1
|
Moura BB, Paoletti E, Badea O, Ferrini F, Hoshika Y. Visible Foliar Injury and Ecophysiological Responses to Ozone and Drought in Oak Seedlings. PLANTS 2022; 11:plants11141836. [PMID: 35890470 PMCID: PMC9317710 DOI: 10.3390/plants11141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
To verify the responses of visible foliar injury (VFI), we exposed seedlings of three oak species for 4.5 months in an open air facility, using differing ozone (O3) and drought treatments: O3 (three levels from ambient to ×1.4 ambient), and drought (three levels of irrigation from 40% to 100% field capacity). We related the accumulated phytotoxic O3 dose (POD1) and cumulative drought index (CDI) to the O3 and drought VFI and assessed growth increment (height, diameter, leaf number), biomass (of all organs), and physiological parameters: net photosynthesis per plant (Pn), photosynthetic nitrogen (PNUE) and phosphorus use efficiency (PPUE)). The results indicated that an increase in POD1 promoted O3 VFI in Quercus robur and Quercus pubescens, while Quercus ilex was asymptomatic. The POD1-based critical level at the onset of O3 VFI was lower for Q. robur than for Q. pubescens (12.2 vs. 15.6 mmol m−2 POD1). Interestingly, drought reduced O3 VFI in Q. robur but increased it in Q. pubescens. Both O3 and drought were detrimental to the plant biomass. However, Q. robur and Q. pubescens invested more in shoots than in roots, while Q. ilex invested more in roots, which might be related to a hormetic mechanism. Pn, PNUE and PPUE decreased in all species under drought, and only in the sensitive Q. robur (PPUE) and Q. pubescens (PNUE) under O3. This study confirms that POD1 is a good indicator to explain the development of O3 VFI and helps a differential diagnosis of co-occurring drought and O3 VFI in oak forests.
Collapse
Affiliation(s)
- Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
- Correspondence:
| | - Ovidiu Badea
- “Marin Drăcea“ National Institute for Research and Development in Forestry, 128 Eroilor Blvd., 077190 Voluntari, Romania;
- Faculty of Silviculture and Forest Engineering, “Transilvania” University of Brasov, 1, Ludwig van Beethoven Str., 500123 Braşov, Romania
| | - Francesco Ferrini
- Department of Agriculture, Food, Environmental and Forestry Sciences, Section Woody Plants, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.B.M.); (Y.H.)
| |
Collapse
|
2
|
Feng Z, Yuan X, Fares S, Loreto F, Li P, Hoshika Y, Paoletti E. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. PLANT, CELL & ENVIRONMENT 2019; 42:1939-1949. [PMID: 30767225 DOI: 10.1111/pce.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/03/2023]
Abstract
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta-analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2 , and O3 ) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (-8% and -10%, respectively) and drought (-15% and -42%), and in opposite ways to elevated CO2 (-23% and +55%) and warming (+53% and -23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3 -insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4-phosphate pathway. Future results from manipulative experiments and long-term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta-analysis.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Arezzo, 52100, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
- Department of Biology, University Federico II, Naples, 80138, Italy
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yasutomo Hoshika
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| |
Collapse
|
3
|
Käffer MI, Domingos M, Lieske I, Vargas VMF. Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:471-477. [PMID: 30826610 DOI: 10.1016/j.envpol.2019.01.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Air pollution has been identified as a major cause of environmental and human health damage. O3 is an oxidative pollutant that causes leaf symptoms in sensitive plants. This study aims to adjust a multilinear model for the monitoring of O3 in subtropical climatic conditions by associating O3 concentrations with measurements of morphological leaf traits in tobacco plants and different environmental variables. The plants were distributed into five areas (residential, urban or industrial) in the southern region of Brazil and exposed during 14 periods, of 14 days each, during the years of 2014 and 2015. The environmental variables and leaf traits during the exposure periods were described by mean, median, standard deviation and minimum and maximum values. Spearman correlation and multiple linear regression analyses were applied on data from exposure periods. Leaf injury index, leaf area, leaf dry mass, temperature, relative humidity, global solar radiation and accumulated rainfall were used in the regression analyses to select the best models for predicting O3 concentrations. Leaf injury characteristically caused by O3 was verified in all areas and periods of plant exposure. Higher values of leaf injury (24.5% and 27.7%) were registered in the 13th and 12th exposure periods during spring and in areas influenced by urban and industrial clutches. The VPD, temperature, global solar radiation and O3 were correlated to leaf injury. Environmental variables [leaf area, leaf dry mass, global solar radiation and accumulated rainfall] and primarily the VPD were fundamental to improve the adjustments done in the bioindicator model (R2 ≥ 0.73). Our research shows that biomonitoring employing the tobacco "Bel-W3" can be improved by measuring morphological leaf traits and meteorological parameters. Additionally, O3 fumigation experiment should be performed with biomonitoring as conducted in this study, which are useful in understanding the role of other environmental factors.
Collapse
Affiliation(s)
- Márcia I Käffer
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade FEEVALE, RS 239, 2755, CEP 93352-000, Novo Hamburgo, RS, Brazil.
| | - Marisa Domingos
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Isadora Lieske
- Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Vera M F Vargas
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| |
Collapse
|
4
|
Singh H, Savita, Sharma R, Sinha S, Kumar M, Kumar P, Verma A, Sharma SK. Physiological functioning of Lagerstroemia speciosa L. under heavy roadside traffic: an approach to screen potential species for abatement of urban air pollution. 3 Biotech 2017; 7:61. [PMID: 28444603 DOI: 10.1007/s13205-017-0690-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022] Open
Abstract
The mitigation potential of avenue tree species needs a sound understanding, especially for landscape planning or planting tree species on roadside, especially in city limits where there is huge traffic due to more number of vehicles. A preliminary study was conducted to investigate the impact of heavy traffic movement and pollution thereof on physiological functioning of Lagerstroemia speciosa trees planted on roadside in terms of carbon absorption, mitigation potential and adaptive behavior. Trees on roadside exhibited reduced carbon assimilation (36.7 ± 2.4%) and transpiration rate (42.14 ± 2.9%), decreased stomatal conductance (66.85 ± 3.87%), increased stomatal resistance (212.2 ± 11.25%), more leaf thickness (40.54 ± 3.25) and water use efficiency (9.4 ± 0.87%), and changes in lead (179.31 ± 10.24%) and proline (15.61 ± 1.92%) concentration in leaf tissues when compared to less traffic area (FRI campus). The impacts were also witnessed in the form of enhanced vapour pressure deficit of air (63.18 ± 4.94%) and leaf (45.72 ± 3.25%), and air temperature (3.2 ± 0.16%) and leaf temperature (9.0 ± 0.82%) along roadside trees. It was inferred that heavy traffic movements interrupt the physiological functioning of trees due to alteration in the surrounding environment as compared to non-traffic areas. The present study provides baseline information to further explore and identify the potential avenue tree species having significant mitigation potential and adaptive efficiency to heavy traffic movements for improving urban environment.
Collapse
|
5
|
Sicard P, Augustaitis A, Belyazid S, Calfapietra C, de Marco A, Fenn M, Bytnerowicz A, Grulke N, He S, Matyssek R, Serengil Y, Wieser G, Paoletti E. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:977-987. [PMID: 26873061 DOI: 10.1016/j.envpol.2016.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 05/16/2023]
Abstract
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route Du Pin Montard BP234, 06904 Sophia-Antipolis Cedex, France.
| | - Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentu 13, Kaunas Dstr., LT-53362 Lithuania.
| | | | | | | | - Mark Fenn
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | - Andrzej Bytnerowicz
- USDA, Forest Service, PSW Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507, USA.
| | | | - Shang He
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | | | - Gerhard Wieser
- Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Rennweg 1, 6020 Innsbruck, Austria.
| | - Elena Paoletti
- IPSP-CNR, Via Madonna Del Piano 10, 50019 Sesto Fiorentino Firenze, Italy.
| |
Collapse
|