1
|
Geng Y, Cao Z, Yu R, Li X, Sun H, Wang X. Delving into nitrogen and phosphorus dynamics in shallow eutrophic lakes: Multi-interface response to freeze-thaw cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177052. [PMID: 39437929 DOI: 10.1016/j.scitotenv.2024.177052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Assessing the impact of freeze-thaw cycles on nutrient transfer in lakes is crucial for addressing the global eutrophication of freshwater ecosystems in cold and arid regions. However, available information about the dynamics of nitrogen (N) and phosphorus (P) release during intact freeze-thaw cycles, especially in the sediment-porewater-water column continuum of lakes, is limited. This study collected the samples during ice-covered (January) and non-ice-covered (April, July, and October) periods. The changes in total nitrogen (TN) and total phosphorus (TP) were analyzed to estimate their release fluxes from the sediment-water interface. Both redundancy analysis (RDA) and variance partitioning analysis (VPA) were used to explore the effects of environmental variables on N and P. The results indicated that during the ice-covered period (ICP), the surface water content of different forms of N and P was lower than that of the overlying water, whereas the opposite was true during the non-ice-covered period (NICP). The overall trend for the different forms of N was TN > DIN > NH4-N > NO3-N > NO2-N, and for P, it was TP > PP > DTP > DOP>DIP. The vertical profiles of the porewater TN and TP generally demonstrated an increase followed by a decrease from the surface to the bottom, with an inflection point at 15 cm. Sediment TN and TP trends over time matched porewater trends, with both being spatially highest at the lake inlet. ICP sediments acted as sinks for TN and TP, and NICP sediments acted as sources. N and P in the water column were significantly correlated mainly with physicochemical indicators, whereas sediment contributed positively to TN and TP in the porewater. VPA indicated that environmental factors explained 46.45 % of the variation in TN and TP in the porewater. These findings emphasize the importance of freeze-thaw cycling processes in driving N and P nutrient enrichment, source-sink effects, and multi-media coupling in shallow lakes in arid plateau regions.
Collapse
Affiliation(s)
- Yue Geng
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhengxu Cao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaozhuang Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Zhou C, Liu D, Keesing J, Zhao N, Serrano O, Masqué P, Yuan Z, Jia Y, Wang Y. Microalgal assemblages response to water quality remediation in coastal waters of Perth, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124017. [PMID: 38685553 DOI: 10.1016/j.envpol.2024.124017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nutrient reduction is an essential environmental policy for water quality remediation, but climate change can offset the ecological benefits of nutrient reduction and lead to the difficulty of environmental evaluation. Here, based on the records of three lipid microalgal biomarkers and stable isotopes of carbon and nitrogen in two sediment cores from the embayment of Perth, Australia, we reconstructed the microalgal biomasses (diatoms, dinoflagellates and coccolithophores) over the past century and evaluated the ecological effects of nutrient reduction on them, using Change Point Modeling (CPM) and redundancy analysis (RDA). The CPM result showed that total microalgal biomarkers increased by 25% and 51% in deep and shallow areas, respectively, due to nutrient enrichment caused by industrial wastewater in the 1950s and the causeway construction in the 1970s, and dinoflagellates were beneficiaries of eutrophication. The nutrient reduction policy since the 1980s had not decreased total microalgal biomass, and diatoms were beneficiaries of this period. RDA based on time series of sediment cores and water monitoring data revealed that the increase of sea-surface temperature and the decrease of rainfall since the 1980s may be important factors sustaining the high total microalgal biomass and increasing the degree of diatom dominance. The result also indicated that the variations of microalgal assemblages may better explain the effect of nutrient reduction rather than total microalgal biomass.
Collapse
Affiliation(s)
- Chongran Zhou
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Dongyan Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China.
| | - John Keesing
- CSIRO Oceans and Atmosphere Research, Indian Ocean Marine Research Centre, Crawley, WA, Australia; School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Ning Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Oscar Serrano
- Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Pere Masqué
- School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | | | - Yonghao Jia
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Sun Y, Wang M, Yang J, Song C, Chen X, Chen X, Strokal M. Increasing cascade dams in the upstream area reduce nutrient inputs to the Three Gorges Reservoir in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171683. [PMID: 38492593 DOI: 10.1016/j.scitotenv.2024.171683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The upstream cascade dams play an essential role in the nutrient cycle in the Yangtze. However, there is little quantitative information on the effects of upstream damming on nutrient retention in the Three Gorges Reservoir (TGR) in China. Here, we aim to assess the impact of increasing cascade dams in the upstream area of the Yangtze on Dissolved Inorganic Nitrogen and Phosphorus (DIN and DIP) inputs to the TGR and their retention in the TGR and to draw lessons for other large reservoirs. We implemented the Model to Assess River Inputs of Nutrients to seAs (MARINA-Nutrients China-2.0 model). We ran the model with the baseline scenario in which river damming was at the level of 2009 (low) and alternative scenarios with increased damming. Our scenarios differed in nutrient management. Our results indicated that total water storage capacity increased by 98 % in the Yangtze upstream from 2009 to 2022, with 17 new large river dams (>0.5 km3) constructed upstream of the Yangtze. As a result of these new dams, the total DIN inputs to the TGR decreased by 15 % (from 768 Gg year-1 to 651 Gg year-1) and DIP inputs decreased by 25 % (from 70 Gg year-1 to 53 Gg year-1). Meanwhile, the molar DIN:DIP ratio in inputs to the TGR increased by 13 % between 2009 and 2022. In the future, DIN and DIP inputs to the TGR are projected to decrease further, while the molar DIN:DIP ratio will increase. The Upper Stem contributed 39 %-50 % of DIN inputs and 63 %-84 % of DIP inputs to the TGR in the past and future. Our results deepen our knowledge of nutrient loadings in mainstream dams caused by increasing cascade dams. More research is needed to understand better the impact of increased nutrient ratios due to dam construction.
Collapse
Affiliation(s)
- Ying Sun
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China
| | - Mengru Wang
- Earth Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Jing Yang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Chunqiao Song
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuanjing Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, College of Resources and Environment, Tiansheng Road 02, Chongqing 400715, China
| | - Maryna Strokal
- Earth Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Lv Y, Zhang M, Yin H. Phosphorus release from the sediment of a drinking water reservoir under the influence of seasonal hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170490. [PMID: 38296100 DOI: 10.1016/j.scitotenv.2024.170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Seasonal sediment internal phosphorus (P) release may cause water eutrophication and impair water quality in drinking water reservoir. During a year-long field investigation, the effects of the microenvironment on the release of internal phosphorus were meticulously analyzed using high-resolution peepers technique and microelectrode system. The release mechanisms of P fractions from the reservoir sediments were also explored. The results showed that seasonal fluctuations in temperature, dissolved oxygen, redox potential, and pH at the sediment-water interface impacted the release of P fractions from the studied reservoir sediment. Higher diffusive fluxes of soluble reactive PO43- and Fe2+ across the sediment-water interface (SWI) were observed in the warmer season and were approximately 14.5 times and 16.5 times than those in winter, respectively. Driven by seasonal hypoxia, the reservoir sediment functioned as a P sink in winter and became a P source in summer and autumn. The reduction of Fe-bound P and mineralization of organic P were the primary mechanisms driving sediment P release, which explains the increased P flux in the warmer season and lower P flux in winter. The findings indicated that elevated temperatures and anaerobic conditions were conducive to the activation of P in sediments, whereas lower temperatures and aerobic conditions promoted the immobilization of P. This study provided new insights into seasonal P cycling in reservoirs that can contribute to the formulation of targeted reservoir management strategies.
Collapse
Affiliation(s)
- Yaobin Lv
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, People's Republic of China; University of Chinese Academy of Sciences, 188 Tianquan Road, Nanjing 211135, People's Republic of China.
| |
Collapse
|
5
|
Song D, Zhang C, Saber A. Integrating impacts of climate change on aquatic environments in inter-basin water regulation: Establishing a critical threshold for best management practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169297. [PMID: 38103616 DOI: 10.1016/j.scitotenv.2023.169297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Inter-basin water diversion (IBWD) is a viable strategy to tackle water scarcity and quality degradation due to climate change and increasing water demand in headwaters regions. Nevertheless, the capacity of IBWD to mitigate the impacts of climate change on water quality has rarely been quantified, and the underlying processes are not well understood. Therefore, this study aims to elucidate how the IBWD manipulated total phosphorus (TP) loading dilution and conveying patterns under climate change and determine a critical threshold for the quantity of water entering downstream reservoirs (WIN) for operational scheduling. To resolve this issue, climate-driven hydrologic variability over a 60-year period was derived utilizing the least square fitting approach. Subsequently, six scenarios evaluating the response of in-lake TP concentrations (TPL) to increased temperatures and IBWDs of 50 %, 100 %, and 150 % from the baseline water volume in 2030 and 2050 were studied by employing a calibrated hydrological-water quality model (SWAT-YRWQM). In the next stage, three datasets derived from mathematical statistics based on the observed data, the Vollenweider formula, and modeled projections were integrated to formulate best management practices. The results revealed that elevated air temperatures would lead to reduced annual catchment runoff but increased IBWD. Additionally, our study quantified the IBWD potential for mitigating water quality degradation, indicating the adverse effects of climate change on TPL would be weakened by 4.2-14.4 %. A critical threshold for WIN was also quantified at 617 million m3, maintaining WIN at or near 617 million m3 through optimized operational scheduling of IBWD could effectively restrict external inflow TP loading to lower levels. This study clearly illustrates the intricate interactive effects of climate change and IBWD on aquatic environments. The methodology elucidated in this study for determining the critical threshold of WIN could be applied in water management for analogous watershed-receiving waterbody systems.
Collapse
Affiliation(s)
- Didi Song
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
| | - Chen Zhang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
| | - Ali Saber
- School of the Environment, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
6
|
He C, Qi R, Feng H, Zhao Z, Wang F, Wang D, Wang F, Chen X, Zhang P, Li S, Yi Y. Spatiotemporal variations and dominated environmental parameters of nitrous oxide (N 2O) concentrations from cascade reservoirs in southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102547-102559. [PMID: 37668782 DOI: 10.1007/s11356-023-29502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Anthropogenic activity has caused rivers and reservoirs to become sources of nitrous oxide (N2O), which is thought to play an important role in global climate change. There are thermal and DO stratification in deep-water reservoirs with long hydraulic retention time, which change N2O production mechanism compared with shallow-water reservoirs. To promote our understanding of the relationship of N2O production in reservoirs at different depths, spatiotemporal variations in water environmental factors and N2O from cascade reservoirs of Chaishitan (CST), Longtan (LT), Yantan (YT) and Dahua (DH) reservoirs in the Zhujiang River were detected, and the LT and YT reservoirs were compared as representatives of deep-water and shallow-water reservoirs in April and July 2019. The average N2O concentrations in the LT and YT reservoirs were 22.82 ± 2.21 and 21.55 ± 1.65 nmol L-1, respectively. During spring and summer, the WT (water temperature) and DO (dissolved oxygen) concentrations in the YT reservoir were well mixed. In contrast, the LT reservoir, as a deep-water reservoir, had thermal and DO stratifications in both the shallow and middle water, especially in the summer when the solar radiation intensity was high. During summer stratification, the DO concentration in the LT reservoir showed obvious spatial variation, ranging from 1.23 to 9.84 mg L-1, while the DO concentration in the YT reservoir showed very little variation, ranging from 6.45 to 7.09 mg L-1. Structural equation modeling results showed that NH4+ was the main determinant of the N2O concentration in the YT reservoir, and DO was the most influential factor of the N2O concentration in the LT reservoir. These results suggest significant variations in the factors influencing N2O concentration among reservoirs. Additionally, the mechanisms of N2O production differ between deep-water and shallow-water reservoirs. This study highlights the spatio-temporal variations and influential factors contributing to N2O concentration. Furthermore, it discusses the production mechanisms of N2O in different types of reservoirs. These findings contribute to our understanding of N2O distribution in hydropower systems and provide valuable data for the management of hydropower facilities and research on greenhouse gas emissions.
Collapse
Affiliation(s)
- Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Rui Qi
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Haiyue Feng
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Daoyuan Wang
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Pu Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yuanbi Yi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Ye F, Duan L, Sun Y, Yang F, Liu R, Gao F, Wang Y, Xu Y. Nitrogen removal in freshwater sediments of riparian zone: N-loss pathways and environmental controls. Front Microbiol 2023; 14:1239055. [PMID: 37664113 PMCID: PMC10469909 DOI: 10.3389/fmicb.2023.1239055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The riparian zone is an important location of nitrogen removal in the terrestrial and aquatic ecosystems. Many studies have focused on the nitrogen removal efficiency and one or two nitrogen removal processes in the riparian zone, and less attention has been paid to the interaction of different nitrogen transformation processes and the impact of in situ environmental conditions. The molecular biotechnology, microcosm culture experiments and 15N stable isotope tracing techniques were used in this research at the riparian zone in Weinan section of the Wei River, to reveal the nitrogen removal mechanism of riparian zone with multi-layer lithologic structure. The results showed that the nitrogen removal rate in the riparian zone was 4.14-35.19 μmol·N·kg-1·h-1. Denitrification, dissimilatory reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) jointly achieved the natural attenuation process of nitrogen in the riparian zone, and denitrification was the dominant process (accounting for 59.6%). High dissolved organic nitrogen and nitrate ratio (DOC:NO3-) would promote denitrification, but when the NO3- content was less than 0.06 mg/kg, DNRA would occur in preference to denitrification. Furthermore, the abundances of functional genes (norB, nirS, nrfA) and anammox bacterial 16S rRNA gene showed similar distribution patterns with the corresponding nitrogen transformation rates. Sedimentary NOX-, Fe(II), dissolved organic carbon (DOC) and the nitrogen transformation functional microbial abundance were the main factors affecting nitrogen removal in the riparian zone. Fe (II) promoted NO3- attenuation through nitrate dependent ferrous oxidation process under microbial mediation, and DOC promotes NO3- attenuation through enhancing DNRA effect. The results of this study can be used for the management of the riparian zone and the prevention and control of global nitrogen pollution.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Lei Duan
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yaqiao Sun
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Fan Yang
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Rui Liu
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Fan Gao
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Yike Wang
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yirong Xu
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| |
Collapse
|
8
|
Yuan W, Liu Q, Song S, Lu Y, Yang S, Fang Z, Shi Z. A climate-water quality assessment framework for quantifying the contributions of climate change and human activities to water quality variations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117441. [PMID: 36753893 DOI: 10.1016/j.jenvman.2023.117441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Water quality safety has attracted global attention and is closely related to the development of the social economy and human health. It is widely recognized that climate change and human activities significantly affect water quality changes. Therefore, quantifying the contributions of factors that drive long-term water quality changes is crucial for effective water quality management. Here, we built a climate-water quality assessment framework (CWQAF) based on climate-water quality response coefficients and trend analysis methods, to achieve this goal. Our results showed that the water quality improved significantly by 4.45%-20.54% from 2011 to 2020 in the Minjiang River basin (MRB). Human activities (including the construction of ecological projects, stricter discharge measures, etc.) were the main driving factors contributing 65%-77% of the improvement effect. Notably, there were differences in the contributions of human activities to water quality parameter changes, such as DO (increase (I): 0.12 mg/L, human contribution (HC): 66.8%), CODMn (decrease (D): 0.71 mg/L, HC: 67.2%), BOD5 (D: 1.10 mg/L, HC: 77.7%), CODCr (D: 4.20 mg/L, HC: 81.2%), TP (D: 0.13 mg/L,HC: 72.8%) and NH3-N (D: 0.40 mg/L, HC: 63.0%). Climate change explained 23%-35% of the variation in water quality. The water quality response to climate change was relatively significant with precipitation. For example, the downstream region was more susceptible to climate change than was the upstream region, as the downstream movement of precipitation centers strengthened the process of climatic factors affecting water quality changes in the MRB. Generally, although human activities were the main driving factor of water quality changes at the basin scale, the contribution of climate change could not be ignored. This study provided a manageable framework for the quantitative analysis of the influence of human activities and climate change on water quality to enable more precise and effective water quality management.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- Sichuan Province Environmental Monitoring Station, Chengdu, 610031, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zili Fang
- Sichuan Province Environmental Monitoring Station, Chengdu, 610031, China
| | - Zhen Shi
- Sichuan Province Environmental Monitoring Station, Chengdu, 610031, China
| |
Collapse
|
9
|
Wan W, Gadd GM, He D, Liu W, Xiong X, Ye L, Cheng Y, Yang Y. Abundance and diversity of eukaryotic rather than bacterial community relate closely to the trophic level of urban lakes. Environ Microbiol 2023; 25:661-674. [PMID: 36527341 DOI: 10.1111/1462-2920.16317] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, People's Republic of China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan, People's Republic of China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Xiang Xiong
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Luping Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| | - Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, People's Republic of China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Stipcich P, Beca-Carretero P, Álvarez-Salgado XA, Apostolaki ET, Chartosia N, Efthymiadis PT, Jimenez CE, La Manna G, Pansini A, Principato E, Resaikos V, Stengel DB, Ceccherelli G. Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? MARINE ENVIRONMENTAL RESEARCH 2023; 184:105854. [PMID: 36577310 DOI: 10.1016/j.marenvres.2022.105854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leaves.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, 1678, Cyprus
| | | | - Carlos E Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus; Energy, Environment and Water Research Center (EEWRC) of the Cyprus Institute, Nicosia, Cyprus
| | - Gabriella La Manna
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy; MareTerra Onlus, Environmental Research and Conservation, 07041, Alghero, SS, Italy
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Elena Principato
- Area Marina Protetta "Isole Pelagie", Via Cameroni, s.n.c., 92031, Lampedusa, Italy
| | - Vasilis Resaikos
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus
| | - Dagmar B Stengel
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| |
Collapse
|
11
|
Yuan G, Tan X, Guo P, Xing K, Chen Z, Li D, Yu S, Peng H, Li W, Fu H, Jeppesen E. Linking trait network to growth performance of submerged macrophytes in response to ammonium pulse. WATER RESEARCH 2023; 229:119403. [PMID: 36446174 DOI: 10.1016/j.watres.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Extreme precipitation events caused by climate change leads to large variation of nitrogen input to aquatic ecosystems. Our previous study demonstrated the significant effect of different ammonium pulse patterns (differing in magnitude and frequency) on submersed macrophyte growth based on six plant morphological traits. However, how connectivity among plant traits responds to nitrogen pulse changes, which in turn affects plant performance, has not yet been fully elucidated. The response of three common submersed macrophytes (Myriophyllum spicatum, Vallisneria natans and Potamogeton maackianus) to three ammonium pulse patterns was tested using plant trait network (PTN) analysis based on 18 measured physiological and morphological traits. We found that ammonium pulses enhanced trait connectivity in PTN, which may enable plants to assimilate ammonium and/or mitigate ammonium toxicity. Large input pulses with low frequency had stronger effects on PTNs compared to low input pulses with high frequency. Due to the cumulative and time-lagged effect of the plant response to the ammonium pulse, there was a profound and prolonged effect on plant performance after the release of the pulse. The highly connected traits in PTN were those related to biomass allocation (e.g., plant biomass, stem ratio, leaf ratio and ramet number) rather than physiological traits, while phenotype-related traits (e.g., plant height, root length and AB ratio) and energy storage-related traits (e.g., stem starch) were least connected. V. natans showed clear functional divergence among traits, making it more flexible to cope with unfavorable habitats (i.e., high input pulses with low frequencies). M. spicatum with high RGR revealed strong correlations among traits and thus supported nitrogen accumulation from favourable environments (i.e., low input pulses with high frequencies). Our study highlights the responses of PTN for submerged macrophytes to ammonium pulses depends on their intrinsic metabolic rates, the magnitude, frequency and duration of the pulses, and our results contribute to the understanding of the impact of resource pulses on the population dynamics of submersed macrophytes within the context of global climate change.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China.
| | - Xiaoyao Tan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Peiqin Guo
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Ke Xing
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Zhenglong Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Dongbo Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Sizhe Yu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Hui Peng
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Erik Jeppesen
- Lake section, Department of Ecoscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
12
|
Significant Temporal and Spatial Variability in Nutrient Concentrations in a Chinese Eutrophic Shallow Lake and Its Major Tributaries. WATER 2022. [DOI: 10.3390/w14020217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sediment nutrients can be released to the surface water when hydraulic disturbance becomes strong in shallow lakes, which contributes to nutrient enrichment and subsequent lake eutrophication in the water column. To explore the seasonal variations and spatial distributions exhibited by nutrients in the water column, surface sediment, and pore water of Lake Yangcheng and its major tributaries, we determined the concentrations of nitrogen (N) and phosphorus (P) throughout the lake in different seasons of 2018. Total N (TN) and total P (TP) concentrations in the connected rivers were much greater than those in the lake, indicating that external loading greatly contributed to the nutrient enrichment. TN concentration in the water column was highest in the winter, whereas TP peaked in the summer. A similar temporal pattern was observed for TN and TP in the sediment with maxima in the winter and minima in the summer; however, nutrients in the pore water were highest in the summer, in contrast to the temporal variation in the sediment. Additionally, high TN values in the water column and high TP in the three compartments were distributed primarily in the west part of the lake, while high TN concentrations in the sediment and pore water were observed mainly in the east portion of the lake. According to the enrichment factor index (an indicator evaluating the nutrient enrichment by comparing the detected contents and standard values), nutrients in the lake sediment were severely enriched with TN and TP averaging 2195.8 mg/kg and 543.0 mg/kg, respectively. The vertical distribution of TN and TP generally exhibited similar decreasing patterns with an increase in sediment depth, suggesting mineralization of TN and TP by microbes and benthic organisms. More attention and research are needed to understand the seasonality of nutrient exchange across the sediment–water interface, especially in eutrophic lakes.
Collapse
|
13
|
Cui G, Li XD, Li S, Ding S, Li Q, Yang M, Lv H, Wang Y. Varying water column stability controls the denitrification process in a subtropical reservoir, Southwest China. J Environ Sci (China) 2022; 111:208-219. [PMID: 34949350 DOI: 10.1016/j.jes.2021.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/14/2023]
Abstract
Reservoirs are regarded as hotspots of nitrogen transformation and potential sources of nitrous oxide (N2O). However, it remains unclear how the hydrological conditions due to dam construction control the processes of nitrogen transformation in reservoir waters. To address this issue, we examined the spatial-temporal characteristics of nitrate concentrations, δ15N-NO3-, δ18O-NO3-, δ18O-H2O, relative water column stability (RWCS), and related environmental factors in a subtropical eutrophic reservoir (Hongfeng Reservoir, HFR), Southwest China. We found that denitrification was the most important nitrogen transformation process in the HFR and that higher denitrification intensity was associated with increased RWCS in summer, which suggested hydrological control of the denitrification process. In contrast, low RWCS conditions favored the nitrification process in the HFR in winter. Additionally, dissolved oxygen (DO; p < 0.05) and nitrate concentrations (p < 0.01) had significant impacts on the denitrification rate. We also found that the spatiotemporal RWCS variations were a prerequisite for regulating DO/nitrate stratification and the coupling/decoupling of nitrification-denitrification at the local and global scales. This study would advances our knowledge of the impacts of RWCS and thermal stratification on nitrogen transformation processes in reservoirs.
Collapse
Affiliation(s)
- Gaoyang Cui
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth's Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Siqi Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qinkai Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Mengdi Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hong Lv
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yiyao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Peng C, Huang Y, Yan X, Jiang L, Wu X, Zhang W, Wang X. Effect of overlying water pH, temperature, and hydraulic disturbance on heavy metal and nutrient release from drinking water reservoir sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2135-2148. [PMID: 34013658 DOI: 10.1002/wer.1587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/11/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
How environmental factors impact the release of pollutants from sediment is critical to ensure the safety of drinking water, especially when the seasons change. Here, we investigated the effect of water pH, temperature, and hydraulic disturbance on the release of heavy metals and nutrients from the sediment of drinking water reservoir. The results show that lower initial water pH promoted the Zn release, while low temperature enhanced the Mn flux after 15 days. Meanwhile, continuous disturbance caused more metals releasing from sediment than intermittent disturbance due to greater shear stress and turbulence effect. However, intermittent high-speed disturbance greatly altered the dynamic release of Zn from L-shaped curve to U-shape in water column. Moreover, lower water pH caused higher ammonium in water but lower nitrate since H+ restrained the nitrification. Yet, higher temperature inhibited the release of ammonium from sediment, which might relate to the accelerated mineralization of organic nitrogen and elevated dissolved oxygen caused by the algae growth. Notably, hydraulic disturbance with various intensity and duration greatly influenced the fluxes of various species of nitrogen and soluble phosphate in water column, because the disturbance facilitated the nitrogen and phosphorus exchanges between sediment-water and water-air interfaces. PRACTITIONER POINTS: Lower water pH induced Zn release, while low temperature gradually enhanced Mn level. More metals were released from sediment under continuous disturbance than intermittent disturbance. Lower water pH caused higher ammonium nitrogen in water but lower nitrate nitrogen. Higher temperature inhibited the release of ammonium nitrogen from sediment. Hydraulic disturbance greatly changed the release of different species of nitrogen and soluble phosphate from sediment.
Collapse
Affiliation(s)
- Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, China
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yunying Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Xuchen Yan
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Lei Jiang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, China
| | - Xuefei Wu
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xianyun Wang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Wu H, Bertilsson S, Zhang W, Li Y, Hui C, Wang H, Li J, Niu L. Integrating experiments with system-level biogeochemical modeling to understand nitrogen cycling of reservoir sediments at elevated hydrostatic pressure. ENVIRONMENTAL RESEARCH 2021; 200:111671. [PMID: 34273369 DOI: 10.1016/j.envres.2021.111671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Impoundment of rivers to construct reservoirs for hydropower and irrigation greatly increase the hydrostatic pressure acting on river sediments with potential repercussions for ecosystem-level microbial activity and metabolism. Understanding the functioning and responses of key biogeochemical cycles such as that of nitrogen cycling to shifting hydrostatic pressure is needed to estimate and predict the systemic nutrient dynamics in deep-water reservoirs. We studied the functioning of bacterial communities involved in nitrogen transformation in bioreactors maintained under contrasting hydrostatic pressures (0.5 MPa-3.0 MPa) and complemented the experimental approach with a functional gene-informed biogeochemical model. The model predictions were broadly consistent with observations from the experiment, suggesting that the rates of N2O production decreased while the sediment concentration of nitrite increased significantly with increasing pressure, at least when exceeding 1.0 MPa. Changes in nitrite reduction (nirS) and aerobic ammonia oxidation (amoA) genes abundances were in accordance with the observed changes in N2O production and nitrite levels. Moreover, the model predicted that the higher pressures (P > 1.5 MPa) would intensify the inhibition of N2 production via denitrification and result in an accumulation of ammonia in the sediment along with a decrease in dissolved oxygen. The results imply that increased hydrostatic pressure caused by dam constructions may have a strong effect on microbial nitrogen conversion, and that this may result in lower nitrogen removal.
Collapse
Affiliation(s)
- Hainan Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
16
|
Chen SN, Yue FJ, Liu XL, Zhong J, Yi YB, Wang WF, Qi Y, Xiao HY, Li SL. Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26617-26627. [PMID: 33492596 DOI: 10.1007/s11356-021-12505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the nutrient biogeochemistry in the aquatic system, particularly in the cascade reservoir system. To understand the seasonal variation of nitrogen (N) behaviors in cascade reservoirs, hydrochemistry and nitrate dual isotopes (δ15N-NO3- and δ18O-NO3-) were conducted in a karst watershed (Wujiang River) in southwest China. The results showed that NO3--N accounted for almost 90% of the total dissolved nitrogen (TDN) concentration with high average concentration 3.8 ± 0.4 mg/L among four cascade reservoirs. Higher N concentration (4.0 ± 0.8 mg/L) and larger longitudinal variation were observed in summer than in other seasons. The relationship between the variation of NO3--N and dual isotopes in the profiles demonstrated that nitrification was dominated transformation, while assimilation contributed significantly in the epilimnion during spring and summer. The high dissolved oxygen concentration in the present cascade reservoirs system prevented the occurrence of N depletion processes in most of the reservoirs. Denitrification occurred in the oldest reservoir during winter with a rate ranging from 18 to 28%. The long-term record of surface water TDN concentration in reservoirs demonstrated an increase from 2.0 to 3.6 mg/L during the past two decades (~ 0.1 mg/L per year). The seasonal nitrate isotopic signature and continuously increased fertilizer application demonstrated that chemical fertilizer contribution significantly influenced NO3--N concentration in the karst cascade reservoirs. The research highlighted that the notable N increase in karst cascade reservoirs could influence the aquatic health in the region and further investigations were required.
Collapse
Affiliation(s)
- Sai-Nan Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Long Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yuan-Bi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wan-Fa Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| | - Hua-Yun Xiao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
Lin J, Chen N, Yuan X, Tian Q, Hu A, Zheng Y. Impacts of human disturbance on the biogeochemical nitrogen cycle in a subtropical river system revealed by nitrifier and denitrifier genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141139. [PMID: 32745858 DOI: 10.1016/j.scitotenv.2020.141139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Human activities have largely modified nitrogen (N) sources supply, cycling and export from land to ocean. Nitrification and denitrification are vital processes alleviating N pollution in aquatic ecosystems but the diverse responses and niche of microbial N retention to human disturbance are still understudied. Here we investigated the changes in N species and functional genes in the urban, agriculture and reservoir river sections of the Jiulong River (southeast China). Our results show that ammonia-oxidizing bacteria (AOB) (Nitrosomonas) were dominant in the urban river section receiving ammonium-rich sewage that enhanced nitrification and subsequent denitrification, while ammonia-oxidizing archaea (AOA) was more abundant than AOB in the river section flowing through areas of pomelo (Citrus maxima) agriculture with low pH, low ammonium and very high nitrate input. Warm temperatures and large total suspended matter (TSM) in the wet season promoted growth of nitrifiers and denitrifiers, which were mostly particle-attached. The potential river N retention through gaseous N removal (PRN2O and PRN2) in the agriculture section with huge N loading was among the lowest. Strong nitrification and denitrification were suspected to occur in the agricultural acid soil system rather than in the river network. In addition, the decreased TSM and N concentration promoted free-living microbes in the reservoir. The highest PRN2 and N2 production observed in the reservoir in the dry season implied that denitrification and anammox occurring in sediments was likely to increase N retention. This study suggests the diverse factors involved in processing of N pollution among diverse landscapes.
Collapse
Affiliation(s)
- Jingjie Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, China.
| | - Xin Yuan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qing Tian
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yi Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
18
|
Water Quality Responses during the Continuous Mixing Process and Informed Management of a Stratified Drinking Water Reservoir. SUSTAINABILITY 2019. [DOI: 10.3390/su11247106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aeration and mixing have been proven as effective in situ water quality improvement methods, particularly for deep drinking water reservoirs. While there is some research on the mechanism of water quality improvement during artificial mixing, the changes to water quality and the microbial community during the subsequent continuous mixing process is little understood. In this study, we investigate the mechanism of water quality improvement during the continuous mixing process in a drinking water reservoir. During this period, we found a reduction in total nitrogen (TN), total phosphorus (TP), ammonium-nitrogen (NH4-N), iron (Fe), manganese (Mn), and total organic carbon (TOC) of 12.5%–30.8%. We also measured reductions of 8.6% and 6.2% in TN and organic carbon (OC), respectively, in surface sediment. Microbial metabolic activity, abundance, and carbon source utilization were also improved. Redundancy analysis indicated that temperature and dissolved oxygen (DO) were key factors affecting changes in the microbial community. With intervention, the water temperature during continuous mixing was 15 °C, and the mixing temperature in the reservoir increased by 5 °C compared with natural mixing. Our research shows that integrating and optimizing the artificial and continuous mixing processes influences energy savings. This research provides a theoretical basis for further advancing treatment optimizations for a drinking water supply.
Collapse
|
19
|
Characteristics of Internal Ammonium Loading from Long-Term Polluted Sediments by Rural Domestic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234657. [PMID: 31766710 PMCID: PMC6926494 DOI: 10.3390/ijerph16234657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022]
Abstract
Given long-term decentralized and centralized rural domestic wastewater (RDW) discharge, nitrogen is continuously depositing in sediments. RDW discharge is assumed to be an important source of ammonium in surface water; however, the effect of long-term RDW discharge on nitrogen pollution in sediments remains unknown. Batch incubations were conducted to investigate the characteristics of internal ammonium loading from long-term polluted sediments by RDW discharge. Four sediments were demonstrated to be heavily polluted by long-term RDW discharge, with total nitrogen (TN) values of 5350, 8080, 2730, and 2000 mg·kg-1, respectively. The internal ammonium release from sediment was a slow and long process, and the risk of ammonium release from sediment during the dry season was significantly greater than that during the wet season. Though all selected sediments were heavily polluted by long-term RDW discharge, the relative contribution of internal ammonium loading from sediments was generally lower than that of external pollution. Hence, dredging is not suggested for RDW-polluted sediments except in response to an emergency. The excessive ammonium in the selected catchment was mainly from untreated and centralized black water in RDW. Centralized black waters in rural communities are highlighted to be separately treated or reused to maintain ammonium content at a safe level.
Collapse
|
20
|
Yang P, Yang H, Lai DYF, Jin B, Tong C. Production and uptake of dissolved carbon, nitrogen, and phosphorus in overlying water of aquaculture shrimp ponds in subtropical estuaries, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21565-21578. [PMID: 31127521 DOI: 10.1007/s11356-019-05445-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Water quality deterioration can adversely affect the long-term sustainability of aquaculture industry. Understanding the processes of nutrient regeneration and uptake is important for improving water quality and the overall ecosystem health of aquaculture system. In spite of the importance of dissolved nutrients (DOC, DIC, N-NOx-, N-NH4+, and P-PO43-) in governing water quality and ecosystem functioning, the spatiotemporal variations in the production and uptake of dissolved nutrients in aquaculture ponds is still poorly understood. In this study, the nutrient production and uptake rates in the overlying water were quantified among different shrimp growth stages in the aquaculture ponds in the Min River Estuary (MRE) and Jiulong River Estuary (JRE), southeast China. Significant differences in the nutrient production and uptake rates in the overlying water were observed among the three growth stages and two estuaries. The temporal variations of DOC and DIC production rates in both estuarine ponds closely followed the seasonal cycle of temperature, while the difference in DOC and DIC production rates between the two estuaries was likely caused by differences in water salinity. The changes in the production and uptake rates of dissolved inorganic nitrogen (N-NOx- and N-NH4+) and P-PO43- in the water column over time were partly related to the interactions between thermal conditions and phytoplankton biomass (e.g., chlorophyll a concentrations) in the ponds. Our results demonstrate the complex dynamics and environmental risk of dissolved nutrients in subtropical shrimp ponds, and call for a more effective management of nutrient-laden wastewater in safeguarding the long-term sustainability of aquaculture production.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
| | - Hong Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
- Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Baoshi Jin
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, People's Republic of China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
21
|
Velthuis M, Kosten S, Aben R, Kazanjian G, Hilt S, Peeters ETHM, van Donk E, Bakker ES. Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial. GLOBAL CHANGE BIOLOGY 2018; 24:5231-5242. [PMID: 30120802 DOI: 10.1111/gcb.14387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m-2 yaer-1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m-2 year-1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.
Collapse
Affiliation(s)
- Mandy Velthuis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sarian Kosten
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ralf Aben
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Ecology & Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
22
|
Yang P, Zhang Y, Lai DYF, Tan L, Jin B, Tong C. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity and nitrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1025-1035. [PMID: 29710558 DOI: 10.1016/j.scitotenv.2018.04.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
While aquaculture pond is a dominant land use/cover type and a distinct aquatic ecosystem in the coastal zones of China and southeast Asia, their contributions to the fluxes of greenhouse gases (GHGs) have only been poorly quantified. Fluxes of CO2 and CH4 in the shrimp ponds with different salinities were simultaneously measured in situ using the floating chamber technique in two different subtropical estuaries, namely, the Min River Estuary (MRE) and Jiulong River Estuary (JRE). The average CO2 and CH4 fluxes in the shrimp ponds over the observation periods varied from -2.09 to 3.37mmol CO2 m-2h-1 and from 0.28 to 16.28mmol CH4 m-2h-1, respectively, with higher fluxes being detected during the middle stage of aquaculture. The temporal variation of CO2 and CH4 fluxes in both estuaries ponds closely followed the seasonal cycle of temperature. Higher CH4 emissions were observed in MRE ponds than in JRE ponds because of the lower water salinity and N-NO3- concentrations as well as a greater supply of carbon substrates. Our findings suggested that shrimp ponds were CH4 emission "hotspots" in the subtropical estuaries of China. Based on a new global warming potential model, we conservatively estimated an anuual GHG emission rate of approximately 63.68Tg CO2-eq during the culture period from aquaculture ponds across the subtropical estuaries of China. Our results demonstrate the importance of aquaculture ponds as a major GHG source and a contributor to climate warming in the subtropical estuarine regions of China, and call for effective regulation of GHG emissions from these ponds for climate mitigation in future.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou 350007, PR China
| | - Yifei Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Lishan Tan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China
| | - Baoshi Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou 350007, PR China.
| |
Collapse
|
23
|
Wang WW, Jiang X, Zheng BH, Chen JY, Zhao L, Zhang B, Wang SH. Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke Lake, a Tibetan Plateau freshwater lake in China. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180612. [PMID: 30839699 PMCID: PMC6170536 DOI: 10.1098/rsos.180612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
The lakes distributed in the Tibetan Plateau constitute a lake group with the highest altitude, largest lakes and largest area in the world and are important in global climate and environmental effects. Freshwater lakes in the Tibetan Plateau possess high ecological values and high vulnerability. The migration and transformation of nitrogen in sediments are critical to lake ecosystems, but information on sedimentary nitrogen in the freshwater lakes in the Tibetan Plateau is limited. A case study was conducted in Keluke Lake, China, to reveal the effects of sedimentary nitrogen on water quality in plateau freshwater lakes. Nitrogen speciation, mineralization potential and release flux were analysed through a sequential extraction method, waterlogged incubation experiment and Fick's first diffusion law, respectively. The content of total nitrogen (TN) was 1295.75-6151.69 mg kg-1, and 94.2% of TN was organic nitrogen (ON). The contents of three nitrogen fractions were in the order of hydrolysable nitrogen > residual nitrogen > exchangeable nitrogen. Ammonia nitrogen ( N H 4 + - N ) was the main mineralization product, and hydrolysable ON was the most significant contributor. The sediments showed a great mineralization potential, with a potentially mineralizable nitrogen value of 408.76 mg N kg-1 of sediment, that was mainly affected by hydrolysable ammonium nitrogen. The N H 4 + - N diffusion flux ranged from 24.14 to 148.75 mg m-2 d-1, and the sediments served as an internal nitrogen source. Nitrogen release from sediments was considerably influenced by exchangeable ammonia nitrogen. The sediments in Keluke Lake pose a potential nitrogen release risk and threaten the water quality of the lake. The total content, speciation, mineralization of ON and the release flux at sediment-water interface should be considered comprehensively to evaluate the effects of nitrogen in sediments to water quality.
Collapse
Affiliation(s)
- W. W. Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - X. Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - B. H. Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - J. Y. Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - L. Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - B. Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - S. H. Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| |
Collapse
|
24
|
Dai J, He S, Zhou W, Huang J, Chen S, Zeng X. Integrated ecological floating bed treating wastewater treatment plant effluents: effects of influent nitrogen forms and sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18793-18801. [PMID: 29713975 DOI: 10.1007/s11356-018-2111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In recent years, the treatment of wastewater treatment plant (WWTP) effluent has gained increasing attention. However, researches on the relationships between nitrogen forms and nitrogen removal efficiency are very limited. Based on the fact that the nitrogen forms in the WWTP effluent may vary as the season changes, the nitrogen removal efficiencies of an integrated ecological floating bed (IEFB) was studied under different influent nitrogen forms. In addition, the effects of sediments in the system were also quantified during the experiment. Results showed that the total nitrogen (TN) removal rates of the IEFB were 25.61 ± 5.72% and 60.03 ± 7.00%, respectively, when the main influent nitrogen forms are nitrate and ammonia. The sediments in the system also played vital roles in the removal processes: when the sediments were covered with a polyethylene membrane, the total nitrogen (TN) removal rate of the system dropped from 27.86 ± 5.53% to 14.78 ± 4.97%, and the total phosphorus (TP), from 58.77 ± 6.20% to 33.51 ± 25.52%.
Collapse
Affiliation(s)
- Jinwei Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Sheng Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Xinhua Zeng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
25
|
Chen N, Mo Q, Kuo YM, Su Y, Zhong Y. Hydrochemical controls on reservoir nutrient and phytoplankton dynamics under storms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:301-310. [PMID: 29154048 DOI: 10.1016/j.scitotenv.2017.09.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Eutrophication and undesired algal blooms in surface water are common and have been linked to increasing nutrient loading. Effects of extreme events such as storms on reservoir nutrient and phytoplankton remain unclear. Here we carried out continuous high-frequency measurements in a long and narrow dam reservoir in southeast China during a storm period in June-July 2015. Our results show a strong nutrient-phytoplankton relationship as well as a very rapid response to storm runoff. We observed an increase in total suspended matter (TSM), ammonium (NH4-N), and dissolved reactive phosphate (DRP), with a sharp decline in chlorophyll-a (Chl-a) in the high flow periods. Afterward, Chl-a, total phytoplankton abundance and Cyanophyta fraction elevated gradually. Nitrate was diluted at first with increasing discharge before concentration increased, likely following a delayed input of groundwater. Physiochemical parameters and Chl-a were evenly distributed in the water column during the flooding period. However, 10% of NH4-N and 25% of DRP were removed in surface water (0-1m) when an algal bloom (Chl-a>30μgL-1) occurred 10days after peak discharge. Conversely, total particulate P (TPP) of surface water was 58% higher than in the deeper water. Dynamic factor analysis (DFA) revealed that TSM, NH4-N, DRP, total P and discharge significantly explain Chl-a variations following storms (Ceff=0.89). These findings highlight that the reservoir ecosystem was vulnerable to pulse input from storm runoff and the Cyanophyta bloom was likely fueled by phosphate and ammonium rather than nitrate.
Collapse
Affiliation(s)
- Nengwang Chen
- Key Laboratory of the Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Qiongli Mo
- Key Laboratory of the Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yi-Ming Kuo
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuping Su
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Yanping Zhong
- Key Laboratory of the Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
26
|
Mu D, Yuan D, Feng H, Xing F, Teo FY, Li S. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China. MARINE POLLUTION BULLETIN 2017; 114:705-714. [PMID: 27802871 DOI: 10.1016/j.marpolbul.2016.10.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation.
Collapse
Affiliation(s)
- Di Mu
- Department of Mechanics, Tianjin University, Tianjin 300072, China; School of Marine Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Dekui Yuan
- Department of Mechanics, Tianjin University, Tianjin 300072, China.
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Fangwei Xing
- Department of Mechanics, Tianjin University, Tianjin 300072, China
| | - Fang Yenn Teo
- Department of Irrigation and Drainage, Kuala Lumpur 50626, Malaysia
| | - Shuangzhao Li
- Department of Mechanics, Tianjin University, Tianjin 300072, China
| |
Collapse
|