1
|
Lv L, Feng W, Cai J, Zhang Y, Jiang J, Liao D, Yan C, Sui Y, Dong X. Enrichment characteristics of microplastics in Antarctic benthic and pelagic fish and krill near the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175582. [PMID: 39159696 DOI: 10.1016/j.scitotenv.2024.175582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Global microplastic pollution has garnered widespread attention from researchers both domestically and internationally. However, compared to other regions worldwide, little is known about microplastic pollution in the marine ecosystems of the Antarctic region. This study investigated the abundance and characteristics of microplastics (MPs) in the gills and intestines of 15 species of Antarctic fish and Antarctic krill (Euphausia superba). The results indicate that the abundance of MPs in Antarctic fish and E. superba ranged from 0.625 to 2.0 items/individual and 0.17 to 0.27 items/individual, with mean abundances of 0.93 ± 0.96 items/individual and 0.23 ± 0.44 items/individual, respectively. Antarctic fish ingested significantly more MPs than E. superba. There was no significant difference in the abundance of MPs between the gills and intestines of Antarctic fish. However, the quantity of pellet-shaped MPs in the gills was significantly higher than in the intestines. The depth of fish habitat influenced the quantity and size of MPs in their bodies, with benthic fish ingesting significantly fewer MPs than pelagic fish. Pelagic fish ingested significantly more MPs sized 1-5 mm than benthic fish. Additionally, analysis of the characteristics of MPs revealed that fiber-shaped MPs were predominant in shape, with sizes generally smaller than 0.25 mm and 0.25-0.5 mm. The predominant colors of MPs were transparent, red, and black, while the main materials were polypropylene (PP), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). Compared to organisms from other regions, the levels of MPs in Antarctic fish and E. superba were relatively low. This study contributes to a better understanding of the extent of MP pollution in Antarctic fish and E. superba, aiding human efforts to mitigate its impact on the environment.
Collapse
Affiliation(s)
- Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Wanjun Feng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiaying Cai
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yingying Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiacheng Jiang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Dagui Liao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Cong Yan
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Xuexing Dong
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| |
Collapse
|
2
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
3
|
Li Z, Chen Y. Behavioral effects of polylactic acid microplastics on the tadpoles of Pelophylax nigromaculatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117146. [PMID: 39378648 DOI: 10.1016/j.ecoenv.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Polylactic acid microplastics (PLA-MPs), biobased plastics made from renewable resources, are considered to be a potential solution for alleviating the pollution pressure of plastics; however, the potential environmental risks of PLA-MPs must be further evaluated. In this study, the effects of PLA-MPs on the tadpoles of Pelophylax nigromaculatus were investigated by designing different PLA-MP exposure experiments. We found that PLA-MPs negatively affected the survival, growth and development of tadpoles. In addition, in open field tests, PLA-MPs also reduced tadpole locomotion while resulting in more repetitive searching behavior within a restricted area. This effect was more pronounced at higher concentrations of PLA-MPs (20 mg/mL) and in combination with the heavy metal Cd2+. In the tank tests, PLA-MPs increased tadpole aggregation, and their combined effect with Cd2+ resulted in a tendency for tadpole aggregation to increase and then decrease, with the distribution tending to favor aggregation in edge regions. PLA-MPs also strongly inhibited the spatiotemporal exploratory activities of tadpoles in the tanks. This study provides a more detailed investigation of the behavioral effects of PLA-MPs on tadpoles and provides a theoretical basis for subsequent ecotoxicological studies of PLA-MPs.
Collapse
Affiliation(s)
- Zihan Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Zhang Y, Ju J, Li M, Ma Z, Lu W, Yang H. Dose-dependent effects of polystyrene nanoplastics on growth, photosynthesis, and astaxanthin synthesis in Haematococcus pluvialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124574. [PMID: 39029865 DOI: 10.1016/j.envpol.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
5
|
Wang X, Li J, Wang D, Sun C, Zhang X, Zhao J, Teng J, Wang Q. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124591. [PMID: 39043311 DOI: 10.1016/j.envpol.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Marine microplastics (MPs) pollution, with rivers as a major source, leads to MPs accumulation in estuarine sediments, which are also nitrogen cycling hotspots. However, the impact of MPs on nitrogen cycling in estuarine sediments has rarely been documented. In this study, we conducted microcosm experiment to investigate the effects of commonly encountered polyethylene (PE) and polystyrene (PS) MPs, with two MPs concentrations (0.3% and 3% wet sediment weight) based on environmental concentration considerations and dose-response effects, on sediment dissolved oxygen (DO) diffusion capacity and microbial communities using microelectrode system and metagenomic analysis respectively. The results indicated that high concentrations of PE-MPs inhibited DO diffusion during the mid-phase of the experiment, an effect that dissipated in the later stages. Metagenomic analysis revealed that MP treatments reduced the relative abundance of dominant microbial colonies in the sediments. The PCoA results demonstrated that MPs altered the microbial community structure, particularly evident under high concentration PE-MPs treatments. Functional analysis related to the nitrogen cycle suggested that PS-MPs promoted the nitrification, denitrification, and DNRA processes, but inhibited the ANRA process, while PE-MPs had an inhibitory effect on the nitrate reduction process and the ANRA process. Additionally, the high concentration of PE-MPs treatment significantly stimulated the abundance of genus (Bacillus) by 34.1% and genes (lip, pnbA) by 100-187.5% associated with plastic degradation, respectively. Overall, in terms of microbial community structure and the abundance of nitrogen cycling functional genes, PE- and PS- MPs exhibit both similarities and differences in their impact on nitrogen cycling. Our findings highlight the complexity of MP effects on nitrogen cycling in estuarine sediments and high concentrations of PE-MP stimulated plastic-degrading genus and genes.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
6
|
Ferreira ATDS, Wetter NU, Ribeiro MCH, Esteves LS, Dias AJG, Grohmann CH, Kuznetsova M, Freitas AZD, Oliveira RCD, Siegle E. Recognizing microplastic deposits on sandy beaches by altimetric positioning, μ-Raman spectroscopy and multivariate statistical models. MARINE POLLUTION BULLETIN 2024; 209:117025. [PMID: 39393225 DOI: 10.1016/j.marpolbul.2024.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Understanding the extent and implications of microplastic (MP) pollution along the São Paulo State coastline in southeastern Brazil is crucial, considering the significant environmental burden imposed by industrial and port activities in this region. This research aims to understand the complex dynamics of MP deposition on sandy beaches, which poses severe environmental risks to coastal ecosystems, marine organisms, and humans. Using a comprehensive five-step methodology-geodetic surveys, sediment collection, μ-RAMAN spectrometry for polymer identification, and multivariate statistical models-we analyzed the distribution of MPs across six coastal compartments (C1 to C6). The results (128 samples from 34 profiles) revealed relatively high MP concentrations in C3 and C2, which were likely influenced by local human activities. Various shape types of MPs, such as pellets, fragments, and fibers, present distinct distribution patterns based on their physical properties and emission sources. Fragments and foam were the most prevalent, accounting for 42 % and 35 %, respectively, of the 1026 MP items identified in total. Statistical analyses revealed significant correlations between MP types and beach morphometric features, with higher elevations correlating with increased MP concentrations, particularly for pellets and foam. Beaches with intermediate slopes (0.05 < tanβ <0.12) and openings to the southern quadrant tended to accumulate more MPs. This research underscores the importance of tailored management strategies that consider the unique characteristics of each coastal region to mitigate the impacts of MP pollution. The findings contribute to the development of targeted monitoring and environmental remediation strategies, which are crucial for protecting marine life and maintaining the integrity of coastal environments.
Collapse
Affiliation(s)
- Anderson Targino da Silva Ferreira
- Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil; Nuclear and Energy Research Institute, São Paulo 05508-000, SP, Brazil; Institute of Geosciences of the State University of Campinas, Campinas 13083-855, SP, Brazil.
| | | | | | | | | | - Carlos Henrique Grohmann
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo 05508-090, SP, Brazil.
| | - Maria Kuznetsova
- Nuclear and Energy Research Institute, São Paulo 05508-000, SP, Brazil
| | | | | | - Eduardo Siegle
- Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil.
| |
Collapse
|
7
|
Arslan Yüce P, Günal AÇ, Erkmen B, Yurdakok-Dikmen B, Çağan AS, Çırak T, Başaran Kankılıç G, Seyfe M, Filazi A, Tavşanoğlu ÜN. In vitro and in vivo effects of commercial and environmental microplastics on Unio delicatus. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02807-2. [PMID: 39387969 DOI: 10.1007/s10646-024-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants in freshwater environments. In this study, freshwater mussels, Unio delicatus, were exposed to both environmental MPs (e-MP) and commercial MPs (c-MP) that include green fluorescent MP (gf-MP), polyethylene (c-PE) and polystyrene (c-PS) at environmental concentrations (5 mg/L and 50 mg/L) over duration of 7 and 30 days. According to in vivo experiment results, both e-MPs and c-MPs induced significant changes in the total hemocyte counts of mussels (p < 0.05). Exposure to high concentrations of e-MPs and c-MPs for 7 days led to decreased cellular glutathione levels in the mussels, while exposure to low concentrations of e-MPs and c-PS for 7 days resulted in increased advanced oxidation protein products (AOPP). Mussels exposed to high concentrations of e-MPs for 30 days exhibited decreases in both glutathione levels and AOPP values. Although no damage was observed in tissues other than gills and digestive gland, histopathological alterations were observed in these tissues following exposure to 50 mg/L c-MPs. Additionally, MPs were observed in the intestine tissues. In vitro experiments using the MTT assay showed no significant difference in cell viability between the MP-exposed group and the control group at tested concentrations, with no observed dose-response relationship (p > 0.05). Nevertheless, certain cells exhibited signs of cell death, such as disrupted cellular structures, condensed nuclei, and loss of cellular integrity. These observations were consistent with mechanical compression, indicating that physical contact with MPs may result in cell damage or death. These findings demonstrate that environmentally relevant concentrations of MPs have toxic effects on freshwater mussels and multiple parameters provide valuable insight for the evaluation of health risks of organisms.
Collapse
Affiliation(s)
- Pınar Arslan Yüce
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Aysel Çağlan Günal
- Biology Education Department, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Belda Erkmen
- Biology Department, Faculty of Science, Aksaray University, Aksaray, Türkiye
| | - Begüm Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ali Serhan Çağan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
- Kastamonu University, Araç Rafet Vergili Vocational School, Wildlife Programme, Kastamonu, Türkiye
| | - Tamer Çırak
- Aksaray Technical Sciences Vocational School, Alternative Energy Sources Technology Program, Aksaray University, Aksaray, Türkiye
| | - Gökben Başaran Kankılıç
- Biology Department, Faculty of Engineering and Natural Sciences, Kırıkkale University, Kırıkkale, Türkiye
| | - Melike Seyfe
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Ülkü Nihan Tavşanoğlu
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Türkiye.
| |
Collapse
|
8
|
Hamann L, Werner J, Haase FJ, Thiel M, Scherwaß A, Laforsch C, Löder MGJ, Blanke A, Arndt H. Retention of microplastics by biofilms and their ingestion by protists in rivers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70016. [PMID: 39384165 PMCID: PMC11464032 DOI: 10.1111/1758-2229.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Microplastics (MPs) are released into the environment through human activities and are transported by rivers from land to sea. Biofilms, which are ubiquitous in aquatic ecosystems such as rivers, may play an essential role in the fate of MPs and their ingestion by biofilm protists. To assess this, biofilms were naturally grown on clay tiles in the River Rhine, Germany, and analysed in a combined field and laboratory study. Compared to the ambient river water, biofilms grown for 6, 12, and 18 months in the River Rhine contained up to 10 times more MPs. Between 70% and 78% of all MPs were smaller than 50 μm. In laboratory experiments, clay tiles covered with 1-month-old naturally grown biofilm retained 6-12 times more MPs than clay tiles without biofilm coverage. Furthermore, the ingestion of MPs of 6 and 10 μm by the ciliate Stentor coeruleus was confirmed, and a positive correlation between ingestion rates and ambient MP concentrations was found. The results are relevant for particle transport models in riverine systems, risk assessment of MPs regarding their distribution and fate in the aquatic environment, and the effects of MPs on micro- and macroorganisms.
Collapse
Affiliation(s)
- Leandra Hamann
- Bonn Institute for Organismic Biology, Section 2, Animal DiversityUniversity of BonnBonnGermany
- Institute of ZoologyUniversity of CologneCologneGermany
| | | | - Felicia J. Haase
- Institute of ZoologyUniversity of CologneCologneGermany
- Coastal and Marine Research CentreGriffith UniversitySouthportQueenslandAustralia
- School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Massimo Thiel
- Institute of ZoologyUniversity of CologneCologneGermany
| | - Anja Scherwaß
- Institute of ZoologyUniversity of CologneCologneGermany
| | - Christian Laforsch
- Department Animal Ecology I and BayCEERUniversity of BayreuthBayreuthGermany
| | - Martin G. J. Löder
- Department Animal Ecology I and BayCEERUniversity of BayreuthBayreuthGermany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology, Section 2, Animal DiversityUniversity of BonnBonnGermany
| | - Hartmut Arndt
- Institute of ZoologyUniversity of CologneCologneGermany
| |
Collapse
|
9
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
10
|
Yamen SNM, Samsudin MS, Azid A, Norizan MN, Suradee APK, Rosli MIFM. First Evidence of Microplastic Ingestion by Riverine Fish From the Freshwater of Northwest Peninsular Malaysia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2189-2198. [PMID: 39119975 DOI: 10.1002/etc.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
In a baseline study, we investigated microplastic contamination in fish from the Pinang and Kerian Rivers in Northwest Peninsular Malaysia. In recognition of the growing concern over microplastic pollution in aquatic environments, we aimed to assess the abundance and characteristics of microplastics ingested by various fish species. Fish samples were collected from local fishermen, followed by a digestion process using 10% potassium hydroxide (KOH). Microplastics were isolated and analyzed through visual examination and attenuated total reflectance Fourier transform infrared spectroscopy. The results revealed a high prevalence of microplastics, with Johnius borneensis and Oreochromis sp. exhibiting the highest abundance, averaging 48.6 and 42.8 microplastics/g, respectively. The predominant shapes were fibers (55.6%) and fragments (25.9%), with colors primarily transparent (48.19%) and black (30.12%). Our results indicate significant contamination levels in freshwater fish, emphasizing the need for further research and effective mitigation strategies. These findings provide crucial baseline data on microplastics in Malaysian freshwater ecosystems. Environ Toxicol Chem 2024;43:2189-2198. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Azman Azid
- Faculty of Bioresources and Food Industry, University Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Aidee Putera Kamal Suradee
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
11
|
Kowalczyk M, Domaradzki P, Skałecki P, Kaliniak-Dziura A, Stanek P, Teter A, Grenda T, Florek M. Use of sustainable packaging materials for fresh beef vacuum packaging application and product assessment using physicochemical means. Meat Sci 2024; 216:109551. [PMID: 38852287 DOI: 10.1016/j.meatsci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Packaging material should guarantee the longest possible shelf life of food and help to maintain its quality. The aim of the study was to assess the physicochemical changes taking place during 28-day ageing of beef steaks packed in two types of multilayer films containing biodegradable polymers - polylactic acid (NAT/PLA) and Mater-Bi® (NAT/MBI). The control group consisted of steaks packed in synthetic polyamide/polyethylene (PA/PE) film. The samples stored in NAT/PLA had significantly lower purge loss than the control samples and the lowest expressible water amount after 14 and 21 days. Following blooming, the most favourable colour was shown in steaks stored in NAT/MBI, with the highest values for the L*, a* and C* parameters and the R630/580 ratio, a high proportion of oxymyoglobin, and the lowest share of metmyoglobin. All steaks, regardless of the type of packaging material, had acceptable tenderness and were stable in terms of lipid oxidation.
Collapse
Affiliation(s)
- Marek Kowalczyk
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Skałecki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Agnieszka Kaliniak-Dziura
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Stanek
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Anna Teter
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Tomasz Grenda
- National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland.
| | - Mariusz Florek
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
12
|
Hajji S, Ben-Haddad M, Abelouah MR, Rangel-Buitrago N, Ait Alla A. Microplastic characterization and assessment of removal efficiency in an urban and industrial wastewater treatment plant with submarine emission discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174115. [PMID: 38908571 DOI: 10.1016/j.scitotenv.2024.174115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Wastewater treatment plants (WWTPs) are significant contributors to microplastic (MP) pollution in marine ecosystems when they are inefficient. This study aimed to evaluate the effectiveness of microplastic removal from the effluent of the Anza WWTP (Morocco), which processes industrial and urban wastewater using a lamellar decantation system combined with a submarine emissary for treated water discharge. Additionally, this study investigated the presence of microplastics in the Atlantic seawater where treatment plant effluent is released. Microplastics were collected and extracted from wastewater and seawater samples to assess their abundance, shape, size, polymer type, and removal rates in the treatment plant. The findings revealed an average MP concentration of 1114 ± 90 MPs/L in the influent and 607 ± 101 MPs/L in the effluent, indicating a removal efficiency of 46 %. Seasonal analysis revealed the highest MP concentrations during the summer, with 2181.33 MPs/L in the influent and 1209 MPs/L in the effluent. Seawater samples from the discharge zone of the submarine emissary had an average MP concentration of 1600 MPs/m3. Characterization of the MPs revealed that fibers were the most common form of MPs in all the samples. The 500-100 μm size fraction was predominant in the WWTP samples, while MPs smaller than 1 mm were more abundant in the seawater samples. Seven polymer types were identified using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), with PET, PE, PVC, PA, PS, PP, and EVA being the most prevalent. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) revealed various degrees of weathering and chemical elements adhering to the MP surfaces. The results of this study provide valuable insights into the effectiveness of conventional treatment systems in removing microplastics and offer a reference for developing management strategies to mitigate MP pollution in Morocco's marine ecosystems.
Collapse
Affiliation(s)
- Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
13
|
Cheng H, Zou Y, Lu B, Wang J, Magnuson JT, Xu B, Qiu W, Xuan R. Immunotoxic response of bio-based plastic on early life stage zebrafish (Danio rerio): A safe alternative to petroleum-based plastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135846. [PMID: 39303614 DOI: 10.1016/j.jhazmat.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bio-based plastics are marketed as environmentally friendly alternatives to petroleum-based plastics, although they require specific composting conditions for degradation, which leads to their accumulation in the environment and potential risks to aquatic organisms. We hypothesized that the accumulation of bio-based plastics may induce immunotoxic responses in fish. Our research focused on the accumulation and immunotoxicity of 80 nm polylactic acid (PLA) and polystyrene (PS) (0.1-10 mg/L) on early life stage zebrafish (Danio rerio) exposed for 7 days. Compared to PS, there was a higher accumulation of PLA in larvae. Exposure to PLA resulted in a significant increase in neutrophils and macrophages, while immune protein levels such as Complement 3 (C3), Immunoglobulin M (IgM), and C-reactive protein (CRP) were significantly reduced. Furthermore, the mRNA expression of pro-inflammatory cytokines, including tnf-α and il-6, were significantly elevated in PLA treatments. Additionally, PLA-exposed zebrafish were more susceptible to infection by Vibrio parahaemolyticus. Interestingly, at the same concentration, exposures to PS did not induce significant changes in macrophages or immune protein levels, C3 and IgM. This suggests that PLA has a greater immunotoxic response relative to PS. Our research findings contradict the popular belief that bio-based plastics are non-toxic and harmless, which may have potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Haodong Cheng
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Society of Environmental Sciences, Guangzhou 510045, China
| | - Bin Lu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Jason T Magnuson
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China; Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
14
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Niari MH, Ghobadi H, Amani M, Aslani MR, Fazlzadeh M, Matin S, Takaldani AHS, Hosseininia S. Characteristics and assessment of exposure to microplastics through inhalation in indoor air of hospitals. AIR QUALITY, ATMOSPHERE & HEALTH 2024. [DOI: 10.1007/s11869-024-01640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
|
16
|
Lu T, Yuan X, Sui C, Yang C, Li D, Liu H, Zhang G, Li G, Li S, Zhang J, Zhou L, Xu M. Exposure to Polypropylene Microplastics Causes Cardiomyocyte Apoptosis Through Oxidative Stress and Activation of the MAPK-Nrf2 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39248137 DOI: 10.1002/tox.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Microplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP-MPs) are not well understood. This study aimed to investigate the effects of PP-MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP-MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub-chronic exposure to 5 and 50 mg/L PP-MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP-MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl-2, poly(ADP-ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved-PARP, and cleaved-caspase 3 in PP-MPs-treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP-MPs. Moreover, PP-MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP-MPs significantly reduced the expression levels of Nrf2 and p-ERK proteins associated with MAPK-Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP-MPs can induce cardiomyocyte apoptosis through MAPK-Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP-MPs on cardiotoxicity and their underlying mechanisms.
Collapse
Affiliation(s)
- Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Changbai Sui
- Department of Neurology, Yantaishan Hospital, Affiliated to Binzhou Medical University, YanTai, ShanDong, China
| | - Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guozhi Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Song Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| |
Collapse
|
17
|
Debnath R, Prasad GS, Amin A, Malik MM, Ahmad I, Abubakr A, Borah S, Rather MA, Impellitteri F, Tabassum I, Piccione G, Faggio C. Understanding and addressing microplastic pollution: Impacts, mitigation, and future perspectives. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104399. [PMID: 39033703 DOI: 10.1016/j.jconhyd.2024.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Improper disposal of household and industrial waste into water bodies has transformed them into de facto dumping grounds. Plastic debris, weathered on beaches degrades into micro-particles and releases chemical additives that enter the water. Microplastic contamination is documented globally in both marine and freshwater environments, posing a significant threat to aquatic ecosystems. The small size of these particles makes them susceptible to ingestion by low trophic fauna, a trend expected to escalate. Ingestion leads to adverse effects like intestinal blockages, alterations in lipid metabolism, histopathological changes in the intestine, contributing to the extinction of vulnerable species and disrupting ecosystem balance. Notably, microplastics (MPs) can act as carriers for pathogens, potentially causing impaired reproductive activity, decreased immunity, and cancer in various organisms. Studies have identified seven principal sources of MPs, including synthetic textiles (35%) and tire abrasion (28%), highlighting the significant human contribution to this pollution. This review covers various aspects of microplastic pollution, including sources, extraction methods, and its profound impact on ecosystems. Additionally, it explores preventive measures, aiming to guide researchers in selecting techniques and inspiring further investigation into the far-reaching impacts of microplastic pollution, fostering effective solutions for this environmental challenge.
Collapse
Affiliation(s)
| | - Gora Shiva Prasad
- Faculty of Fishery Science, WBUAFS, Kolkata -700094, West Bengal, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Monisa M Malik
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Adnan Abubakr
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Simanku Borah
- Agricultural Research Service, ICAR-CIFRI Regional Centre, Guwahati, Assam, 781006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | | | - Ifra Tabassum
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
18
|
Yan W, Qi X, Cao Z, Yao M, Ding M, Yuan Y. Biotransformation of ethylene glycol by engineered Escherichia coli. Synth Syst Biotechnol 2024; 9:531-539. [PMID: 38645974 PMCID: PMC11031724 DOI: 10.1016/j.synbio.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
There has been extensive research on the biological recycling of PET waste to address the issue of plastic waste pollution, with ethylene glycol (EG) being one of the main components recovered from this process. Therefore, finding ways to convert PET monomer EG into high-value products is crucial for effective PET waste recycling. In this study, we successfully engineered Escherichia coli to utilize EG and produce glycolic acid (GA), expecting to facilitate the biological recycling of PET waste. The engineered E. coli, able to utilize 10 g/L EG to produce 1.38 g/L GA within 96 h, was initially constructed. Subsequently, strategies based on overexpression of key enzymes and knock-out of the competing pathways are employed to enhance EG utilization along with GA biosynthesis. An engineered E. coli, characterized by the highest GA production titer and substrate conversion rate, was obtained. The GA titer increased to 5.1 g/L with a yield of 0.75 g/g EG, which is the highest level in the shake flake experiments. Transcriptional level analysis and metabolomic analysis were then conducted, revealing that overexpression of key enzymes and knock-out of the competing pathways improved the metabolic flow in the EG utilization. The improved metabolic flow also leads to accelerated synthesis and metabolism of amino acids.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Xinhua Qi
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Li X, Piao J, Kang B, Eom Y, Kim DH, Song JS. The toxic effects of polystyrene microplastic/nanoplastic particles on retinal pigment epithelial cells and retinal tissue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54950-54961. [PMID: 39217583 DOI: 10.1007/s11356-024-34822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of contact lenses, artificial tears, and anti-vascular endothelial growth factor (anti-VEGF) drug injections for age-related macular degeneration has heightened the likelihood of eye exposure to microplastic particles. Extensive research has established that microplastic particles can induce oxidative stress on the ocular surface, resulting in damage. However, the impact of these particles on the retina remains unclear. Therefore, this study investigated whether microplastics/nanoplastics (MPs/NPs) cause retinal damage. In vitro human retinal pigment epithelial (RPE) cells were exposed to polystyrene MPs and NPs for 48 h. Assessment of cell viability using WST-8; evaluation of TNF-α and IL-1β expression; observation of cell morphology and particle invasion via TEM; measurement of ROS levels using the DCFDA reagent; and western blot analysis of SOD2, FIS1, Drp1, and LC3B expression were conducted. In vivo experiments involved intravitreal injection of MPs/NPs in rats, followed by retinal H&E staining 24 h later and evaluation of TNF-α and IL-1β expression. Results indicated that exposure to MPs did not significantly alter RPE cell viability, whereas exposure to NPs led to a noticeable decrease. TEM images revealed NPs' penetration into cells, causing increased oxidative stress (SOD2), mitochondrial fission (FIS1, Drp1), and mitochondrial autophagy (LC3B). In vivo experiments demonstrated an increase in inflammatory cells in retinal tissues exposed to NPs, along with elevated levels of TNF-α and IL-1β. Conclusively, both MPs and NPs impact the retina, with NPs displaying greater toxicity. NPs significantly elevate ROS levels in the retina and induce mitochondrial fission and mitophagy in RPE cells compared to MPs.
Collapse
Affiliation(s)
- Xuemin Li
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Junfeng Piao
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
- Department of Ophthalmology (Ningxia Clinical Research Center of Blinding Eye Disease), People Hospital of Ningxia Hui Autonomous Region (People's Hospital of Autonomous Region Affiliated to Ningxia Medical University), Yinchuan, Ningxia Hui Autonomous Region, China
| | - Boram Kang
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea.
| |
Collapse
|
20
|
Rostampour S, Cook R, Jhang SS, Li Y, Fan C, Sung LP. Changes in the Chemical Composition of Polyethylene Terephthalate under UV Radiation in Various Environmental Conditions. Polymers (Basel) 2024; 16:2249. [PMID: 39204469 PMCID: PMC11358994 DOI: 10.3390/polym16162249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro(nano)plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥95% relative humidity) and dry conditions (i.e., ≤5% relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm-1 and the formation of the carboxylic acid at peak 1685 cm-1 were significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared with dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.
Collapse
Affiliation(s)
- Sara Rostampour
- PREP Associate, Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Rachel Cook
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Song-Syun Jhang
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 701, Taiwan;
| | - Yuejin Li
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Chunlei Fan
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Li-Piin Sung
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
21
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
22
|
Fang J, Sheng Z, Liu J, Li C, Lyu T, Wang Z, Zhang H. Interference of microplastics on autotrophic microbiome in paddy soils: Shifts in carbon fixation rate, structure, abundance, co-occurrence, and assembly process. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134783. [PMID: 38824776 DOI: 10.1016/j.jhazmat.2024.134783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Autotrophic microorganisms play a crucial role in soil CO2 assimilation. Although microplastic pollution is recognized as a significant global concern, its precise impact on carbon sequestration by autotrophic microorganisms in agroecosystem soil remains poorly understood. This study conducted microcosm experiments to explore how conventional polystyrene (PS) and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microplastics affect carbon fixation rates (CFRs) and the community characteristics of soil autotrophic microorganisms in paddy agroecosystems. The results showed that compared with the control groups, 0.5 % and 1 % microplastic treatments significantly reduced soil CFRs by 11.8 - 24.5 % and 18.7 - 32.3 %, respectively. PS microplastics exerted a stronger inhibition effect on CFRs than PHBV microplastics in bulk soil. However, no significant difference was observed in the inhibition of CFRs by both types of microplastics in rhizosphere soils. Additionally, PS and PHBV microplastics altered the structure of autotrophic microbial communities, resulting in more stochastically dominated assembly and looser, more fragile coexistence networks compared to control groups. Moreover, microplastics drove the changes in autotrophic microbial carbon fixation primarily through their direct interference and the indirect effect by increasing soil organic carbon levels. Our findings enhance the understanding and predictive capabilities regarding the impacts of microplastic pollution on carbon sinks in agricultural soils.
Collapse
Affiliation(s)
- Jiaohui Fang
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Zihao Sheng
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Tianshu Lyu
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Zhenyang Wang
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Honghai Zhang
- School of Life Sciences, Qufu Normal University, Qufu 273100, China.
| |
Collapse
|
23
|
Novak AB, Gerstenbacher CM, Lord KS, Rotjan RD. Microplastic abundance and accumulation patterns in eelgrass (Zostera marina L.) meadows throughout coastal Massachusetts, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:775. [PMID: 39093340 DOI: 10.1007/s10661-024-12943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Microplastics are fast-emerging as another potential threat to already globally declining seagrass ecosystems, but there is a paucity of in situ surveys showing their accumulations. Here, we surveyed multiple Zostera marina L. meadows in 2020 and 2021 across Massachusetts, USA, for microplastic contamination, as well as identified factors related to patterns of accumulation. We found that microplastics were ubiquitous throughout all sites regardless of proximity to human development, with fibers being the most common microplastic type. In addition, we showed that accumulation of microplastics within seagrass meadows was related to epiphytic cover on leaves, plant morphology, and bulk-density in sediments. The results of this study provide the first in situ baseline microplastic concentrations on Z. marina plants and sediments for the temperate western North Atlantic. Additionally, we identify specific biotic and abiotic factors related to patterns of microplastic accumulation in these ecosystems.
Collapse
Affiliation(s)
- Alyssa B Novak
- Department of Earth and Environment, Boston University, Boston, MA, USA.
| | - Cecelia M Gerstenbacher
- Merrimack Valley Planning Commission, Haverhill, MA, USA
- Department of Biology, Boston University, Boston University, Boston, MA, USA
| | - Karina Scavo Lord
- Department of Biology, Boston University, Boston University, Boston, MA, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, Boston University, Boston, MA, USA
| |
Collapse
|
24
|
Connors E, Lebreton L, Bowman JS, Royer S. Changes in microbial community structure of bio-fouled polyolefins over a year-long seawater incubation in Hawai'i. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13283. [PMID: 39075734 PMCID: PMC11286543 DOI: 10.1111/1758-2229.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/30/2024] [Indexed: 07/31/2024]
Abstract
Plastic waste, especially positively buoyant polymers known as polyolefins, are a major component of floating debris in the marine environment. While plastic colonisation by marine microbes is well documented from environmental samples, the succession of marine microbial community structure over longer time scales (> > 1 month) and across different types and shapes of plastic debris is less certain. We analysed 16S rRNA and 18S rRNA amplicon gene sequences from biofilms on polyolefin debris floating in a flow-through seawater tank in Hawai'i to assess differences in microbial succession across the plastic types of polypropylene (PP) and both high-density polyethylene (HDPE) and low-density polyethylene (LDPE) made of different plastic shapes (rod, film and cube) under the same environmental conditions for 1 year. Regardless of type or shape, all plastic debris were dominated by the eukaryotic diatom Nitzschia, and only plastic type was significantly important for bacterial community structure over time (p = 0.005). PE plastics had higher differential abundance when compared to PP for 20 bacterial and eight eukaryotic taxa, including the known plastic degrading bacterial taxon Hyphomonas (p = 0.01). Results from our study provide empirical evidence that plastic type may be more important for bacterial than eukaryotic microbial community succession on polyolefin pollution under similar conditions.
Collapse
Affiliation(s)
| | - Laurent Lebreton
- Center for Marine Debris ResearchHawaii Pacific UniversityWaimānaloHawaiiUSA
| | - Jeff S. Bowman
- Scripps Institution of OceanographyLa JollaCaliforniaUSA
| | - Sarah‐Jeanne Royer
- Center for Marine Debris ResearchHawaii Pacific UniversityWaimānaloHawaiiUSA
- The Ocean Cleanup FoundationRotterdamThe Netherlands
| |
Collapse
|
25
|
Samrat Hossain M, Saifullah ASM, Uddin MJ, Hasibur Rahaman M. Assessment of microplastics in coastal ecosystem of Bangladesh. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116622. [PMID: 38917586 DOI: 10.1016/j.ecoenv.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. The present study investigated MPs in surface water, beach sediments, and fish in two coastal areas of Bangladesh namely Cox's Bazar and Kuakata. The MPs were identified and characterized using three different techniques, including the binocular microscope, the ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy), and SEM-EDS (Scanning Electron Microscopy- Energy Dispersive Spectroscopy). The number of MPs in seawater was 10.1 ± 3.10 and 8.52 ± 3.92 items/100 L and in beach sediment, 13.2 ± 3.68 and 9.48 ± 3.63 items/100 g in Cox's Bazar and Kuakata, respectively. In fish samples, the abundance of MPs was 7.82 ± 1.28 and 6.82 ± 1.87 items/individual species of Cox's Bazar and Kuakata, respectively, where the highest quantities of MP were found in Euthynnus affinisand Sillago sihama and the lowest in Terapon jarbua and Pampus chinensisin Cox's Bazar and Kuakata, respectively. The number of MPs in GITs (Gastrointestinal tracts) was 1.63 ± 0.991 and 1.25 ± 0.546 items/g GIT and in BW (Body Weight) were 0.042 ± 0.014 and 0.037 ± 0.014 items/g BW in Cox's Bazar and Kuakata, respectively. There revealed a positive correlation between MP abundance and GIT weight and body weight in fish species. MPs were predominantly fiber-shaped, white/transparent, and small size. The most common MP polymers were polyethylene and polypropylene. SEM images of MPs demonstrate surface roughness, cracks, mechanical weathering and oxidative weathering, demonstrating their ongoing environmental exposure. The EDS spectrum unearthed that the MPs contained several elements (C, N, O, Na, Al, Fe, and Si). Findings from this study might be useful in coastal plastic particle management and to mitigate the potential risks associated with them.
Collapse
Affiliation(s)
- Md Samrat Hossain
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - A S M Saifullah
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| | - Muhammad Jasim Uddin
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
26
|
Mudigonda S, Atturu P, Dahms HU, Hwang JS, Wang CK. Evaluation of antibiofilm activity of metal oxides nanoparticles and carbon nanotubes coated styrofoam on the bacterium Jeotgalicoccus huakuii. WATER RESEARCH 2024; 259:121810. [PMID: 38830316 DOI: 10.1016/j.watres.2024.121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
The co-existence of metal oxide nanoparticles (MONPs), carbon-based nanomaterials and microplastics (MPs) in the natural environment are expected to be of growing global concern due to their increasing abundance and persistence in the environment worldwide. Knowledge of the interaction of the above compounds particularly under light irradiation in water remains limited. In the present study, the possible individual and combined toxic effects of MONPs, carbon nanotubes (CNTs) through styrofoam (SF) on the environmental bacterium Jeotaglicoccus huakuii were systematically investigated. The fabricated MONPs and CNTs were characterized using the following techniques: FT-IR (functional groups), XRD (crystallinity), SEM, and EDX (topological morphology). The objective of this study was to investigate and identify naturally occurring bacteria capable of mitigating and detoxifying toxic pollutants under adverse conditions. Moreover, the assessment of minimum inhibitory concentration (MIC) was made through an agar well plate method, resazurin (ELISA measurement), growth kinetics and bacterial viability were assessed employing live and dead assay and biofilm combating ability was analyzed using an antibiofilm assay. Further, the biotransformation of f-MWCNTs by J. huakuii was evaluated employing RT-PCR and SEM analysis. The results demonstrated that the toxicity of Pb3O4@f-MWCNTs was comparatively higher than the remaining Pb3O4 NPs and SF coated NPs.. Interestingly, J. huakuii showed resistance against f-MWCNTs at very high concentrations and able to utilize f-MWCNTs as a sole carbon source suggesting J. huakuii as a suitable aquatic bioremediation tool for both MONPs and CNTs transfer via MPs. The results also enhanced our understanding of the affinity of MPs towards MONPs and CNTs under extreme environmental conditions.
Collapse
Affiliation(s)
- Sunaina Mudigonda
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| | - Pavanchandh Atturu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80424, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chih Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| |
Collapse
|
27
|
Wen Y, Cai J, Zhang H, Li Y, Yu M, Liu J, Han F. The Potential Mechanisms Involved in the Disruption of Spermatogenesis in Mice by Nanoplastics and Microplastics. Biomedicines 2024; 12:1714. [PMID: 39200182 PMCID: PMC11351746 DOI: 10.3390/biomedicines12081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Plastic-based products are ubiquitous due to their tremendous utility in our daily lives. Nanoplastic (NP) and microplastic (MP) pollution has become a severe threat to the planet and is a growing concern. It has been widely reported that polystyrene (PS) MPs are severely toxic to the male reproduction system, with effects including decreased sperm parameters, impaired spermatogenesis, and damaged testicular structures. However, the molecular mechanisms for impaired spermatogenesis remain poorly understood. METHODS C57BL/6 male mice were treated with PS-NPs (80 nm) and PS-MPs (5 μm) by oral gavage every day for 60 days. A series of morphological analyses were completed to explore the influence of PS-NP and PS-MP exposure on the testes. Compared to other cell types in the seminiferous tubule, PS-NP and PS-MP exposure can lead to decreased spermatocytes. Then, more refined molecular typing was further performed based on gene expression profiles to better understand the common and specific molecular characteristics after exposure to PS-NPs and PS-MPs. RESULTS There were 1794 common DEGs across the PS-NP groups at three different doses and 1433 common DEGs across the PS-MP groups at three different doses. GO and KEGG analyses of the common DEGs in the PS-NP and PS-MP groups were performed to enrich the common and specific functional progress and signaling pathways, including 349 co-enriched GO entries and 13 co-enriched pathways. Moreover, 348 GO entries and 33 pathways were specifically enriched in the PS-NP group, while 526 GO entries and 15 pathways were specifically enriched in the PS-MPs group. CONCLUSIONS PS-NPs were predominantly involved in regulating retinoic acid metabolism, whereas PS-MPs primarily influenced pyruvate metabolism and thyroid hormone metabolism. Our results highlight the different molecular mechanisms of PS-NPs and PS-MPs in the impairment of spermatogenesis in male mammals for the first time, providing valuable insights into the precise mechanisms of PS-NPs and PS-MPs in male reproduction.
Collapse
Affiliation(s)
- Yixian Wen
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Jing Cai
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Huilian Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| | - Manyao Yu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.W.); (J.C.); (H.Z.); (Y.L.); (M.Y.)
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing 400016, China
| |
Collapse
|
28
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
29
|
Pirsaheb M, Nouri M, Massahi T, Makhdoumi P, Baban NA, Hossini H. Microplastics contamination in the most popular brands of Iranian sausages and evaluation of its human exposure. Heliyon 2024; 10:e34363. [PMID: 39100492 PMCID: PMC11295858 DOI: 10.1016/j.heliyon.2024.e34363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Microplastics (MPs) pollution represents a nascent environmental contaminant that has recently infiltrated human life and the food chain. The primary objective of this study was to investigate the presence of MPs in different brands of Iranian sausages. Qualitative and quantitative analyses of MPs particles were conducted using stereo- and fluorescent microscopy, FT-IR (Fourier-transform infrared spectroscopy), and SEM-EDS (Scanning electron microscopy-energy dispersive X-ray spectroscopy) techniques. Samples were collected from the most commonly consumed sausage brands in Iranian markets. The findings showed that the various sausage brands contained an average abundance of 25.7 ± 21.68 (range 10-70) and 55.45 ± 45.5 (range 10-175) particles/kg based on optical and fluorescent microscopy analyses, respectively. Predominantly, MPs were identified in fiber form (77-89 %), with a smaller proportion present in fragmented form (11-23 %). Polymer analysis using FT-IR identified polyethylene (PE) and polystyrene (PS) as the primary constituents. Furthermore, the estimated annual intake (EAI) of MPs was calculated at 804 and 3517 particles/kg bw/year for adults and children, respectively, based on optical microscopy observations. In comparison, fluorescent microscopy indicated an intake of 1734 and 7589 particles/kg bw/year for the respective age groups. These results emphasize the potential of MPs contamination to penetrate into different food products including sausages through processing routes, which can threaten human health.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monireh Nouri
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Azadi Baban
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Fang C, Yang Y, Zhang S, He Y, Pan S, Zhou L, Wang J, Yang H. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134387. [PMID: 38723479 DOI: 10.1016/j.jhazmat.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shuping Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
31
|
Cao Y, Ma Y, Han Y, Bian J, Yu X, Wang Z, Liu J, Feng W, Deng Y, Miao Q. Effect and environmental behaviour of microplastics in soil. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:511-519. [PMID: 37555586 DOI: 10.1177/0734242x231190811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Soil microplastic pollution is currently a worldwide concern. Microplastics are organic pollutants that are abundant in the natural environment, are persistent and difficult to degrade and may endanger human health while harming the environment. This article offers a bibliometric analysis of the environmental behaviour of microplastics in soils, as well as a thorough statistical analysis of research goals and trends in this field. We conducted a thorough search of all relevant literature from 2012 to 2022 in the Web of Science core database. The data analysis shows that, starting in 2012, there has been an upward trend in the number of articles about soil microplastic pollution. It can also be seen that China is relatively ahead of the curve in this area of research, followed by the United Kingdom and the United States. This article also systematically describes the research hotspots in this field. The results show that the current research on soil microplastics is mainly focused on their identification, enrichment and toxicity, whereas studies on the migration and transformation of soil microplastics and the mechanism of interaction with other pollutants are still lacking. Our results provide ideas and prospects for future research in this field.
Collapse
Affiliation(s)
- Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Yuping Ma
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jing Bian
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Xuezheng Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Zixuan Wang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, China
| | - Yuxin Deng
- School of Space and Environment, Beihang University, Beijing, China
| | - Qingfeng Miao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
32
|
Oluwoye I, Tanaka S, Okuda K. Pilot-scale performance of gravity-driven ultra-high flux fabric membrane systems for removing small-sized microplastics in wastewater treatment plant effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121438. [PMID: 38861885 DOI: 10.1016/j.jenvman.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The ubiquitous nature and environmental impacts of microplastic particles and fibers demand effective solutions to remove such micropollutants from sizable point sources, including wastewater treatment plants and road runoff facilities. While advanced methods, e.g., microfiltration and ultrafiltration, have shown high removal efficiencies of small-sized microplastics (<150 μm), the low flux encountered in these systems implies high operation costs and makes them less effective in high-capacity wastewater facilities. The issue presents new opportunities for developing cheap high-flux membrane systems, deployable in low-to high-income economies, to remove small-sized microplastic and nanoplastics in wastewater. Here, we report on developing an ultra-high flux gravity-driven fabric membrane system, assessed through a laboratory-scale filtration and large-scale performance in an actual wastewater treatment plant (WWTP). The method followed a carefully designed water sampling, pre-treatment protocol, and analytical measurements involving Fourier transform infrared (FTIR) spectroscopy and laser direct infrared (LDIR) imaging. The result shows that the ultra-high flux (permeance = 550,000 L/m2h⋅bar) fabric membrane system can effectively remove small-sized microplastics (10-300 μm) in the secondary effluent of an actual WWTP at high efficiency greater than 96 %. The pilot system demonstrated a continuous treatment capacity of 300,000 L/day through a 1 m2 surface area disc, with steady removal rates of microplastics. These findings demonstrate the practical, cheap, and sustainable removal of small-sized microplastics in wastewater treatment plants, and their potential value for other large-scale point sources, e.g., stormwater treatment facilities.
Collapse
Affiliation(s)
- Ibukun Oluwoye
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan; Curtin Corrosion Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, 606-8501, Japan
| | - Kensuke Okuda
- Metawater R&D Center, Water Regeneration Technology Development Department, Tokyo, 101-0041, Japan
| |
Collapse
|
33
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
34
|
Padmachandran AV, Sreethu N, Nasrin F, Muthuchamy M, Muthukumar A. Presence of microplastics in estuarine environment: a case study from Kavvayi and Kumbla backwaters of Malabar Coast, Kerala, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41342-41354. [PMID: 37060408 DOI: 10.1007/s11356-023-26936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Microplastics (MPs) are gaining global attention in recent years due to its widespread distribution and potential health impacts. The present study focuses on the distribution and characterisation of microplastics in the sediments and its transfer into the organisms living in Kavvayi and Kumbla backwaters of Northern Malabar region, Kerala, India. MP isolation procedures including density separation, organic matter digestion, and membrane filtration followed by visual and spectral analyses using optical microscope and confocal Raman spectroscopy have been utilised for the microplastic evaluation. Microplastics of size range up to 1 μm was analysed, and the presence of MPs was detected in all samples with an average abundance of 99.5 ± 69.43 particles/kg and 96.57 ± 29.96 particles/kg in Kavvayi and Kumbla backwaters respectively. Raman spectral analysis confirmed that almost 50% of MPs to be synthetic elastomers with the remaining half encompassed by polyamide, polyethylene, polyester, polyurethane, and polypropylene. Higher abundance of MPs in the edible aquatic organisms like clams, prawns, and fishes confirmed the transfer of MP from the environment into living organisms envisages the need of further investigation on toxicological impacts and management strategies.
Collapse
Affiliation(s)
- Aiswriya V Padmachandran
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Nhavilthodi Sreethu
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Fathima Nasrin
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Anbazhagi Muthukumar
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
35
|
Freitas PAV, González-Martínez C, Chiralt A. Stability and Composting Behaviour of PLA-Starch Laminates Containing Active Extracts and Cellulose Fibres from Rice Straw. Polymers (Basel) 2024; 16:1474. [PMID: 38891421 PMCID: PMC11174990 DOI: 10.3390/polym16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave rise to stiffer and less extensible monolayers with lower water vapour barrier capacity. In contrast, the PLA monolayers, with or without extract, did not show marked changes with storage. However, these changes were more attenuated in the bilayers that gained water vapour and oxygen barrier capacity during storage, maintaining the values of the different properties close to the initial range. The bioactivity of the active films exhibited a slight decrease during storage, so the antioxidant capacity is better preserved in the bilayers. All monolayer and bilayer films were fully composted within 90 days but with different behaviour. The bilayer assembly enhanced the biodegradation of PLA, whose monolayer exhibited a lag period of about 35 days. The active extract reduced the biodegradation rate of both mono- and bilayers but did not limit the material biodegradation within the time established in the Standard. Therefore, PLA-starch laminates, with or without the valorised fractions from RS, can be considered as biodegradable and stable materials for food packaging applications.
Collapse
Affiliation(s)
- Pedro A. V. Freitas
- Institute of Food Engineering FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.-M.); (A.C.)
| | | | | |
Collapse
|
36
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
37
|
Medina Faull LE, Zaliznyak T, Taylor GT. From the Caribbean to the Arctic, the most abundant microplastic particles in the ocean have escaped detection. MARINE POLLUTION BULLETIN 2024; 202:116338. [PMID: 38640763 DOI: 10.1016/j.marpolbul.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024]
Abstract
Comprehensive methodologies for monitoring microplastics (MPs) in the ocean are critical for accurately assessing abundances across a broad size spectrum, and to document distributions, sources, sinks, temporal trends, and exposure risks for organisms. Discrete 0.5-L water samples from the northeastern-coast of Venezuela (NECV), Pacific-Arctic Ocean (PAO), and Gulf Stream Current (GSC) were analyzed by Raman microspectroscopy to detect MPs not captured by net-tow surveys. Equivalent spherical diameters (ESD) of most MPs were <5 μm, accounting for 68, 83, 86 % of total inventories in NECV, GSC, PAO samples. We did not observe a single MP particle >53 μm ESD. Abundances of MPs in the 0.5-200 μm size fraction were 5-6 orders of magnitude higher than previous surveys that were almost exclusively based on net tow collections of MPs > 300 μm ESD. Abundances of MPs in NECV samples were ~10-fold higher than those from PAO and GSC. The most abundant polymers were polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET), consistent with composition of plastic waste generated globally.
Collapse
Affiliation(s)
- Luis E Medina Faull
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, USA.
| | - Tatiana Zaliznyak
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, USA
| |
Collapse
|
38
|
Xin L, Huang M, Huang Z. Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. ENVIRONMENT INTERNATIONAL 2024; 187:108679. [PMID: 38657405 DOI: 10.1016/j.envint.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 μg/ml) of polystyrene (PS) beads with two typical sizes (2 μm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 μm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 μm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Meizhen Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
39
|
Fattahi H, Mirzaei N, Bagheri A, Ravanyar L, Ahmadpour M, Makhdoumi P, Pirsaheb M, Heshmati S, Hoseinzadeh E, Ahmadi K, Meshabaz RA, Hossini H, Franzem T. The occurrence and distribution of microplastic contamination in Qara-sou river, Iran: incidence, quantification, and qualification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2264-2279. [PMID: 37496422 DOI: 10.1080/09603123.2023.2239755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the current study to investigate the characte - rization of Microplastic - released into the Qara-Sou river, Kermanshah, Iran, 12 sampling sites were surveyed along a 100 km stretch of the river. The maximum and minimum numbers of MPs were about 10,000 and 45,000 items per m3. The average concentration of MPs in the Qara-sou river was 23,666 ± 12147 items per m3. The dominant size and shape of MPs ranged from 0.025 to 1 mm (~44%) and fiber shapes (~78%). In addition, SEM-EDS analyses confirmed the presence of carbon-dominant peaks with O, Ca, Fe, Al, and Si. FTIR spectra have identified some MPs in the PVC, PU, PS, PE, and nylon polymer categories. A high level of MPs was discharged into the Qara-sou river, which should be attracting the attention of the community and decision-makers to reduce damage to the environment and human health.
Collapse
Affiliation(s)
- Hadis Fattahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Social Determinants of Health (SDH), Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environmental Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ravanyar
- Health Education and Health Promotion, Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Ahmadpour
- Health Education and Promotion, Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pouran Makhdoumi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shohreh Heshmati
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Edris Hoseinzadeh
- Students Research Committee, Saveh University of Medical Sciences, Saveh, Iran
| | - Kosar Ahmadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thomas Franzem
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
40
|
Langknecht T, Pelletier M, Robinson S, Burgess RM, Ho KT. The distribution of sediment microplastics assemblages is driven by location and hydrodynamics, not sediment characteristics, in the Gulf of Maine, USA. MARINE POLLUTION BULLETIN 2024; 202:116393. [PMID: 38669855 PMCID: PMC11162549 DOI: 10.1016/j.marpolbul.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MP) are found in marine sediments across the globe, but we are just beginning to understand their spatial distribution and assemblages. In this study, we quantified MP in Gulf of Maine, USA sediments. MP were extracted from 20 sediment samples, followed by polymer identification using Raman spectroscopy. We detected 27 polymer types and 1929 MP kg-1 wet sediment, on average. Statistical analyses showed that habitat, hydrodynamics, and station proximity were more important drivers of MP assemblages than land use or sediment characteristics. Stations closer to one another were more similar in their MP assemblages, tidal rivers had higher numbers of unique plastic polymers than open water or embayment stations, and stations closer to shore had higher numbers of MP. There was little evidence of relationships between MP assemblages and land use, sediment texture, total organic carbon, or contaminants.
Collapse
Affiliation(s)
- Troy Langknecht
- ORAU c/o U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA; Rhode Island Department of Environmental Management, Bureau of Natural Resources, 235 Promenade Street, Providence, RI 02908, USA
| | - Marguerite Pelletier
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Sandra Robinson
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
41
|
Cebuhar JD, Negrete J, Rodríguez Pirani LS, Picone AL, Proietti M, Romano RM, Della Védova CO, Casaux R, Secchi ER, Botta S. Anthropogenic debris in three sympatric seal species of the Western Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171273. [PMID: 38408675 DOI: 10.1016/j.scitotenv.2024.171273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Litter pollution is a growing concern, including for Antarctica and the species that inhabit this ecosystem. In this study, we investigated the microplastic contamination in three seal species that inhabit the Western Antarctic Peninsula: crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx) and Weddell (Leptonychotes weddellii) seals. Given the worldwide ubiquity of this type of contaminant, including the Southern Ocean, we hypothesized that the three seal species would present anthropogenic debris in their feces. We examined 29 scat samples of crabeater (n = 5), leopard (n = 13) and Weddell (n = 11) seals. The chemical composition of the items found were identified using micro-Raman and micro-FTIR spectroscopies. All the samples of the three species presented anthropic particles (frequency of occurrence - %FO - 100 %). Fibers were the predominant debris, but fragments and filaments were also present. Particles smaller than 5 mm (micro debris) were predominant in all the samples. Leopard seals ingested significantly larger micro-debris in comparison with the other seal species. The dominant color was black followed by blue and white. Micro-Raman and micro-FTIR Spectroscopies revealed the presence of different anthropogenic pigments such as reactive blue 238, Indigo 3600 and copper phthalocyanine (blue and green). Carbon black was also detected in the samples, as well as plastic polymers such as polystyrene, polyester and polyethylene terephthalate (PET), polyamide, polypropylene and polyurethane These results confirm the presence of anthropogenic contamination in Antarctic seals and highlight the need for actions to mitigate the effects and reduce the contribution of debris in the Antarctic ecosystem.
Collapse
Affiliation(s)
- Julieta D Cebuhar
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil.
| | - Javier Negrete
- Laboratório de Predadores Tope, Instituto Antártico Argentino, Av. 25 de Mayo 1147, Villa Lynch, Buenos Aires, Argentina; Facultad de Ciencias Naturales y Museo, Calle 64 N° 3, Universidad Nacional de La Plata, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz, 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucas S Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Maira Proietti
- Laboratório de Ecologia Molecular Marinha and Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brasil Rio Grande, Brazil; The Ocean Cleanup, Rotterdam, Netherlands
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Carlos O Della Védova
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ricardo Casaux
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Roca 780, 9200 Esquel, Chubut, Argentina
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil
| |
Collapse
|
42
|
Gholizadeh M, Bagheri T, Harsij M, Danabas D, Zakeri M, Siddique MAM. Assessment of microplastic contamination in some commercial fishes of the southern Caspian Sea and its potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26006-26018. [PMID: 38492137 DOI: 10.1007/s11356-024-32901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This study examined the occurrence of microplastics (MPs) in the gastrointestinal tract (GIT) of 384 fishes classified into four species from 11 sites in 2022 from the southern part of the Caspian Sea. GITs of fishes were collected and digested in H2O2 and KOH at 45 °C for 72 h. After filtration, extracted MPs were observed under a stereomicroscope, and selected MP particles were identified using FTIR. Presence of MPs was 68.98% in the GIT of the investigated fish. The mean abundance of MPs was 5.9 ± 0.9 MPs/GIT in Rutilus kutum, 9.2 ± 1.2 MPs/GIT in Chelon auratus, 3.6 ± 0.7 MPs/GIT in Alosa braschnikowi, and 2.7 ± 0.5 MPs/GIT in Vimba vimba. The predominant form of MPs was fiber (58.21%), followed by fragment (34.77%). Black (34.4%), white (19.07%), and blue (14.58%) were the most frequently detected colors of MPs. Overall, 6 MP polymers were identified, dominantly polypropylene (42.86%), polystyrene (17.86%), and cellophane (14.28%). The western part of the Caspian Sea (mostly tourist spots and urban areas) showed more MP pollution in fish compared to the eastern part. Polymer hazard index (PHI) revealed alarming microplastic contamination in the southern Caspian Sea. The PHI value of the present study showed that PES (PHI = 8403.78) and PS (PHI = 535.80) were "Extreme danger" and "Danger" risk categories, respectively.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, P.O. box: 163, Gonbad Kavous, Iran.
| | - Tahereh Bagheri
- Offshore Water Research Center, Education and Extension Organization, Iranian Fisheries Science Research Institute, Agricultural Research, Chabahar, Iran
| | - Mohammad Harsij
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, P.O. box: 163, Gonbad Kavous, Iran
| | - Durali Danabas
- Department of Aquaculture, Faculty of Fisheries, Munzur University, TR62000, Tunceli, Turkey
| | - Mohammad Zakeri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Mohammad Abdul Momin Siddique
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
43
|
Chen L, Shao H, Ren Y, Mao C, Chen K, Wang H, Jing S, Xu C, Xu G. Investigation of the adsorption behavior and adsorption mechanism of pollutants onto electron beam-aged microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170298. [PMID: 38272098 DOI: 10.1016/j.scitotenv.2024.170298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed worldwide. Extensive research has been conducted to address the issue of microplastic pollution; however, effective methods for microplastic treatment are still lacking. This study innovatively utilizes electron beam technology to age and degrade microplastics. Compared to other treatment methods, electron beam technology can effectively promote the aging and degradation of microplastics. The Oxygen - carbon ratio of aged microplastics reached 0.071, with a mass loss of 48 % and a carbonyl index value of 0.69, making it the most effective method for short-term aging treatment in current research efforts. Theoretical calculations and experimental results demonstrate that a large number of oxygen-containing functional groups are generated on the surface of microplastics after electron beam irradiation, changing their adsorption performance for pollutants. Theoretical calculations show that an increase in oxygen-containing functional groups on the surface leads to a gradual decrease in hydrophobic pollutant adsorption capacity while increasing hydrophilic pollutant adsorption capacity for aged microplastics. Experimental studies were conducted to investigate the adsorption behavior and process of typical pollutants by aged microplastics which conform to pseudo-second-order kinetics and Henry model during the adsorption process, and the adsorption results are consistent with theoretical calculations. The results show that the degradation of microplastics is mainly due to hydroxyl radicals generated by electron beam irradiation, which can break the carbon chain of microplastics and gradually degrade them into small molecular esters and alcohols. Furthermore, studies have shown that microplastics can desorb pollutants in pure water and simulated gastric fluid. Overall, electron beam irradiation is currently the most effective method for degrading microplastics. These results also clearly elucidate the characteristics and mechanisms of the interaction between aged microplastics and organic pollutants, providing further insights for assessing microplastic pollution in real-world environments.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hongyong Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| | - Shuting Jing
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengwei Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| |
Collapse
|
44
|
Ahn S, Kim N, Choi Y, Kim J, Hwang H, Kim C, Lee HY, Kim S, Kim JS, Lee HH, Choi J. Peptide-Decorated Microneedles for the Detection of Microplastics. BIOSENSORS 2024; 14:140. [PMID: 38534247 DOI: 10.3390/bios14030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
The escalating utilization of plastics in daily life has resulted in pervasive environmental pollution and consequent health hazards. The challenge of detecting and capturing microplastics, which are imperceptible to the naked eye, is exacerbated by their diminutive size, hydrophobic surface properties, and capacity to absorb organic compounds. This study focuses on the application of peptides, constituted of specific amino acid sequences, and microneedles for the rapid and selective identification of microplastics. Peptides, due to their smaller size and greater environmental stability compared with antibodies, emerge as a potent solution to overcome the limitations inherent in existing detection methodologies. To immobilize peptides onto microneedles, this study employed microneedles embedded with gold nanorods, augmenting them with sulfhydryl (SH) groups at the peptides' termini. The sensor developed through this methodology exhibited efficient peptide binding to the microneedle tips, thereby facilitating the capture of microplastics. Raman spectroscopy was employed for the detection of microplastics, with the results demonstrating successful attachment to the microneedles. This novel approach not only facilitates localized analysis but also presents a viable strategy for the detection of microplastics across diverse environmental settings.
Collapse
Affiliation(s)
- Suyeon Ahn
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Namju Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeryun Hwang
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Cholong Kim
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea
| | - Seungyoun Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea
| | - Hyun Ho Lee
- Department of Chemical Engineering, Myongji University, Yongin-si 17058, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
45
|
Antacli JC, Di Mauro R, Rimondino GN, Alurralde G, Schloss IR, González GA, Morales S, Ottero A, Vodopivez C. Microplastic pollution in waters of the Antarctic coastal environment of Potter Cove (25 de Mayo Island/King George Island, South Shetlands). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170155. [PMID: 38228241 DOI: 10.1016/j.scitotenv.2024.170155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Plastic pollution in the Southern Ocean around Antarctica is a growing concern, but many areas in this vast region remain unexplored. This study provides the first comprehensive analysis of marine microplastic (MPs) concentrations in Potter Cove, located near the Argentinian Carlini research station on 25 de Mayo/King George Island, Antarctica. Water samples were collected at 14 sites within the cove, representing various influences from the station's activities. Two sampling methods were used: a 5 L Niskin bottle and an in-situ filtering device called Microfilter, allowing for large water volumes to be filtered. MPs were found in 100 % of the samples. Microfilter samples ranged from 0.02 to 2.14 MPs/L, with a mean concentration of 0.44 ± 0.44 MPs/L. Niskin bottle samples showed concentrations from 0.40 to 55.67 MPs/L, with a mean concentration of 19.03 ± 18.21 MPs/L. The dominant types of MPs were anthropogenic black, transparent, and pink microfibers (MFs) measuring between 0.11 and 3.6 mm (Microfilter) and 0.06 to 7.96 mm (Niskin bottle), with a median length of 0.01 mm for both methods. Transparent and black irregular microfragments (MFRs) with diameters from 0.10 to 5.08 mm and a median diameter of 0.49 mm were also prevalent. FTIR-spectroscopy revealed the presence of 14 types of polymers. Cellulose-based materials and polyethylene terephthalate were the most abundant in MFs, while polyurethanes and styrene-based copolymers dominated in MFRs. MPs were more abundant near the Carlini station. Compared to other coastal Antarctic areas, the MPs in the cove were relatively abundant and mostly smaller than 1 mm. Local activities on the island were identified as the primary source of MPs in the cove, and the cyclonic water circulation likely affects the distribution of small-sized particles. To protect the ecosystem, reducing plastic usage, improving waste management, regulating MPs debris, and enhancing wastewater practices are essential.
Collapse
Affiliation(s)
- J C Antacli
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - R Di Mauro
- Gabinete de Zooplancton, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N° 1, B7602HSA Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), CONICET, Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki FI-00160, Finland
| | - I R Schloss
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas (CADIC, CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - G A González
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - S Morales
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina
| | - A Ottero
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina
| | - C Vodopivez
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, Argentina
| |
Collapse
|
46
|
Wu D, Lu X, Dong LX, Tian J, Deng J, Wei L, Wen H, Zhong S, Jiang M. Nano polystyrene microplastics could accumulate in Nile tilapia (Oreochromis niloticus): Negatively impacts on the intestinal and liver health through water exposure. J Environ Sci (China) 2024; 137:604-614. [PMID: 37980043 DOI: 10.1016/j.jes.2023.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Microplastics (MPs) have become a significant concern for their potential toxicity. However, the correlation between the size of plastic particles and their toxicity remains inconclusive. Here, we investigate the toxic effects of different sizes (80 nm, 800 nm, 8 µm and 80 µm) polystyrene MPs (PS-MPs) on the model organism Nile tilapia (Oreochromis niloticus). The results of bioluminescent imaging indicate that the 80 nm PS-MPs are more likely to invade the body. H&E staining shows severe damage on the intestinal villi and distinct hepatic steatosis in the 80 nm group. EdU labeling shows that the proliferation activity of intestinal and liver cells reduces significantly in the 80 nm group. The gut microbiome analysis shows a severe imbalance of gut microbiota homeostasis in the 80 nm group. The analysis of liver transcriptomics and metabolomics shows that the liver lipid metabolism is disordered in the 80 nm group. In conclusion, this study confirms that the 80 nm PS-MPs are more likely to induce intestinal and liver toxicity. All the above lay the foundation for further study on the pathological damage of MPs to other organisms.
Collapse
Affiliation(s)
- Di Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li-Xue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Deng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
47
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Kim YG, Yang YH. Reproducible Polybutylene Succinate (PBS)-Degrading Artificial Consortia by Introducing the Least Type of PBS-Degrading Strains. Polymers (Basel) 2024; 16:651. [PMID: 38475335 DOI: 10.3390/polym16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Polybutylene succinate (PBS) stands out as a promising biodegradable polymer, drawing attention for its potential as an eco-friendly alternative to traditional plastics due to its biodegradability and reduced environmental impact. In this study, we aimed to enhance PBS degradation by examining artificial consortia composed of bacterial strains. Specifically, Terribacillus sp. JY49, Bacillus sp. JY35, and Bacillus sp. NR4 were assessed for their capabilities and synergistic effects in PBS degradation. When only two types of strains, Bacillus sp. JY35 and Bacillus sp. NR4, were co-cultured as a consortium, a notable increase in degradation activity toward PBS was observed compared to their activities alone. The consortium of Bacillus sp. JY35 and Bacillus sp. NR4 demonstrated a remarkable degradation yield of 76.5% in PBS after 10 days. The degradation of PBS by the consortium was validated and our findings underscore the potential for enhancing PBS degradation and the possibility of fast degradation by forming artificial consortia, leveraging the synergy between strains with limited PBS degradation activity. Furthermore, this study demonstrated that utilizing only two types of strains in the consortium facilitates easy control and provides reproducible results. This approach mitigates the risk of losing activity and reproducibility issues often associated with natural consortia.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
48
|
Feng T, Wei Z, Agathokleous E, Zhang B. Effect of microplastics on soil greenhouse gas emissions in agroecosystems: Does it depend upon microplastic shape and soil type? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169278. [PMID: 38092197 DOI: 10.1016/j.scitotenv.2023.169278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023]
Abstract
Microplastics have emerged as a significant pollutant in terrestrial ecosystems, with their accumulation in agricultural fields influencing soil greenhouse gas emissions. Nevertheless, the specific impact of microplastics, particularly in relation to their varying shapes, and how this effect manifests across diverse soil types, remains largely unexplored. In this study, a 56-day incubation experiment was conducted to assess the influence of microplastic shapes (fibers, films, and spheres) on CO2 and N2O emissions in three types of soils (Chernozems, Luvisols, and Ferralsols), while also investigating potential associations with the compositional and functional characteristics of soil bacterial communities. When compared to the control group, the introduction of microplastic fibers resulted in an increase of 21.7 % in cumulative CO2 emissions and a 31.4 % rise in cumulative N2O emissions in Ferralsols. This increase was closely linked to the proliferation of the Actinobacteria and Bacilli classes and the orders of Catenulisporales, Bacillales, Streptomycetales, Micrococcales, and Burkholderiales within the bacterial communities of Ferralsols, alongside an observed elevation in N-acetyl-glucosaminidase enzyme activity. The inclusion of microplastic fibers did not result in significant alterations in greenhouse gas emissions within Chernozems and Luvisols. This is likely attributed to the inherent buffering capacity of these soils, which helps stabilize substrate and nutrient availability for microbial communities. These findings highlight that the response of greenhouse gas emissions to microplastic additions is contingent upon the shape of the microplastics and the specific soil types.
Collapse
Affiliation(s)
- Tianshu Feng
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhanbo Wei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bin Zhang
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
49
|
Liza AA, Ashrafy A, Islam MN, Billah MM, Arafat ST, Rahman MM, Karim MR, Hasan MM, Promie AR, Rahman SM. Microplastic pollution: a review of techniques to identify microplastics and their threats to the aquatic ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:285. [PMID: 38374279 DOI: 10.1007/s10661-024-12441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs), small synthetic particles, have emerged as perilous chemical pollutants in aquatic habitats, causing grave concerns about their disruptive effects on ecosystems. The fauna and flora inhabiting these specific environments consume these MPs, unwittingly introducing them into the intricate web of the food chain. In this comprehensive evaluation, the current methods of identifying MPs are amalgamated and their profound impacts on marine and freshwater ecosystems are discussed. There are many potential risks associated with MPs, including the dangers of ingestion and entanglement, as well as internal injuries and digestive obstructions, both marine and freshwater organisms. In this review, the merits and limitations of diverse identification techniques are discussed, including spanning chemical analysis, thermal identification, and spectroscopic imaging such as Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and fluorescent microscopy. Additionally, it discusses the prevalence of MPs, the factors that affect their release into aquatic ecosystems, as well as their plausible impact on various aquatic ecosystems. Considering these disconcerting findings, it is imperative that appropriate measures should be taken to assess the potential risks of MP pollution, protect aquatic life and human health, and foster sustainable development.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Asifa Ashrafy
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-Ku, Tokyo, 108-847, Japan
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Fish Conservation and Culture Lab, Biological & Agricultural Engineering, University of California, Davis, USA
| | - Md Rezaul Karim
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mehedi Hasan
- Global Sanitation Graduate School, Institute of Disaster Management, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | | | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
50
|
Lim YK, Lee KW, Hong SH, Park JG, Baek SH. Differential impact of planktonic and periphytic diatoms on aggregation and sinking of microplastics in a simulated marine environment. MARINE POLLUTION BULLETIN 2024; 199:115961. [PMID: 38171158 DOI: 10.1016/j.marpolbul.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Aggregation between microalgae and microplastics (MPs) significantly influences the MPs distribution in marine environment. We investigated the effects of two diatoms, the planktonic Pseudo-nitzschia pungens and the periphytic Navicula sp., on the formation and sinking of aggregates when they were cultured with four different types of MPs: small and large polyethylene terephthalate (PET) fibers, and low-density and high-density polyethylene (PE) spheres. Navicula sp. formed aggregates with all MPs within one week, but P. pungens only formed aggregates with PE spheres after 9 weeks. The PE-Navicula sp. aggregates settled about 100 times faster than the PE-P. pungens aggregates (12.2 vs. 0.1 mm s-1), and this difference was most likely due to aggregate shape rather than size. Our findings indicate that the periphytic Navicula sp. had a greater effect on the settling of MPs than the planktonic P. pungens. These findings have implications for understanding the behavior of MPs in marine environments.
Collapse
Affiliation(s)
- Young Kyun Lim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Kyun-Woo Lee
- Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Sang Hee Hong
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae Gon Park
- Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|