwater in comparison with those in surface water of Maozhou River using high-throughput quantitative PCR (HT-qPCR). Totally 127 ARGs and 10 MGEs were detected by HT-qPCR, and among them the sulfonamides, multidrug and aminoglycosides resistance genes were the dominant ARG types. According to the results of HT-qPCR, 18 frequently detected ARGs conferring resistance to 6 classes of antibiotics and 3 MGEs were further quantified by qPCR in the wet season and dry season. The absolute abundance ranged from 1.23 × 105 to 8.89 × 106 copies/mL in wet season and from 8.50 × 102 to 2.65 × 106 copies/mL in the dry season, with sul1 and sul2 being the most abundant ARGs. The absolute abundance of ARGs and MGEs has no significant difference between the wet season and dry season while the diversity of ARGs in the dry season was higher than that in the wet season (p < 0.05). Totally 141 and 150 ARGs were detected in the water and sediments of Maozhou River, respectively. A total of 116 ARGs were shared among the groundwater, river water, and sediment, which accounted for 67.1% of all detected genes. Redundancy analysis further demonstrated that the environmental factors contributed 70.7% of the total ARG variations. The findings of large shared ARGs, abundant Total Coliforms and large wastewater burden in the groundwater provide a clear evidence that anthropogenic activities had a significant impact on groundwater.
Collapse
Affiliation(s)
- Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bei-Bei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
45
|
Shi Z, Zhang Y, Liu T, Cao W, Zhang L, Li M, Chen Z. Synthesis of BiOBr/Ag 3PO 4 heterojunctions on carbon-fiber cloth as filter-membrane-shaped photocatalyst for treating the flowing antibiotic wastewater. J Colloid Interface Sci 2020; 575:183-193. [PMID: 32361235 DOI: 10.1016/j.jcis.2020.04.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022]
Abstract
Numerous nanosized photocatalysts have been demonstrated to treat antibiotic solutions efficiently in beakers, but plenty of antibiotics have been discharged to the flowing rivers. For photocatalytically degrading the flowing antibiotic wastewater, the prerequisite is to develop flexible large-scale filter-membrane with high photocatalytic activity. To solve this issue, with carbon fiber (CF) cloth as a flexible porous substrate, herein we have reported the in-situ growth of BiOBr/Ag3PO4 heterostructures. BiOBr nanosheets (thickness: ~10 nm, diameter: 0.5-1 μm) and Ag3PO4 particles (size: 50-200 nm) are synthesized on CF cloth successively via a solvothermal-chemical deposition two-step strategy. CF/BiOBr/Ag3PO4 cloth displays excellent visible photoabsorption (edge: ~520 nm). Under visible-light illumination, CF/BiOBr/Ag3PO4 cloth (4 × 4 cm2) could degrade ~90.0% tetracycline hydrochloride (TCH) as a model of antibiotics in 30 min in a beaker. Especially, CF/BiOBr/Ag3PO4 cloth can be used as the filter-membrane to construct multiple photocatalytic-setup for degrading the flowing antibiotic wastewater. The removal efficiency of TCH goes up from 12.8% at the first grade to 89.6% at the sixth grade. Furthermore, the photocatalytic mechanism of CF/BiOBr/Ag3PO4 cloth and the possible decomposition pathway of TCH have been proposed based on simulation and experiment results. Therefore, the present work provides some insight for developing flexible filter-membrane-shaped photocatalysts for degrading the flowing wastewater.
Collapse
Affiliation(s)
- Zhun Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ting Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Cao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lisha Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
46
|
Yu K, Li P, Chen Y, Zhang B, Huang Y, Huang FY, He Y. Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. WATER RESEARCH 2020; 173:115541. [PMID: 32036288 DOI: 10.1016/j.watres.2020.115541] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 05/08/2023]
Abstract
Antibiotic resistome is a raising concern around the world, especially considering treated wastewater for reclamation. A wastewater reclamation system (WWRS), composed by a treatment system (TS) and a reclaimed system (RS) with supplementation from the treated effluent and considered as an integrated system of treatment and reclamation, was selected in this study. High-throughput qPCR (HT-qPCR) was applied to profile 283 antibiotic resistance genes (ARGs) and 12 mobile genetic elements (MGEs) in the WWRS. A total of 251 ARG and 12 MGE subtypes were detected in the WWRS. The TS exhibited good performance for the removal of ARGs with the number, relative and absolute abundances of ARGs largely decreased (99.07% removal efficiency) in the final effluent, which might be ascribed to biosolid sedimentation. Enhancement of biosolids removal contributed the lessening of ARGs. In the RS, high quality effluent significantly reduced the number and abundance of ARGs along the flow to downstream. MGEs were less reduced in the treated effluent than that of the influent (R2 = -0.16, p > 0.05), and exhibited close connections with ARGs. Arcobacter, Cloacibacterium, Cyanobacteria, Acinetobacter, Flavobacterium and Dechloromonas were the relatively abundant genera in the WWRS, and exhibited significantly correlations with ARGs. Microbial communities and MGEs contributed 65.64% to the changes of ARGs. These two factors may be the main drivers of ARG proliferation in the WWRS. Thus, attention should be paid to MGEs and those abundant genera when considering treated wastewater for reclamation.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Peng Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuansheng Huang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
47
|
Zhang SX, Zhang QQ, Liu YS, Yan XT, Zhang B, Xing C, Zhao JL, Ying GG. Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic resistance risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136518. [PMID: 32050380 DOI: 10.1016/j.scitotenv.2020.136518] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics used for human and veterinary purposes are released into the environment, resulting in potential adverse effects, including the development and spread of antibiotic resistant bacteria. Here we investigated the dynamic fate of 36 antibiotics in a large river basin Dongjiang in South China, and discussed their potential antibiotic resistance selection risk. Based on the usage, excretion rate, wastewater treatment rate, human population and animal numbers the emissions of 36 frequently detected antibiotics were estimated for the Dongjiang River Basin. The total usage of the 36 antibiotics in the basin was 623.4 tons, which included 37% for human use and the rest for veterinary purposes. After being metabolized and partially treated, the amount of antibiotics excreted and released into the environment decreased to 267.6 tons. By allocating the high-precision antibiotic discharge inventory to 42 sewage plants and 17 livestock farms, an improved GREAT-ER (Geography referenced Regional Exposure Assessment Tool for European Rivers) model for the Dongjiang River Basin, with a well calibration river flow network based on the SWAT (Soil and Water Assessment Tool), was established to simulate the dynamic fate of 36 antibiotics. The simulation results showed that antibiotics contaminated >50% of the river sections. The modelled concentrations in water were almost within an order of magnitude of the measured concentrations. Antibiotic contamination in the dry season was obviously higher than that in the wet season. The concentrations of the antibiotics were always higher at the discharge zones and lower reaches of the river basin than the other reaches. The antibiotic resistance risk assessment showed that 23 out of the 36 antibiotics (nearly 65%) could pose high risks in the river basin. For those river reaches with high risks, the risk levels could mostly be reduced to low risk levels with a certain distance (15 km) from the pollution source. Therefore, more attention should be paid to those impact zones in term of antibiotic resistance.
Collapse
Affiliation(s)
- Shao-Xuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bing Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Cheng Xing
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
48
|
Wang X, Chen Z, Mu Q, Wu X, Zhang J, Mao D, Luo Y, Alvarez PJJ. Ionic Liquid Enriches the Antibiotic Resistome, Especially Efflux Pump Genes, Before Significantly Affecting Microbial Community Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4305-4315. [PMID: 31944684 DOI: 10.1021/acs.est.9b04116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An expanding list of chemicals may permeabilize bacterial cells and facilitate horizontal gene transfer (HGT), which enhances propagation of antibiotic resistance genes (ARGs) in the environment. Previous studies showed that 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), an ionic liquid, can facilitate HGT of some ARGs among bacteria. However, the dynamic response of a wider range of ARGs and associated mobile genetic elements (MGEs) in different environments is unknown. Here, we used metagenomic tools to study shifts of the resistome and microbiome in both sediments and freshwater microcosms exposed to [BMIm][PF6]. Exposure for 16 h to 0.1 or 1.0 g/L significantly enriched more than 207 ARG subtypes primarily encoding efflux pumps in freshwater microcosms as well as cultivable antibiotic-resistant bacteria. This resistome enrichment was attributed to HGT facilitated by MGEs (428 plasmids, 61 integron-integrase genes, and 45 gene cassettes were enriched) as well as to HGT-related functional genes. Interestingly, resistome enrichment occurred fast (within 16 h) after [BMIm][PF6] exposure, before any significant changes in bacterial community structure. Similar ARG enrichment occurred in sediment microcosms exposed to [BMIm][PF6] for 28 d, and this longer exposure affected the microbial community structure (e.g., Proteobacteria abundance increased significantly). Overall, this study suggests that [BMIm][PF6] releases could rapidly enrich the antibiotic resistome in receiving environments by increasing HGT and fortuitously selecting for efflux pump genes, thus contributing to ARG propagation.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Quanhua Mu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xinyan Wu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Pedro J J Alvarez
- Dept of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
49
|
Zhang M, He LY, Liu YS, Zhao JL, Zhang JN, Chen J, Zhang QQ, Ying GG. Variation of antibiotic resistome during commercial livestock manure composting. ENVIRONMENT INTERNATIONAL 2020; 136:105458. [PMID: 31926439 DOI: 10.1016/j.envint.2020.105458] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 05/05/2023]
Abstract
Composting has been widely used to turn livestock manure into organic fertilizer. However, livestock manure contains various contaminants including antibiotics and antibiotic resistance genes (ARGs). Here we investigated the variation of antibiotic resistome and its influencing factors during a commercial livestock manure composting. The results showed that composting could effectively reduce the relative abundance of ARGs and mobile genic elements (MGEs). As the dominant phylum in the composting samples, the key potential bacterial host of ARGs were Actinobacteria such as Leucobacter, Mycobacterium and Thermomonosporaceae unclassified. Meanwhile, Legionella pneumophila, Staphylococcus saprophyticus, Haemophilus ducreyi and Siccibacter turicensis may be the key potential pathogenic host of ARGs because of their co-occurrence with ARG subtypes. Redundancy analysis showed that the dissipation of ARGs during composting was linked to various environmental factors such as moisture. Bacterial succession as well as profile of biocide and metal resistance genes (BMRGs) were the determinants which constructed the antibiotic resistome during manure composting. However, the residues of ARGs and pathogens in compost products may still pose risks to human and crops after fertilization.
Collapse
Affiliation(s)
- Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
50
|
Paulus GK, Hornstra LM, Medema G. International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135733. [PMID: 31818563 DOI: 10.1016/j.scitotenv.2019.135733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to capture and explain changes in antibiotic resistance gene (ARG) presence and concentration internationally across the Rhine river. Intl1 concentrations and national antibiotic usage were investigated as proxies to predict anthropogenic ARG pollution. Newly-developed multiplex qPCR assays were employed to investigate ARG profiles across 8 locations (L1-L8) in three countries (Switzerland, Germany, the Netherlands) and to detect potential regional causes for variation. Two of these locations were further monitored, over the duration of one month. A total of 13 ARGs, Intl1 and 16S rRNA were quantified. ARG presence and concentrations initially increased from L1(Diepoldsau) to L3(Darmstadt). A continuous increase could not be observed at subsequent locations, with the large river volume likely being a major contributing factor for stability. ARG presence and concentrations fluctuated widely across different locations. L2(Basel) and L3 were the two most polluted locations, coinciding with these locations being well-developed pharmaceutical production locations. We draw attention to the characteristic, clearly distinct ARG profiles, with gene presence being consistent and gene concentrations varying significantly less over time than across different locations. Five genes were Rhine-typical (ermB, ermF, Intl1, sul1 and tetM). Intl1 and sul1 were the genes with highest and second-highest concentration, respectively. Aph(III)a and blaOXA were permanently introduced downstream of L1, indicating no source of these genes prior to L1. We highlight that correlations between Intl1 and ARG concentrations (R2 = 0.72) were driven by correlations to sul1 and disappeared when excluding sul1 from the analysis (R2 = 0.05). Intl1 therefore seems to be a good proxy for sul1 concentrations but not necessarily for overall (anthropogenic) ARG pollution. Aminoglycoside usage per country correlated with concentrations of aph(III)a and several unrelated antibiotic resistance genes (blaOXA,ermB, ermF and tetM). This correlation can be explained by co-resistance caused by mobile genetic elements (MGEs), such as Tn1545.
Collapse
Affiliation(s)
- Gabriela K Paulus
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|