1
|
Impellitteri F, Briglia M, Porcino C, Stoliar O, Yunko K, Germanà A, Piccione G, Faggio C, Guerrera MC. The odd couple: Caffeine and microplastics. Morphological and physiological changes in Mytilus galloprovincialis. Microsc Res Tech 2024; 87:1092-1110. [PMID: 38251430 DOI: 10.1002/jemt.24483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 μg L-1, and MPs (1 mg L-1, 35-50 μm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.
Collapse
Affiliation(s)
| | - Marilena Briglia
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Caterina Porcino
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Antonino Germanà
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
3
|
Tawfik NAI, El-Bakary ZA, Abd El-Wakeil KF. Determination of caffeine in treated wastewater discharged in the Nile River with emphasis on the effect of zinc and physicochemical factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28124-28138. [PMID: 38530524 PMCID: PMC11058622 DOI: 10.1007/s11356-024-32918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The present study aimed to investigate the occurrence of caffeine residues in the Nile River according to drainage of treated wastewater at Assiut, Egypt, and the effects of physicochemical parameters and zinc on its concentration. Four different sites were selected to perform the study: S, wastewater treatment plant (WWTP) canal (source site); J, a junction site between WWTP canal and the Nile; R, a reference site in the Nile before J site; and A, a site located after J site in the Nile. Water and sediment samples were collected in Summer 2022 and Winter 2023. Caffeine and Zn concentrations and physicochemical parameters were measured in the collected samples. The caffeine concentrations in water samples ranged from 5.73 to 53.85 μg L-1 at S in winter and summer, respectively, while those in sediment ranged from 0.14 mg kg-1 at R in winter to 1.54 mg kg-1 at S in summer. Caffeine and Zn concentrations were higher in summer samples. The Water Quality Index (WQI) of the collected samples recorded the lowest values in winter season at S and J sites. The study found that caffeine and zinc concentrations are positively correlated with water temperature and conductivity, while negatively correlated with pH. The association between caffeine and Zn highlights the environmental impact of heavy metals and pharmaceutical residues, and stresses the need for future research on these interactions.
Collapse
Affiliation(s)
- Nouran A I Tawfik
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Zienab A El-Bakary
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | |
Collapse
|
4
|
Russo T, Coppola F, Paris D, De Marchi L, Meucci V, Motta A, Carbone M, Di Cosmo A, Soares AMVM, Pretti C, Mollo E, Freitas R, Polese G. Exploring toxicological interactions in a changing sea: The case of the alkaloids caffeine and caulerpin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169190. [PMID: 38092204 DOI: 10.1016/j.scitotenv.2023.169190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.
Collapse
Affiliation(s)
- Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
5
|
Matskiv T, Martyniuk V, Khoma V, Yunko K, Orlova-Hudim K, Gnatyshyna L, Geffard A, Palos-Ladeiro M, Stoliar O. Biochemical basis of resistance to multiple contaminations in the native and invasive populations of Dreissena polymorpha. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109803. [PMID: 38008240 DOI: 10.1016/j.cbpc.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The zebra mussel Dreissena polymorpha (Pallas, 1771) is an invasive species and a valuable bioindicator in the inland waters. Nevertheless, the biochemical reasons for the unique competitiveness of zebra mussels are not clear. This study aimed to compare the native and invasive populations of D. polymorpha in their ability to withstand the same multiple environmental challenges (i.e. chemical: microplastics and caffeine; physical: temperatures). The specimens from the invasive population in west Ukraine (Tn) and native population at lower streams of river Dnipro (south Ukraine, Kh) were sampled in the August of 2021 y. Molluscs from both populations were treated simultaneously with microplastics (MP, 1 mg L-1, pore size 2 μm); caffeine (Caf, 20.0 μg L-1) at 18 °C, elevated temperature (25 °C) and MP and Caf combinations at 18 °C and 25 °C for 14 days. Untreated molluscs exposed at 18 °C represented control groups. A set of the 20 markers of oxidative stress, biotransformation, detoxification and apoptosis were assayed in the total soft tissues. From the two controls, Kh-group indicated lower stressful impact. However, both populations increased caspase-3 and GST activities and lysosomal instability in most exposures, and cholinesterase and phenoloxidase activities under the heating and combine exposures, indicating the remarkable properties to respond to new challenges and synergistic effect of mixtures. Inter-population differences were related to the metallothionein, cathepsin D, cytochrome P540 and oxidative stress responses that reflect population-dependent adverse outcome pathways. The discriminant analysis separated two populations with a substantially lesser magnitude of responses in the invasive population as a sign of higher resistance.
Collapse
Affiliation(s)
- Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | | | - Lesya Gnatyshyna
- I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Melissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| |
Collapse
|
6
|
Wang T, Zhang S, Luo M, Lu M, Wei L, Zhou X, Wang H, Xu D. Prenatal caffeine exposure induces autism-like behaviors in offspring under a high-fat diet via the gut microbiota-IL-17A-brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115797. [PMID: 38070418 DOI: 10.1016/j.ecoenv.2023.115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Prenatal caffeine exposure (PCE) is a significant contributor to intrauterine growth retardation (IUGR) in offspring, which has been linked to an increased susceptibility to autism spectrum disorder (ASD) later in life. Additionally, a high-fat diet (HFD) has been shown to exacerbate ASD-like behaviors, but the underlying mechanisms remain unclear. In this study, we first noted in the rat model of IUGR induced by PCE that male PCE offspring exhibited typical ASD-like behaviors post-birth, in contrast to their female counterparts. The female PCE offspring demonstrated only reduced abilities in free exploration and spatial memory. Importantly, both male and female PCE offspring displayed ASD-like behaviors when exposed to HFD. We further observed that PCE + HFD offspring exhibited damaged intestinal mucus barriers and disturbed gut microbiota, resulting in an increased abundance of Escherichia coli (E. coli). The induced differentiation of colonic Th17 cells by E. coli led to an increased secretion of IL-17A, which entered the hippocampus through peripheral circulation and caused synaptic damage in hippocampal neurons, ultimately resulting in ASD development. Our strain transplantation experiment suggested that E. coli-mediated increase of IL-17A may be the core mechanism of ASD with a fetal origin. In conclusion, PCE and HFD are potential risk factors for ASD, and E. coli-mediated IL-17A may play a crucial role in fetal-originated ASD through the gut-brain axis.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Baracchini C, Messager L, Stocker P, Leignel V. The Impacts of the Multispecies Approach to Caffeine on Marine Invertebrates. TOXICS 2023; 12:29. [PMID: 38250985 PMCID: PMC10823422 DOI: 10.3390/toxics12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Caffeine is one of the most consumed substances by humans through foodstuffs (coffee, tea, drugs, etc.). Its human consumption releases a high quantity of caffeine into the hydrological network. Thus, caffeine is now considered an emergent pollutant sometimes found at high concentrations in oceans and seas. Surprisingly, little research has been conducted on the molecular responses induced by caffeine in marine organisms. We studied, in laboratory conditions, six phylogenetically distant species that perform distinct ecological functions (Actinia equina and Aulactinia verrucosa (cnidarians, predator), Littorina littorea (gastropod, grazer), Magallana gigas (bivalve, filter-feeder), and Carcinus maenas and Pachygrapsus marmoratus (crabs, predator and scavenger)) subjected to caffeine exposure. The antioxidant responses (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), lipid peroxidation (MDA), and the acetylcholinesterase (AChE) activity were estimated when the organisms were exposed to environmental caffeine concentrations (5 μg/L (low), 10 μg/L (high)) over 14 days. Differential levels of responses and caffeine effects were noted in the marine invertebrates, probably in relation to their capacity to metabolization the pollutant. Surprisingly, the filter feeder (M. gigas, oyster) did not show enzymatic responses or lipid peroxidation for the two caffeine concentrations tested. The marine gastropod (grazer) appeared to be more impacted by caffeine, with an increase in activities for all antioxidative enzymes (CAT, GPx, SOD). In parallel, the two cnidarians and two crabs were less affected by the caffeine contaminations. However, caffeine was revealed as a neurotoxic agent to all species studied, inducing high inhibition of AChE activity. This study provides new insights into the sublethal impacts of caffeine at environmentally relevant concentrations in marine invertebrates.
Collapse
Affiliation(s)
| | | | | | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Venue Olivier Messiaen, 72085 Le Mans, France; (C.B.); (P.S.)
| |
Collapse
|
8
|
Madeira CL, Acayaba RD, Santos VS, Villa JEL, Jacinto-Hernández C, Azevedo JAT, Elias VO, Montagner CC. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. CHEMOSPHERE 2023; 341:139954. [PMID: 37660794 DOI: 10.1016/j.chemosphere.2023.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Rivers in Southeast Brazil are essential as sources of drinking water, energy production, irrigation, and industrial processes. The Piracicaba, Capivari, and Jundiaí rivers basin, known as the PCJ basin, comprises major cities, industrial hubs, and large agricultural areas, which have impacted the water quality in the region. Emerging contaminants such as pesticides, hormones, pharmaceuticals, industrial chemicals, and per- and polyfluoroalkyl substances (PFAS) are likely to be released into the rivers in the PCJ basin; however, the current Brazilian legislation does not require monitoring of most of these chemicals. Thus, the extent of emerging contaminants pollution and their risks to aquatic and human life in the basin are largely unknown. In this study, we investigated the occurrence of several pesticides, hormones, pharmaceuticals, and personal care products in 15 sampling points across the PCJ basin, while industrial chemicals and PFAS were assessed in 11 sampling points. The results show that agriculture and industrial activities are indeed causing the pollution of most rivers. Multivariate analysis indicates that some sampling points, such as Jundiaí, Capivari, and Piracicaba rivers, are largely impacted by pesticides used in agriculture. In addition, to the best of our knowledge, this is the first study reporting the presence of PFAS in rivers in São Paulo, the most populous state in Brazil. Four out of eight species of PFAS assessed in our study were detected in at least 5 sampling points at concentrations ranging from 2.0 to 50.0 ng L-1. The preliminary risk assessment indicates that various pesticides, caffeine, industrial chemicals, and PFAS were present at concentrations that could threaten aquatic life. Notably, risk quotients of 414, 340, and 178 were obtained for diuron, atrazine, and imidacloprid, respectively, in the Jundiaí River. Our study suggests that establishing a comprehensive monitoring program is needed to ensure the protection of aquatic life and human health.
Collapse
Affiliation(s)
- Camila Leite Madeira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | - Raphael D'Anna Acayaba
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil; Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | | | - Javier E L Villa
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | | | | | - Vladimir Oliveira Elias
- Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | - Cassiana Carolina Montagner
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil; School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil.
| |
Collapse
|
9
|
Diogo BS, Antunes SC, Pinto I, Amorim J, Teixeira C, Teles LO, Golovko O, Žlábek V, Carvalho AP, Rodrigues S. Insights into environmental caffeine contamination in ecotoxicological biomarkers and potential health effects of Danio rerio. Heliyon 2023; 9:e19875. [PMID: 37809478 PMCID: PMC10559286 DOI: 10.1016/j.heliyon.2023.e19875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Caffeine (CAF) exposures have been shown to cause several pharmacological and biological effects in target and non-target organisms. Although there are already several ecotoxicological studies with CAF in non-target organisms, they are focused on marine organisms, with relevant concentrations in these ecosystems, therefore, less ecologically relevant to freshwater ecosystems (the main ecoreceptor of this type of anthropogenic contaminant). The present study aimed to assess the chronic effects (28 days) of sub-lethal and environmentally relevant concentrations of CAF (0.16, 0.42, 1.09, 2.84, 7.40, 19.23, and 50 μg/L) in Danio rerio. Biochemical endpoints as biomarkers of antioxidant defense, biotransformation, lipid peroxidation, energy sources, and neurotransmission were assessed. CAF exposure induced alterations in antioxidant defenses (superoxide dismutase and glutathione reductase activities, and glutathione content) preventing lipid peroxidation. Lactate dehydrogenase activity decreased in all the concentrations tested, while acetylcholinesterase activity was only affected by the highest concentrations tested (19.23 and 50 μg/L). We also utilized a multi-biomarker approach (Integrated Biomarker Response version 2, IBRv2) to investigate the effects of CAF in the dispersion scope of individual biochemical responses of D. rerio. IBRv2 showed that the concentration of 50 μg/L promotes the highest stress. However, the results showed that CAF induced disturbances in the metabolic pathways studied in D. rerio. These results demonstrated the toxic effects of CAF on freshwater fish, compromising their physiological functions and evidencing the need for monitoring the residues of CAF released into the inland aquatic environments. Furthermore, this research evidence that phylogenetically and physiologically different species may present different biological responses with concern for ecologically relevant environmental conditions. In this sense, the present study generated ecotoxicologically relevant data, that can be considered by environment regulators, since the here-endpoints evaluated showed sensitivity and consistency in the evaluation of caffeine risks in freshwater environments.
Collapse
Affiliation(s)
- Bárbara S. Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara C. Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ivo Pinto
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
- UMIB-ICBAS, Unidade Multidisciplinar de Investigação Biomédica, Instituto Ciências Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - João Amorim
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Cláudia Teixeira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Luís Oliva Teles
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - António Paulo Carvalho
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| |
Collapse
|
10
|
Shi B, Jiang Y, Yang J, Zhao R, Wang T, Su G, Ding Y, Li Q, Meng J, Hu M. Ecological risks induced by consumption and emission of Pharmaceutical and personal care products in Qinghai-Tibet Plateau: Insights from the polar regions. ENVIRONMENT INTERNATIONAL 2023; 178:108125. [PMID: 37552929 DOI: 10.1016/j.envint.2023.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
As the third pole of the world and Asia's water tower, the Tibetan Plateau experiences daily release of pharmaceutical and personal care products (PPCPs) due to increasing human activity. This study aimed to explore the potential relationship between the concentration and composition of PPCPs and human activity, by assessing the occurrence of PPCPs in areas of typical human activity on the Qinghai-Tibet Plateau and evaluating their ecological risk. The results indicate that 28 out of 30 substances were detected in concentrations ranging from less than 1 ng/L to hundreds of ng/L, with the average concentration of most PPCPs in the Tibet Autonomous Region being higher than that in Qinghai Province. Among the detected substances, CAF, NOR, CTC, CIP, TCN, OTC, AZN, and DOX accounted for over 90% of the total concentration. The emission sources of PPCPs were identified by analyzing the correlation coefficients of soil and water samples, with excess PPCPs used by livestock breeding discharged directly into soil and then into surface water through leaching or runoff. By comparing the concentration and composition of PPCPs with those in other regions, this study found that CIP, ENR, LOM, NOR, CTC, DOX, OTC, and TCN were the most commonly used PPCPs in the Qinghai-Tibet Plateau. To assess the ecological risk of PPCPs, organisms at different trophic levels, including algae, crustaceans, fish, and insects, were selected. The prediction of the no effect concentration of each PPCP showed that NOR, CTC, TCN, CAF, and CBZ may have deleterious effects on water biota. This study can assist in identifying the emission characteristics of PPCPs from different types and intensities of human activities, as well as their occurrence and fate during the natural decay of aquatic systems.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjian Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Renxin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanpeng Ding
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Hu
- Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| |
Collapse
|
11
|
Phukan D, Kumar V. Tracking drugged waters from various sources to drinking water-its persistence, environmental risk assessment, and removal techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86676-86698. [PMID: 37436619 DOI: 10.1007/s11356-023-28421-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals have become a major concern due to their nature of persistence and accumulation in the environment. Very few studies have been performed relating to its toxicity and ill effects on the aquatic/terrestrial flora and fauna. The typical wastewater and water treatment processes are not efficient enough to get these persistent pollutants treated, and there are hardly any guidelines followed. Most of them do not get fully metabolized and end up in rivers through human excreta and household discharge. Various methods have been adopted with the advancement in technology, sustainable methods are more in demand as they are usually cost-effective, and hardly any toxic by-products are produced. This paper aims to illustrate the concerns related to pharmaceutical contaminants in water, commonly found drugs in the various rivers and their existing guidelines, ill effects of highly detected pharmaceuticals on aquatic flora and fauna, and its removal and remediation techniques putting more emphasis on sustainable processes.
Collapse
Affiliation(s)
- Dixita Phukan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
12
|
Lee KT, Shih YT, Rajendran S, Park YK, Chen WH. Spent coffee ground torrefaction for waste remediation and valorization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121330. [PMID: 36841419 DOI: 10.1016/j.envpol.2023.121330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Spent coffee grounds (SCGs) are a noticeable waste that may cause environmental pollution problems if not treated appropriately. Torrefaction is a promising low-temperature carbonization technique to achieve waste remediation, recovery, and circular bioeconomy efficiently. This study aims to maximize lipids retained in thermally degraded SCGs, thereby upgrading their fuel quality to implement resource sustainability and availability. This work also analyzes the lipid contribution to biochar's calorific value under various carbonization temperatures and times. Torrefaction can retain 11-15 wt% lipids from SCG, but the lipid content decreases when the pyrolysis temperature is higher than 300 °C. Extracted lipid content consisting of fatty acids echoed the results of diesel adsorption capacity. The lipid content in the biochar from SCG torrefied at 300 °C for 30 min is 11.00 wt%, and its HHV is 28.16 MJ kg-1. In this biochar, lipids contribute about 14.84% of the calorific value, and the other carbonized solid contributes 85.16%. On account of the higher lipid content in the biochar, it has the highest diesel adsorption amount per unit mass, with a value of 1.66 g g-1. This value accounts for a 22.1% improvement compared to its untorrefied SCG. Accordingly, torrefaction can sufficiently remediate SCG-derived environmental pollution. The produced biochar can become a spilled oil adsorbent. Furthermore, oil-adsorbed biochar (oilchar) is a potential solid fuel. In summary, SCG torrefaction can simultaneously achieve pollution remediation, waste valorization, resource sustainability, and circular bioeconomy.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Tse Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| |
Collapse
|
13
|
Zheng L, Zhang J, Wu Y, Li L, Ling J, Wang S, Yang W, Yin Y, Dong L, Zhang Y. A Tiered Ecological Risk Assessment of Caffeine by Using Species Sensitivity Distribution Method in the Nansi Lake Basin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:72. [PMID: 36995456 DOI: 10.1007/s00128-023-03697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Caffeine has been reported toxic to aquatic organisms, and it frequently occurs at relatively high concentrations in most of surface waters. However, it is difficult to control caffeine pollution because of the lack of Water Quality Criteria (WQC). In this study, species sensitivity distribution method and Log-normal model were applied to derive caffeine WQC as 83.7 ng/L. Meanwhile, concentrations of caffeine in the Nansi Lake basin were detected in 29 sampling sites, with the mean of 99.3 ng/L. The levels of caffeine in tributaries were higher than those in the lakes. In addition, a tied ecological risk assessment method was applied to assess the adverse effect of caffeine on aquatic system. The joint probability curve indicated that ecological risk might exist 3.1% of surface water in the study area, while 5% threshold (HC5) was set up to protect aquatic species. Generally, caffeine posted a low risk to aquatic organisms in the Nansi Lake basin.
Collapse
Affiliation(s)
- Lei Zheng
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Juan Zhang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Yinan Wu
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Linlin Li
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junhong Ling
- PowerChina Beijing Engineering Corporation Limited, Beijing, 100024, China
| | - Sai Wang
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Wenlong Yang
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Yezhu Yin
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Liang Dong
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Yizhang Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Research Institute for Environmental Innovation (Tianjin Binhai), Tianjin, 300457, China.
| |
Collapse
|
14
|
Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, Kjeldsen TR, Wolfaardt GM. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160254. [PMID: 36402343 DOI: 10.1016/j.scitotenv.2022.160254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The study evaluated the presence and fate of various contaminants of emerging concern (CECs) from a South African wastewater treatment works (WWTW) and surface waters located around an urban setting. A total of 45 CECs were quantified from nine sampling locations over an 11-month period. Daily loads (g/day) of the target analytes in the WWTW showed persistence of some CECs, along with population-normalised daily loads (mg/day/1000inh) of pharmaceuticals and drugs of abuse (DOA) that were estimated for the first time in the study area. Multiple chemical markers were recorded in river water located upstream of the WWTW discharge throughout the study period, suggesting a high degree of diffuse pollution from urban communities in the study area that are not connected to sewage networks or where sanitation services are limited. The potential of using defined surface water locations to perform community-wide substance use profiling for non-sewered communities was also explored. Environmental risk characterisation for the WWTW effluent and surface waters throughout the study period provided multiple risk quotients (RQ) for the target list of CECs spanning over various sentinel trophic levels. High risk profiles (RQ > 1.0) with a frequency of exceedance (FoE) larger than 75 % were recorded for several CECs in both WWTW effluent and surface water locations that suggest potential long-term ecological health risk impacts of pollution hotspot areas in the river catchment situated around the urban area. We present challenges in surface water quality within the study area that is relatable, or may even present more challenging, in other low- or middle-income country (LMICs) settings. The study also highlighted some challenges and limitations associated with the much-needed application of wastewater-based epidemiology (WBE) intervention in non-sewered communities that can inform on public health and communal substance use profiles of the entire urban setting.
Collapse
Affiliation(s)
- E Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - E Holton
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - J Fidal
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | | | - A Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - L Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - T R Kjeldsen
- Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
| | - G M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
15
|
Devaisy S, Kandasamy J, Aryal R, Johir MAH, Ratnaweera H, Vigneswaran S. Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. MEMBRANES 2023; 13:136. [PMID: 36837638 PMCID: PMC9967736 DOI: 10.3390/membranes13020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Reverse osmosis concentrate (ROC) produced as the by-product of the reverse osmosis process consists of a high load of organics (macro and micro) that potentially cause eco-toxicological effects in the environment. Previous studies focused on the removal of such compounds using oxidation, adsorption, and membrane-based treatments. However, these methods were not always efficient and formed toxic by-products. The impact of ion-exchange resin (IEX) (Purolite®A502PS) was studied in a micro-filtration-IEX hybrid system to remove organics from ROC for varying doses of Purolite® A502PS (5-20 g/L) at a flux of 36 L/m2h. The purolite particles in the membrane reactor reduced membrane fouling, evidenced by the reduction of transmembrane pressure (TMP), by pre-adsorbing the organics, and by mechanically scouring the membrane. The dissolved organic carbon was reduced by 45-60%, out of which 48-81% of the hydrophilics were removed followed by the hydrophobics and low molecular weight compounds (LMWs). This was based on fluorescence excitation-emission matrix and liquid chromatography-organic carbon detection. Negatively charged and hydrophobic organic compounds were preferentially removed by resin. Long-term experiments with different daily replacements of resin are suggested to minimize the resin requirements and energy consumption.
Collapse
Affiliation(s)
- Sukanyah Devaisy
- Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
- Department of Bio-Science, Faculty of Applied Science, University of Vavuniya, Vavuniya 43000, Sri Lanka
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Rupak Aryal
- Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
16
|
Cerveny D, Cisar P, Brodin T, McCallum ES, Fick J. Environmentally relevant concentration of caffeine-effect on activity and circadian rhythm in wild perch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54264-54272. [PMID: 35298799 PMCID: PMC9356920 DOI: 10.1007/s11356-022-19583-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
We studied the ecological consequences of widespread caffeine contamination by conducting an experiment focused on changes in the behavioral traits of wild perch (Perca fluviatilis) after waterborne exposure to 10 μg L-1 of caffeine. We monitored fish swimming performance during both light and dark conditions to study the effect of caffeine on fish activity and circadian rhythm, using a novel three-dimensional tracking system that enabled positioning even in complete darkness. All individuals underwent three behavioral trials-before exposure, after 24 h of exposure, and after 5 days of exposure. We did not observe any effect of the given caffeine concentration on fish activity under light or dark conditions. Regardless of caffeine exposure, fish swimming performance was significantly affected by both the light-dark conditions and repeating of behavioral trials. Individuals in both treatments swam significantly more during the light condition and their activity increased with time as follows: before exposure < after 24 h of exposure < after 5 days of exposure. We confirmed that the three-dimensional automated tracking system based on infrared sensors was highly effective for conducting behavioral experiments under completely dark conditions.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Petr Cisar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
17
|
De Marco G, Afsa S, Galati M, Billè B, Parrino V, Ben Mansour H, Cappello T. Comparison of cellular mechanisms induced by pharmaceutical exposure to caffeine and its combination with salicylic acid in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103888. [PMID: 35598756 DOI: 10.1016/j.etap.2022.103888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
18
|
Nunes B, Santos J, Dionísio R, Dias de Alkimin G. Investigation of potential behavioral and physiological effects of caffeine on D. magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43237-43250. [PMID: 35094280 DOI: 10.1007/s11356-022-18695-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
With the ever-increasing consumption of pharmaceutical compounds, their presence in the environment is now an undisputable reality. The majority of these compounds are released into the wild after their therapeutic use, as biotransformation products or in their original form. The presence of this class of compounds in the environment, due to their biological properties, can exert effects on non-target organisms, with adverse consequences. In addition, some bioactive substances, such as stimulants of the central nervous system, are also used by humans as part of their diet. The adverse consequences posed by such chemicals may be permanent or transient, if the exposure to xenobiotics is halted; it is thus of the paramount importance to study effects that result from long-term exposure to toxicants, but also the recovery of organisms previously exposed to such substances, especially if such chemicals may cause some type of addiction. Caffeine (1,3,7-trimethylxanthine) is a naturally occurring alkaloid found in many plants, being one of the most common stimulant/pharmaceutical compounds found in the environment. In addition, it is addictive, and strongly consumed by humans, a factor that contributes also for its continuous presence in the aquatic environment. The aim of this study was to evaluate the effects of environmentally relevant concentrations (0.08; 0.4; 2; 10; and 50 μg/L) of caffeine on behavior and physiological parameters (that are proxies of metabolic traits, such as oxygen uptake and glycogen content), in individuals of the freshwater crustacean species Daphnia magna, of distinct ages, and with or without a recovery period in the absence of caffeine. Regarding behavior, the results indicated that caffeine exposure altered the moved distance of the test organisms, but not according to a coherent pattern; low concentrations of caffeine reduced the movement of exposed daphnids, while higher levels did not have any measurable effect on this parameter. In addition, it was possible to identify subtle withdrawal effects (animals exposed to caffeine during 21 days and kept in uncontaminated media for 2 days). Regarding the other two studied parameters, caffeine exposure did not result in any significant modification in oxygen uptake and glycogen stores/reserves of the test organisms, in animals continuously exposed, or in those subjected to a recovery period, suggesting that despite a behavioral stimulatory effect, this was not followed by any metabolic change, and no addictive effect was possible to infer. The results showed that the presence of caffeine in environmental concentrations can induce mild behavioral effects at low, albeit realistic levels, but not capable of establishing clear biochemical changes.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - João Santos
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Dionísio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
19
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Martínez-Casales Y, León-Aguirre K, Lamas-Cosío E, Noreña-Barroso E, Herrera-Silveira J, Arcega-Cabrera F. Caffeine and Paraxanthine as Tracers of Anthropogenic Wastewater in Coastal Lagoons in Yucatan, Mexico. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:182-189. [PMID: 35048173 DOI: 10.1007/s00128-021-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to karstic bedrock geology and poor wastewater management practices, anthropogenic activities are impacting water quality in Yucatan's aquatic systems. Specifically, raw wastewater inputs to the aquifer subsequently flow to coastal lagoons through groundwater fluxes. This study establishes the presence of anthropogenic wastewater by measuring caffeine and its metabolite, paraxanthine, in four of Yucatan's major coastal lagoons: Celestun, Chelem, Dzilam de Bravo, and Ria Lagartos. Concentrations of caffeine ranged from non-detected (ND) to 2390 ng L-1 and paraxanthine from ND to 212 ng L-1, which correspond with pollution threats from anthropogenic wastewater inputs. The potential sources are: (1) direct in situ discharges from nearby urban settlements; and (2) contribution from submerged groundwater discharges. Overall, results indicate the potential of caffeine as an environmental tracer of anthropogenic wastewater contamination for the region.
Collapse
Affiliation(s)
- Yazmín Martínez-Casales
- Facultad de Química, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, 04510, Mexico, Mexico
| | - Karina León-Aguirre
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo, 97355, Sisal, Yucatán, Mexico
| | - Elizabeth Lamas-Cosío
- Departamento de Recursos del Mar, CINVESTAV-Mérida, Km.6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - E Noreña-Barroso
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo, 97355, Sisal, Yucatán, Mexico
| | - Jorge Herrera-Silveira
- Departamento de Recursos del Mar, CINVESTAV-Mérida, Km.6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Flor Arcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo, 97355, Sisal, Yucatán, Mexico.
| |
Collapse
|
21
|
Vieira LR, Soares AMVM, Freitas R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. CHEMOSPHERE 2022; 286:131675. [PMID: 34358890 DOI: 10.1016/j.chemosphere.2021.131675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Caffeine has been identified as emerging contaminant of concern due to its widespread occurrence in the aquatic environment and potential to be biologically active. Recently, these concerns have been translated in an increasing research on its occurrence and effects on biota. However, there is still a limited knowledge on seawater matrices and the implications of caffeine presence in coastal and marine ecosystems are not fully known. The present review aims to fill these knowledge gaps, analysing the existing literature regarding the occurrence, effects and potential risks of caffeine residues to coastal ecosystems, contributing to the risk assessment of this psychoactive drug in the aquatic environment. The analysed literature reported caffeine concentrations in the coastal ecosystems, raising high concerns about the potential adverse impacts on the ecological safety and human health. Caffeine has been found in tissues from coastal and marine biota including microalgae, coral reefs, bivalves and fish due to bioaccumulation after chronic, long-term exposures in a contaminated environment. Additionally, caffeine residues had been demonstrated to have adverse impacts on aquatic organisms, at environmentally realistic concentrations, inducing oxidative stress and lipid peroxidation, neurotoxicity, changing energy reserves and metabolic activity, affecting reproduction and development and, in some cases, causing mortality. Considering the increasing adverse impacts of caffeine pollution in the coastal environment, this review highlights the urgent need to minimize the increasing load of caffeine to the aquatic ecosystems; being imperative the implementation of scientific programs and projects to classify effectively the caffeine as a high-priority environmentally hazardous emerging pollutant.
Collapse
Affiliation(s)
- L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
22
|
Nunes B, Pinheiro D, Gomes A. Effect of sublethal concentrations of the antiparasitic ivermectin on the polychaeta species Hediste diversicolor: biochemical and behavioral responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1841-1853. [PMID: 34224071 DOI: 10.1007/s10646-021-02444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have emerged as major micropollutants in aquatic ecosystems. Their presence has been systematically reported in monitoring surveys, and their wide distribution and constant presence in the wild is a direct consequence of their massive use, in both human and veterinary therapeutics. Drugs used to treat parasitic infections in livestock are major contaminants, given the amounts in which they are administered, and reach the aquatic compartment in high amounts, where they may affect non target species. Some of these drugs are prone to find their final deposit in sediments of estuarine areas, exerting their toxic effects preferentially at these locations. Sediment dwelling organisms of coastal areas, such as polychaetas, are especially prone to have their major physiological functions compromised after being exposed to pharmaceutical drugs. Ivermectin is one of the most used antiparasitic drugs, and its effects are not limited to biochemical traits, but also behavioral features may be compromised considering their neurotoxic actions. Despite these putative effects, little is known about their toxicity on polychaetas. The present study aimed to characterize the toxicity of realistic levels of ivermectin on the polychaeta Hediste diversicolor, in biochemical and behavioral terms. The obtained results showed that low levels of ivermectin are capable of causing significant disturbances in mobility and burrowing activity of exposed worms, as well as alterations of metabolic and anti-oxidant defense efficacy of exposed animals, suggesting that its environmental presence may mean a major environmental concern.
Collapse
Affiliation(s)
- B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - D Pinheiro
- Departamento de Física da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A Gomes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
23
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
24
|
Mdaini Z, Telahigue K, Hajji T, Rabeh I, El Cafsi M, Tremblay R, Gagné JP. Comparative biomarker responses to urban pollution in three polychaete species: Perinereis cultrifera, Diopatra neapolitana, and Marphysa sanguinea from the lagoon of Tunis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:119. [PMID: 33569704 DOI: 10.1007/s10661-021-08906-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Coastal lagoons are among the most vulnerable ecosystems as they are often exposed to different anthropogenic activities. The Polychaetes, which are dominant components in macrobenthic community, are particularly exposed to contamination. The current study was designed to assess and compare the sensitivity of different polychaetes species towards urban pollution. To do this, three polychaete species: Perinereis cultrifera, Diopatra neapolitana, and Marphysa sanguinea, were collected from the Tunis South Lagoon during summer 2013. A set of biomarkers indicative of genotoxicity (DNA damage), biotransformation, and oxidative stress (glutathione S-transferase, GST) as well as immune response (cyclooxygenase activity (COX), lysozyme activity, and nitric oxide level (NOx)), was used. The results revealed that D. neapolitana and P. cultrifera exhibited higher genetic alteration and GST activity and more prominent immune response when compared with M. sanguinea. These findings denote of the higher sensitivity of D. neapolitana and P. cultrifera to urban pollution and suggest their possible use in environmental biomonitoring programs.
Collapse
Affiliation(s)
- Zied Mdaini
- Laboratoire D'Ecologie, Biologie Et Physiologie Des Organismes Aquatiques LR18ES41, Faculté Des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia
- Institut Des Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Khaoula Telahigue
- Laboratoire D'Ecologie, Biologie Et Physiologie Des Organismes Aquatiques LR18ES41, Faculté Des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia.
| | - Tarek Hajji
- Laboratoire de Biotechnologie Et Valorisation Des Bio-Géo Ressources LR11ES31, Institut Supérieur de Biotechnologie de Sidi Thabet, Université La Manouba, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Imen Rabeh
- Laboratoire D'Ecologie, Biologie Et Physiologie Des Organismes Aquatiques LR18ES41, Faculté Des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - M'hamed El Cafsi
- Laboratoire D'Ecologie, Biologie Et Physiologie Des Organismes Aquatiques LR18ES41, Faculté Des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Rejean Tremblay
- Institut Des Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Jean Pierre Gagné
- Institut Des Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| |
Collapse
|
25
|
Enhanced Photocatalytic Degradation of Caffeine Using Titanium Dioxide Photocatalyst Immobilized on Circular Glass Sheets under Ultraviolet C Irradiation. Catalysts 2020. [DOI: 10.3390/catal10090964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the development of titanium dioxide (TiO2) film immobilized on circular glass sheets for photocatalytic degradation of caffeine under ultraviolet C (UVC) irradiation. TiO2 was synthesized through the ultrasonic-assisted sol–gel method and immobilized on circular glass sheets by the doctor blade technique. Polyvinylpyrrolidone (PVP) was used to mix with the TiO2 precursor solution to enhance film adhesion on the glass surface. TiO2 film was mainly composed of anatase phase with a small amount of rutile phase. Caffeine removal was found to increase with increasing irradiation time. Caffeine (20 mg/L) in the synthetic wastewater could not be detected after 3 h of UVC irradiation. The reaction rate of caffeine degradation followed the pseudo-first-order model. The concentrated caffeine solutions required a longer irradiation time for degradation. The used TiO2-coated glass sheets could be easily separated from the treated wastewater and reusable. The caffeine removal efficiency of TiO2-coated glass sheets in each cycle maintained a high level (~100%) during fifteen consecutive cycles.
Collapse
|
26
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
27
|
Silva MSS, Pires A, Almeida M, Oliveira M. The use of Hediste diversicolor in the study of emerging contaminants. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105013. [PMID: 32662441 DOI: 10.1016/j.marenvres.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The contamination of aquatic environments has been the focus of research to understand effects on ecosystems and its species. Benthic organisms are considered potential targets since sediments act as sources and sinks for environmental contaminants. This review presents information on the effects of three types of emerging contaminants: pharmaceuticals (tested concentrations between 0.1 ng/L - 250 mg/L and 0.01 ng/g - 2.5 μg/g), metal-based nanoparticles (<100 nm) (tested concentrations between 10 μg/L - 1 mg/L and 5 - 140 μg/g) and micro(nano)plastics (tested concentrations between 5 μg/L - 50 mg/L and 10 - 50 mg/kg), on the polychaete Hediste diversicolor, a key species in estuarine/coastal ecosystems. Data shows that these contaminants promote alterations in burrowing activity (lowest concentration inducing effects: 10 ng/L), neurotransmission and damage related parameters (lowest concentration inducing effects: 100 ng/L). The characteristics of this polychaete, such as regenerative capacity, make the use of this species in biomedical studies involving environmental contaminants valuable.
Collapse
Affiliation(s)
- M S S Silva
- Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Li S, He B, Wang J, Liu J, Hu X. Risks of caffeine residues in the environment: Necessity for a targeted ecopharmacovigilance program. CHEMOSPHERE 2020; 243:125343. [PMID: 31751929 DOI: 10.1016/j.chemosphere.2019.125343] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Due to the huge consumption of caffeinated food, beverages and medicines around the world, caffeine has been considered as a most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in environment and its indicator property for anthropogenic inputs of PhACs to water bodies. This review analyzed the existing literature about the bioaccumulation and environmental risks of caffeine residues in non-target organisms. There are 6 studies which were published in the last 5 years have reported the distribution of caffeine in tissues of aquatic organisms including fishes, clams, macroalgae and other aquatic plants, suggesting bioaccumulation of caffeine in organisms. The maximum detected levels of caffeine residues in tissues ranged from 1.55 to 344.9 ng/g. Importantly, definitive evidences have been provided that environmentally relevant caffeine concentrations exert adverse impacts on aquatic species and terrestrial insects, which included lethality, decreasing general stress, inducing oxidative stress and lipid peroxidation, affecting energy reserves and metabolic activity, neurotoxic effects, affecting reproduction and development, etc. In view of the severity and potential adverse impacts of caffeine pollution in the environment, we proposed that caffeine should be considered as a high-priority environmentally hazardous PhAC pollutant, and it is necessary to implement an ecopharmacovigilance (EPV) program targeting caffeine to minimize its environmental load from a pharmacy perspective.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
29
|
Santos-Silva TG, Montagner CC, Martinez CBR. Evaluation of caffeine effects on biochemical and genotoxic biomarkers in the neotropical freshwater teleost Prochilodus lineatus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:237-242. [PMID: 29438913 DOI: 10.1016/j.etap.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Caffeine is often found in aquatic environments, leading to concerns regarding its adverse consequences for aquatic biota. Biochemical and genotoxic biomarkers were analysed in juveniles of Prochilodus lineatus to evaluate the effects of caffeine. Fish were exposed to caffeine (0.3, 3 and 30 μg L-1) for either 24 h or 168 h. Longer exposure to caffeine resulted in a significant reduction in the activity of the phase I biotransformation enzyme ethoxyresorufin-O-deethylase (EROD) in the brain but a significant increase in the liver. Changes in glutathione content (GSH), glutathione S-transferase (GST) activity, and lipid peroxidation were not found in the liver and brain of fish exposed to caffeine. DNA damage in erythrocytes were also not found. These results show that caffeine may interfere with the biotransformation mechanism of P. lineatus after 168 h exposure, but it does not generate sufficient changes to trigger a state of oxidative stress.
Collapse
Affiliation(s)
- Thais G Santos-Silva
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, 86051-990, Londrina, Paraná, Brazil
| | - Cassiana C Montagner
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Claudia B R Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, 86051-990, Londrina, Paraná, Brazil.
| |
Collapse
|
30
|
Freitas R, de Marchi L, Moreira A, Pestana JLT, Wrona FJ, Figueira E, Soares AMVM. Physiological and biochemical impacts induced by mercury pollution and seawater acidification in Hediste diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:691-701. [PMID: 28407586 DOI: 10.1016/j.scitotenv.2017.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the impacts of predicted seawater acidification and Hg pollution, when stressors were acting alone and in combination, on the polychaete Hediste diversicolor. Polychaetes were exposed during 28days to low pH (7.5), Hg (5μg/L) and pH7.5+Hg, and physiological alterations (respiration rate), biochemical markers related to metabolic potential (glycogen and protein content, electron transport system activity) and oxidative status (activity of antioxidant and biotransformation enzymes, lipid peroxidation) were evaluated. The results obtained clearly showed that polychaetes were sensitive to low pH and Hg contamination, both acting alone or in combination. Organisms used their energy reserves under stressful conditions, which decreased by up to half of the control content, probably to fuel defence mechanisms. Our findings further demonstrated that polychaetes exposed to these stressors presented increased antioxidant defence mechanisms (3 fold compared to control). However, organisms were not able to prevent cellular damage, especially noticed at Hg exposure and pH7.5. Overall, although all the tested conditions induced oxidative stress in Hediste diversicolor, the combined effect of seawater acidification and Hg contamination did not induce higher impacts in polychaetes than single stressor exposures. These findings may indicate that predicted climate change scenarios may not increase Hediste diversicolor sensitivity towards Hg and may not significantly change the toxicity of this contaminant to this polychaete species.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Lucia de Marchi
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Anthony Moreira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Frederick J Wrona
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Geography, David Turpin Building, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Fernandes AS, Mello FVC, Thode Filho S, Carpes RM, Honório JG, Marques MRC, Felzenszwalb I, Ferraz ERA. Impacts of discarded coffee waste on human and environmental health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:30-36. [PMID: 28301808 DOI: 10.1016/j.ecoenv.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Coffee is one of the most widely consumed beverages throughout the world. So far, many studies have shown the properties of coffee beverages, but little is known about its impacts on human and environmental health from its discard in the environment. So, the present work aims to investigate the mutagenic, genotoxic, cytotoxic and ecotoxic effects of leached (LE) and solubilized (SE) extracts from coffee waste, simulating the disposal of this residue in landfills and via sewage systems, respectively. Chemical analyses were also carried out. LE and SE induced mutagenicity in the TA98 Salmonella strain with and without exogenous metabolization (S9). In the TA100 only SE induced mutagenicity, what was observed without S9. An increase in the frequency of micronuclei was observed in HepG2 cell line after 3 and 24h of exposure to both extracts. No cytotoxic effects were observed in HepG2 cells by WST-1 assay. The EC50 values for the LE and SE were 1.5% and 11.26% for Daphnia similis, 0.12% and 1.39% for Ceriodaphnia dubia and 6.0% and 5.5% for Vibrio fischeri, respectively. Caffeine and several transition metals were found in both extracts. Coffee waste discarded in the environment may pose a risk to human and environmental health, since this compound can cause DNA damage and present toxicity to aquatic organisms.
Collapse
Affiliation(s)
- A S Fernandes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F V C Mello
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - S Thode Filho
- Multidisciplinary Laboratory of Waste Management, Federal Institute of Education, Science and Technology of Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - R M Carpes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - J G Honório
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M R C Marques
- Laboratory of Environmental Technology, Department of Organic Chemistry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - I Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - E R A Ferraz
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Toxicology, Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
32
|
Pires A, Velez C, Figueira E, Soares AMVM, Freitas R. Effects of sediment contamination on physiological and biochemical responses of the polychaete Diopatra neapolitana, an exploited natural resource. MARINE POLLUTION BULLETIN 2017; 119:119-131. [PMID: 28351663 DOI: 10.1016/j.marpolbul.2017.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The present study reports metal and arsenic contamination in sediments, as well as element accumulation and partitioning in the polychaete Diopatra neapolitana in the Ria de Aveiro lagoon (Portugal). The polychaetes biochemical performance and tissue regenerative capacity were also evaluated. The concentration of elements in sediments showed an increase of contamination among areas (areas A-G), but higher bioaccumulation was observed in organisms from a less contaminated area (area C, BAF>1). This study evidenced that individuals with higher elements bioaccumulation presented higher LPO and lower GSH/GSSG and also exhibited lower capacity for body regeneration. Polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to withstand the excess of ROS leading to increased LPO when organisms presented higher bioaccumulation levels. Additionally, an increase of methalotionines was also observed in individuals with higher bioaccumulation of metals and As, suggesting an induction of detoxification processes.
Collapse
Affiliation(s)
- Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Cátia Velez
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
33
|
Pires A, Almeida Â, Calisto V, Schneider RJ, Esteves VI, Wrona FJ, Soares AMVM, Figueira E, Freitas R. Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine. Comp Biochem Physiol C Toxicol Pharmacol 2016; 188:30-8. [PMID: 27327394 DOI: 10.1016/j.cbpc.2016.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 02/02/2023]
Abstract
Several environmental stressors have been identified as key and/or emerging drivers of habitat change that could significantly influence marine near-shore ecosystems. These include increasing discharges of pharmaceutical contaminants into the aquatic coastal systems. Pharmaceutical drugs are often detected in aquatic environments but still information on their toxicity impacts on inhabiting species is scarce, especially when acting in combination. Furthermore, almost no information is available on the impacts of pharmaceuticals in polychaetes, often the most abundant taxon in benthic communities and commonly used as indicator species of environmental conditions. Therefore, the present study aimed to evaluate the biochemical alterations induced in the polychaete Hediste diversicolor, from a low contaminated area at the Ria de Aveiro lagoon (Portugal), by the antiepileptic drug carbamazepine (0.0 - control, 0.3, 3.0, 6.0 and 9.0μg/L) and the stimulant caffeine (0.0 - control, 0.5, 3.0, and 18.0μg/L), acting alone and in combination (0.3 CBZ+0.5 CAF and 6.0 CBZ+3.0 CAF). Glutathione S-transferases (GSTs), superoxide dismutase (SOD) and catalase (CAT) activities was determined in Hediste diversicolor from each condition. Lipid peroxidation (LPO), glutathione reduced and oxidized (GSH and GSSG), glycogen and electron transport system (ETS) were also measured. The results obtained clearly revealed that both drugs induced oxidative stress in H. diversicolor, shown by the increase on LPO levels and decrease on total glutathione and GSH/GSSG ratio with the increase of exposure concentrations. Furthermore, the present findings demonstrated that polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to fight against the excess of reactive oxygen species (ROS) leading to LPO when organisms were exposed to both drugs. Our results also demonstrated that polychaetes tended to decrease the activity of ETS when exposed to drugs, avoiding energy expenditure which may prevent them from greater damages. The present study further revealed that the impacts induced by the combination of both drugs were similar to those obtained at the highest drugs concentrations acting alone.
Collapse
Affiliation(s)
- Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, Aveiro, Portugal
| | - Rudolf J Schneider
- Bundesanstalt für Materialforschung und - prüfung (BAM), Berlin, Germany
| | | | - Frederick J Wrona
- Department of Geography David Turpin Building University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
34
|
Cruz D, Almeida Â, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, Soares AMVM, Figueira E, Freitas R. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers. CHEMOSPHERE 2016; 160:95-103. [PMID: 27367177 DOI: 10.1016/j.chemosphere.2016.06.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 05/15/2023]
Abstract
Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 μg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h.
Collapse
Affiliation(s)
- Diogo Cruz
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|