1
|
Malik TG, Sahu LK, Gupta M, Mir BA, Gajbhiye T, Dubey R, Clavijo McCormick A, Pandey SK. Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3146. [PMID: 37687392 PMCID: PMC10489858 DOI: 10.3390/plants12173146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Monoterpenes are volatile organic compounds that play important roles in atmospheric chemistry, plant physiology, communication, and defense. This review compiles the monoterpene emission flux data reported for different regions and plant species and highlights the role of abiotic environmental factors in controlling the emissions of biogenic monoterpenes and their emission fluxes for terrestrial plant species (including seasonal variations). Previous studies have demonstrated the role and importance of ambient air temperature and light in controlling monoterpene emissions, likely contributing to higher monoterpene emissions during the summer season in temperate regions. In addition to light and temperature dependence, other important environmental variables such as carbon dioxide (CO2), ozone (O3), soil moisture, and nutrient availability are also known to influence monoterpene emissions rates, but the information available is still limited. Throughout the paper, we identify knowledge gaps and provide recommendations for future studies.
Collapse
Affiliation(s)
- Tanzil Gaffar Malik
- Department of Botany, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India;
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, Gujarat, India;
| | - Lokesh Kumar Sahu
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, Gujarat, India;
| | - Mansi Gupta
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, Gujarat, India;
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir (North Campus), Delina, Baramulla 193103, Jammu & Kashmir, India;
| | - Triratnesh Gajbhiye
- Department of Botany, Govt. Shankar Sao Patel College Waraseoni, Waraseoni 481331, Madhya Pradesh, India;
| | - Rashmi Dubey
- Department of Chemistry, L.B.S. College, Baloda 495559, Chhattisgarh, India;
| | | | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India;
| |
Collapse
|
2
|
O3 Concentration and Its Relation with BVOC Emissions in a Subtropical Plantation. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An empirical model of O3 is developed using the measurements of emissions of biogenic volatile organic compounds (BVOCs), O3 concentration, global solar radiation, photosynthetically active radiation (PAR) and meteorological variables in a subtropical Pinus plantation, China, during 2013–2016. In view of the different structures of isoprene and monoterpenes, two empirical models of O3 concentration are developed, considering PAR absorption and scattering due to gases, liquids and particles (GLPs), as well as PAR attenuation caused by O3 and BVOCs. The estimated O3 is in agreement with the observations, and validation of the O3 empirical model is conducted. O3 concentrations are more sensitive to changes in PAR and water vapor than S/Q (horizontal diffuse to global solar radiation) and BVOC emissions. O3 is positive to changes in isoprene emission at low light and high GLPs, or negative at high light and low GLPs; O3 is negative to changes in monoterpene emissions. O3 are positive with the changes of PAR, water vapor and S/Q. It is suggested to control human-induced high BVOC emissions, regulate plant cutting, and reduce NOx and SO2 emissions more strictly than ever before. There are inverted U-shape interactions between O3 and its driving factors, and S/Q controls their turning points.
Collapse
|
3
|
Esposito R, Lusini I, Pallozzi E, Guidolotti G, Urban O, Calfapietra C. Shoot-level terpenoids emission in Norway spruce (Picea abies) under natural field and manipulated laboratory conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:530-538. [PMID: 27599182 DOI: 10.1016/j.plaphy.2016.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 05/24/2023]
Abstract
Norway spruce (Picea abies) is a strong emitter of biogenic volatile organic compounds (BVOCs). In the present study we investigated how shoot canopy position and high levels of stressors such as high temperature and ozone concentration, affect BVOC emission rates by means of in-situ and ex-situ experimental measurements. Therefore, BVOC emission from current-year spruce shoots was investigated under field and manipulated (temperature, ozone) laboratory conditions. Emitted BVOCs were sampled on desorption tubes, coupled with gas-exchange measurements of CO2 assimilation rate and stomatal conductance, and detected by gas chromatography coupled with mass spectrometry. Total BVOC emission rates from sun shoots under standard conditions were higher than those from shade shoots, although this was significant only in July, on the contrary, only α-pinene and γ-terpinene emission rates showed significant differences between sun and shade acclimated shoots in August. Limonene, α-pinene, β-pinene, and myrcene were identified as the most abundant BVOCs in both campaigns with emission rates above 0.2 nmol m-2 s-1. Ex-situ measurements revealed a significantly higher total BVOC emissions under high temperature level (40 °C) by ca. 175% as compared with standard temperature (30 °C), while a short-term fumigation of acute O3 concentration (200 ppb) had no effect on BVOC emissions and its spectrum. These findings might have a relevance considering the role of these compounds in protecting against oxidative stress and their possible stimulation in particular stressful conditions. Implication of such results into emission models may contribute to a more accurate estimation of BVOC emissions for Central European mountain regions dominated by Norway spruce forests and their rate under predicted climate change.
Collapse
Affiliation(s)
- Raffaela Esposito
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, IT-05010 Porano, TR, Italy; Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via San Camillo de Lellis, IT-01100 Viterbo, Italy
| | - Ilaria Lusini
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, IT-05010 Porano, TR, Italy; Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via San Camillo de Lellis, IT-01100 Viterbo, Italy
| | - Emanuele Pallozzi
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, IT-05010 Porano, TR, Italy
| | - Gabriele Guidolotti
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, IT-05010 Porano, TR, Italy
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
| | - Carlo Calfapietra
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Via Marconi 2, IT-05010 Porano, TR, Italy; Laboratory of Ecological Plant Physiology, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic.
| |
Collapse
|