1
|
Field EK, Hartzheim A, Terry J, Dawson G, Haydt N, Neuman-Lee LA. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and Where Are We Going? Integr Comp Biol 2022; 62:1557-1571. [PMID: 35833292 DOI: 10.1093/icb/icac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/05/2023] Open
Abstract
Reptiles, the only ectothermic amniotes, employ a wide variety of physiological adaptations to adjust to their environments but remain vastly understudied in the field of immunology and ecoimmunology in comparison to other vertebrate taxa. To address this knowledge gap, we assessed the current state of research on reptilian innate immunology by conducting an extensive literature search of peer-reviewed articles published across the four orders of Reptilia (Crocodilia, Testudines, Squamata, and Rhynchocephalia). Using our compiled dataset, we investigated common techniques, characterization of immune components, differences in findings and type of research among the four orders, and immune responses to ecological and life-history variables. We found that there are differences in the types of questions asked and approaches used for each of these reptilian orders. The different conceptual frameworks applied to each group has led to a lack of unified understanding of reptilian immunological strategies, which, in turn, have resulted in large conceptual gaps in the field of ecoimmunology as a whole. To apply ecoimmunological concepts and techniques most effectively to reptiles, we must combine traditional immunological studies with ecoimmunological studies to continue to identify, characterize, and describe the reptilian immune components and responses. This review highlights the advances and gaps that remain to help identify targeted and cohesive approaches for future research in reptilian ecoimmunological studies.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Alyssa Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Grant Dawson
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Natalie Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
2
|
Bodziach K, Staniszewska M, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Elimination of endocrine disrupting phenolic compounds via feathers and claws in seabirds moulting in the Baltic and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158641. [PMID: 36096226 DOI: 10.1016/j.scitotenv.2022.158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This paper investigates the effectiveness of phenol derivatives removal from bird organisms via claws and remiges, and performs a preliminary assessment of the usefulness of these epidermal products for environmental biomonitoring and estimating bird exposure levels. Concentrations of bisphenol A (BPA) and alkylphenols: 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) were determined in claws and remiges of long-tailed ducks Clangula hyemalis and razorbills Alca torda, obtained during a by-catch in the winter period (2014-2016) in the Southern Baltic region. For razorbills, the Baltic is a permanent habitat, while long-tailed ducks are migratory and stay in the Southern Baltic only during the non-breeding season. Their remiges are replaced in the Arctic seas of Siberia. The removal of phenol derivatives, depending on the compound and the epidermal product, ranges from 12 % to 34 %. Among these compounds, in both bird species, the highest degree of elimination was observed for 4-NP in remiges (<0.1-656.0 ng.g-1 dw) as well as claws (<0.1-338.6 ng.g-1 dw). On the other hand, the least removed compound in both the long-tailed duck and the razorbill was 4-t-OP. The removal of phenol derivatives from claws in both bird species was at the same level. However, 4-NP concentrations were found to be statistically significantly higher in razorbill remiges compared to those of the long-tailed duck (p < 0.05). Comparison of concentrations in the remiges of the long-tailed duck and the razorbill, moulted in two different environments with different levels of pollution and distances from sources, indicated that the Baltic Sea is approximately 3 times more polluted with 4-NP than the marine areas of the Russian Arctic. This demonstrates the potential for the use of 4-NP and remiges as indicators of environmental pollution with phenol derivatives.
Collapse
Affiliation(s)
- Karina Bodziach
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Iga Nehring
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Farag AM, Harper DD, Cozzarelli IM, Kent DB, Mumford AC, Akob DM, Schaeffer T, Iwanowicz LR. Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:253-271. [PMID: 36129489 DOI: 10.1007/s00244-022-00943-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH4/L with an associated NH3 of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.
Collapse
Affiliation(s)
- Aїda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA.
| | - David D Harper
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| | | | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Adam C Mumford
- U.S. Geological Survey, Laboratory Analytical Services Division, Reston, VA, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA
| | - Travis Schaeffer
- U.S. Geological Survey, Columbia Environmental Research Center, Yankton Field Research Station, Yankton, SD, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV, USA
| |
Collapse
|
4
|
Brown MK, Haskins DL, Russell AL, Lambert ML, Quick CE, Pilgrim MA, Tuberville TD. Mercury and Radiocesium Accumulation and Associations With Sublethal Endpoints in the Florida Green Watersnake (Nerodia floridana). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:758-770. [PMID: 35112731 DOI: 10.1002/etc.5281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and radiocesium (137 Cs) are well-known environmental contaminants with the potential to impact the health of humans and wildlife. Snakes have several characteristics conducive to studying environmental contamination but have rarely been included in the monitoring of polluted sites. We investigated the bioaccumulation of Hg and 137 Cs and associations with sublethal effects (standard metabolic rate [SMR] and hemoparasite infections) in Florida green watersnakes (Nerodia floridana). We captured 78 snakes from three former nuclear cooling reservoirs on the US Department of Energy's Savannah River Site in South Carolina (USA). For captured snakes, we (1) determined whole-body 137 Cs, (2) quantified total Hg (THg) using snake tail clips, (3) conducted hemoparasite counts, and (4) measured the SMR. We used multiple regression models to determine associations among snake body size, capture location, sex, tail THg, whole-body 137 Cs, Hepatozoon spp. prevalence and parasitemia, and SMR. Average whole-body 137 Cs (0.23 ± 0.08 Becquerels [Bq]/g; range: 0.00-1.02 Bq/g) was correlated with snake body size and differed significantly by capture site (Pond B: 0.67 ± 0.05 Bq/g; Par Pond: 0.10 ± 0.02 Bq/g; Pond 2: 0.03 ± 0.02 Bq/g). Tail THg (0.33 ± 0.03 mg/kg dry wt; range: 0.16-2.10 mg/kg) was significantly correlated with snake body size but did not differ by capture site. We found no clear relationship between SMR and contaminant burdens. However, models indicated that the prevalence of Hepatozoon spp. in snakes was inversely related to increasing whole-body 137 Cs burdens. Our results indicate the bioaccumulation of Hg and 137 Cs in N. floridana and further demonstrate the utility of aquatic snakes as bioindicators. Our results also suggest a decrease in Hepatozoon spp. prevalence related to increased burdens of 137 Cs. Although the results are intriguing, further research is needed to understand the dynamics between 137 Cs and Hepatozoon spp. infections in semiaquatic snakes. Environ Toxicol Chem 2022;41:758-770. © 2022 SETAC.
Collapse
Affiliation(s)
- Marty Kyle Brown
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - David Lee Haskins
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, USA
| | - Amelia L Russell
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Michaela L Lambert
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, Kentucky, USA
| | - Caleigh E Quick
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA
| | - Melissa A Pilgrim
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, South Carolina, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| |
Collapse
|
5
|
Frossard A, Coppo GC, Lourenço AT, Heringer OA, Chippari-Gomes AR. Metal bioaccumulation and its genotoxic effects on eggs and hatchlings of giant Amazon river turtle (Podocnemis expansa). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:643-657. [PMID: 33754232 DOI: 10.1007/s10646-021-02384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to assess whether possible metal contamination in the sediment of the nests of giant Amazon river turtle, Podocnemis expansa, could contaminate eggs and hatchlings, triggering genotoxic damage. Therefore, sediments of P. expansa nests from two sites in the Brazilian Amazon were evaluated, with the first being collected at Araguaia River and the second at Crixás-Açu River. Newly hatched offspring, eggs, and sediments were collected from the beaches of these two rivers and the quantification of metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Pb, and Zn) was carried out by atomic absorption spectroscopy. All targeted metals were found in both sediment and P. expansa biological samples collected on the beaches presenting higher concentrations in the sediment of Crixás-Açu River. Metals found in the eggshells before nesting and in the egg contents were maternally transferred. Moreover, augmented concentration of metals led by metal transfer from the nests sediments were detected in the eggshells after nesting (ENH) and in the newly hatched offspring (H). Probably this metal relocation to the newly hatchlings augmented the frequency of micronuclei in their blood, presenting 15.25‰ in hatchling found in Crixás-Açu River beaches and 10‰ in newly hatched animals from Araguaia River beaches. These results indicate the occurrence of maternal transfer of metals (essential or not) to the eggs in testudines as well as a transference from the sediments to the nesting eggs, triggering genotoxic effects on the hatchlings.
Collapse
Affiliation(s)
- Alexandra Frossard
- Laboratory of Applied Ichthyology, Vila Velha University, Av. Comissário José Dantas de Melo, 21, Boa Vista, 29102-770, Vila Velha, ES, Brazil.
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Vila Velha University, Av. Comissário José Dantas de Melo, 21, Boa Vista, 29102-770, Vila Velha, ES, Brazil
| | - Amanda Toledo Lourenço
- Laboratory of Health and Wildlife, Vila Velha University, Av. Comissário José Dantas de Melo, 21, Boa Vista, 29102-770, Vila Velha, ES, Brazil
| | - Otávio Arruda Heringer
- Department of Research and Development -Tommasi Ambiental, Av. Arara Azul, 187, Novo Horizonte, Serra, ES, Brazil
| | - Adriana Regina Chippari-Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Av. Comissário José Dantas de Melo, 21, Boa Vista, 29102-770, Vila Velha, ES, Brazil
| |
Collapse
|
6
|
Haskins DL, Brown MK, Qin C, Xu X, Pilgrim MA, Tuberville TD. Multi-decadal trends in mercury and methylmercury concentrations in the brown watersnake (Nerodia taxispilota). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116722. [PMID: 33640654 DOI: 10.1016/j.envpol.2021.116722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is an environmental contaminant that poses a threat to aquatic systems globally. Temporal evaluations of Hg contamination have increased in recent years, with studies focusing on how anthropogenic activities impact Hg bioavailability in a variety of aquatic systems. While it is common for these studies and ecological risk assessments to evaluate Hg bioaccumulation and effects in wildlife, there is a paucity of information regarding Hg dynamics in reptiles. The goal of this study was to investigate temporal patterns in total mercury (THg) and methylmercury (MeHg) concentrations across a 36-year period, as well as evaluate relationships among and between destructive (kidney, liver, muscle) and non-destructive (blood, tail) tissue types in a common watersnake species. To accomplish this, we measured THg and MeHg concentrations in multiple tissues from brown watersnakes (Nerodia taxispilota) collected from Steel Creek on the Savannah River Site (SRS; Aiken, SC, USA) from two time periods (1983-1986 and 2019). We found significant and positive relationships between tail tips and destructive tissues. In both time periods, THg concentrations varied significantly by tissue type, and destructive tissues exhibited higher but predictable THg values relative to tail tissue. Methylmercury concentrations did not differ among tissues from the 1980s but was significantly higher in muscle compared to other tissues from snakes collected in 2019. Percent MeHg of THg in N. taxispilota tissues mirrored patterns reported in other reptiles, although the range of % MeHg in liver and kidney differed between time periods. Both THg and MeHg concentrations in N. taxispilota declined significantly from the 1980s to 2019, with average values 1.6 to 4-fold lower in contemporary samples. Overall, our data add further evidence to the utility of watersnakes to monitor Hg pollution in aquatic environments and suggest attenuation of this contaminant in watersnakes in our study system.
Collapse
Affiliation(s)
- David L Haskins
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30605, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30605, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
| | - M Kyle Brown
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30605, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Chongyang Qin
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Melissa A Pilgrim
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| |
Collapse
|
7
|
Tirado-Ballestas I, Caballero-Gallardo K, Olivero-Verbel J. Toxicological effects of bituminous coal dust on the earthworm Eisenia fetida (Oligochaeta: Lumbricidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1422-1430. [PMID: 32797392 DOI: 10.1007/s10646-020-02263-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The exploitation of coal is an important resource to generate energy worldwide. However, during the processes of coal extraction, transport, and cargo, dust particles are released into the environment. The aim of this study was to determine the toxicological effects of bituminous coal dust (<38 µm), obtained from a sample collected in a coal mine in Colombia, on the annelid Eisenia fetida. The earthworm culture was standardized under laboratory conditions to evaluate mortality, as well as morphological, physiological and histological changes using concentrations varying from 1 to 4% w/w coal dust in artificial soil, after 7, 14, and 28 days of exposure. In addition, an avoidance assay was carried out after 48-h treatment. Histopathological analysis was performed at the end of the experiment. After the sub-chronic exposure, an increase in mortality was observed at the highest coal dust concentration compared to the untreated group. Alterations in morphology and physiology of the exposed annelids were mostly evidenced at the greatest tested concentrations (3-4%) and exposure times (≥14 days). Changes included loss of weight and color, abundant mucus production, constriction, peeling of the epidermis, clitellum involution, violent movements and lethargy. Avoidance of coal dust-polluted soil followed a concentration-response relationship. Histopathological findings revealed changes on the cuticle, as well as in the circular and longitudinal muscle layers in animals living in soils containing 3 and 4% coal particles. In short, E. fetida exposed to coal dust experienced several pathological changes, suggesting that this pollutant may induce population problems in macroinvertebrates present in coal mining areas.
Collapse
Affiliation(s)
- I Tirado-Ballestas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - K Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
8
|
Adamovicz L, Baker SJ, Merchant M, Darville L, Allender MC. Plasma complement activation mechanisms differ in ornate (Terrapene ornata ornata) and eastern box turtles (Terrapene carolina carolina). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:720-731. [PMID: 33075215 DOI: 10.1002/jez.2423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Eastern (Terrapene carolina carolina) and ornate (Terrapene ornata ornata) box turtles have robust plasma antibacterial activity, however, the mechanism behind this activity is unknown. We used sheep red blood cell (SRBC) hemolysis assays, mannan-affinity chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to explore the mechanisms of complement activity in box turtles. Plasma from both species demonstrated volume, time, and temperature-dependent SRBC hemolysis, with significantly greater hemolytic activity in ornate box turtle plasma. Hemolytic activity was highly attenuated following treatment with heat, EDTA, and salicylaldoxime in both species, but was unchanged after treatment with methylamine and ammonium hydroxide. Two abundant mannan-binding proteins (presumed C-type lectins) were identified in eastern box turtle plasma using SDS-PAGE and MALDI-TOF, but ornate box turtles did not express either protein. Eastern box turtles appear to rely on the lectin pathway of complement activation while ornate box turtles utilize the alternative pathway. This study provides further evidence that mechanisms underlying immune function are not always conserved between closely related species. This finding may have important implications for explaining species differences in susceptibility to emerging threats such as disease, toxicants, and climate change.
Collapse
Affiliation(s)
- Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Sarah J Baker
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA.,Arizona Game and Fish Department, Phoenix, Arizona, USA
| | - Mark Merchant
- Department of Chemistry, College of Science and Engineering, McNeese State University, Lake Charles, Louisiana, USA
| | - Lancia Darville
- Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| |
Collapse
|
9
|
Leaphart JC, Oldenkamp RE, Bryan AL, Kennamer RA, Beasley JC. Patterns of Trace Element Accumulation in Waterfowl Restricted to Impoundments Holding Coal Combustion Waste. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1052-1059. [PMID: 32096287 DOI: 10.1002/etc.4697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Waterfowl are often exposed to and readily accumulate anthropogenic contaminants when foraging in polluted environments. Settling impoundments containing coal combustion waste (CCW) enriched in trace elements such as arsenic (As), selenium (Se), and mercury (Hg) are often used by free-ranging migratory and resident waterfowl and represent potential sources for contaminant uptake. To assess accumulation of CCW contaminants, we experimentally restricted waterfowl to a CCW-contaminated impoundment and quantified trace element burdens in blood, muscle, and liver tissues over known periods of exposure (between 3 and 92 d). From these data we developed models 1) to predict elemental bioaccumulation with increased exposure time, and 2) to predict muscle/liver burdens based on concentrations in blood as a nondestructive sampling method. Although Hg and As did not bioaccumulate in our waterfowl, we observed an increase in Se concentrations in muscle, liver, and blood tissues over the duration of our experiment. Furthermore, we found that blood may be used as an effective nondestructive sampling alternative to predict muscle and liver tissue concentrations in birds contaminated with Se and As through dietary exposure. These data provide unique insights into accumulation rates of contaminants for waterfowl utilizing habitats contaminated with CCW and demonstrate the efficacy of nonlethal sampling of waterfowl to quantify contaminant exposure. Environ Toxicol Chem 2020;39:1052-1059. © 2020 SETAC.
Collapse
Affiliation(s)
- James C Leaphart
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Ricki E Oldenkamp
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Albert L Bryan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Robert A Kennamer
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Adamovicz L, Baker SJ, Merchant M, Allender MC. Plasma antibacterial activities in ornate (Terrapene ornata) and eastern box turtles (Terrapene carolina). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:295-305. [PMID: 32037741 DOI: 10.1002/jez.2352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Abstract
Chelonians are one of the most imperiled vertebrate taxa and many species are increasingly threatened by disease, however, the immune response in this group is understudied. We quantified the innate immune response of eastern (Terrapene carolina; EBT) and ornate (Terrapene ornate; OBT) box turtles using plasma antibacterial activity assays. Plasma from both species abolished or significantly reduced the growth of all eight bacterial species evaluated, including Salmonella typhimurium, Escherichia coli, Enterobacter cloacae, Citrobacter freundi, Bacillus subtilis, Staphylococcus epidermidis, and Staphylococcus aureus. Bactericidal capacity was greater in OBT compared to EBT, and OBT plasma retained high antibacterial activities at a broader temperature range (20-40°C) compared to EBT (30-40°C). Plasma antibacterial activity was abolished following treatment with heat, protease, and ethylenediaminetetraacetic acid, indicating that complement is likely responsible for the observed effects. Further characterization of the box turtle immune response may provide insight into the importance of infectious diseases for species conservation, enabling the development of more efficient and effective population management strategies.
Collapse
Affiliation(s)
- Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois
| | - Sarah J Baker
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois.,Arizona Game and Fish Department, Phoenix, Arizona
| | - Mark Merchant
- Department of Chemistry, College of Science, McNeese State University, Lake Charles, Louisiana
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois
| |
Collapse
|
11
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
12
|
Finger JW, Hamilton MT, Kelley MD, Stacy NI, Glenn TC, Tuberville TD. Examining the Effects of Chronic Selenium Exposure on Traditionally Used Stress Parameters in Juvenile American Alligators (Alligator mississippiensis). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:14-21. [PMID: 30976886 DOI: 10.1007/s00244-019-00626-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Environmental contaminants, such as the trace element selenium (Se), are a continuing concern to species worldwide due to their potential pathophysiological effects, including their influence on the stress response mediated through glucocorticoids (GCs; stress hormones). Environmental concentrations of Se are increasing due to anthropogenic activities, including the incomplete combustion of coal and subsequent disposal of coal combustion wastes. However, most studies examining how Se affects GCs have been focused on lower trophic organisms. The objectives of this study were to investigate the effects of long-term Se exposure on traditionally used stress parameters and to identify which of these parameters best indicate Se accumulation in liver and kidney of the American alligator (Alligator mississippiensis), a top trophic carnivore found in the southeastern United States and known to inhabit Se-containing areas. Alligators were divided into three dietary treatments and fed prey spiked with 1000 or 2000 ppm of selenomethionine (SeMet) or deionized water (control treatment) for 7 weeks. Following the 7-week treatment protocol, blood and tissue samples were obtained to measure plasma corticosterone (CORT; the main crocodilian GC), tail scute CORT, the ratio of peripheral blood heterophils (H) to lymphocytes (L) as H/L ratio, and body condition. To evaluate which parameter best indicated Se accumulation in the liver and kidney, principal component and discriminant analyses were performed. The only parameter significantly correlated with liver and kidney Se concentrations was scute CORT. Our results suggest that measurement of CORT in tail scutes compared with plasma CORT, H/L ratios, and body condition is the best indicator of Se-exposure and accumulation in crocodilians.
Collapse
Affiliation(s)
- John W Finger
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA.
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA.
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| | - Meghan D Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
13
|
French SS, Webb AC, Hudson SB, Virgin EE. Town and Country Reptiles: A Review of Reptilian Responses to Urbanization. Integr Comp Biol 2019; 58:948-966. [PMID: 29873730 DOI: 10.1093/icb/icy052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of the world population is now inhabiting urban areas, and with staggering population growth, urbanization is also increasing. While the work studying the effects of changing landscapes and specific urban pressures on wildlife is beginning to amass, the majority of this work focuses on avian or mammalian species. However, the effects of urbanization likely vary substantially across taxonomic groups due to differences in habitat requirements and life history. The current article aims first to broaden the review of urban effects across reptilian species; second, to summarize the responses of reptilian fauna to specific urban features; and third, to assess the directionality of individual and population level responses to urbanization in reptile species. Based on our findings, urban research in reptilian taxa is lacking in the following areas: (1) investigating interactive or additive urban factors, (2) measuring multiple morphological, behavioral, and physiological endpoints within an animal, (3) linking individual to population-level responses, and (4) testing genetic/genomic differences across an urban environment as evidence for selective pressures.
Collapse
Affiliation(s)
- Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Alison C Webb
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
14
|
Cochran JP, Haskins DL, Eady NA, Hamilton MT, Pilgrim MA, Tuberville TD. Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:346-353. [PMID: 30196204 DOI: 10.1016/j.envpol.2018.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Coal combustion is a major energy source in the US. The solid waste product of coal combustion, coal combustion residue (CCR), contains potentially toxic trace elements. Before 1980, the US primarily disposed of CCR in aquatic settling basins. Animals use these basins as habitat and can be exposed to CCR, potentially affecting their physiology. To investigate the effects of CCR on eastern mud turtles (Kinosternon subrubrum), we sampled 30 turtles exposed to CCRs and 17 unexposed turtles captured in 2015-2016 from the Savannah River Site (Aiken, SC, USA). For captured turtles, we (1) quantified accumulation of CCR in claw and blood samples, (2) used bacterial killing assays to assess influences of CCR on immune responses, (3) compared hemogregarine parasite loads, and (4) compared metabolic rates via flow-through respirometry between CCR-exposed and unexposed turtles when increased temperature was introduced as an added stressor. Turtles exposed to CCR accumulated CCR-associated trace elements, corroborating previous studies. Blood Se and Sr levels and claw As, Se, and Sr levels were significantly higher in turtles from contaminated sites. Average bacterial killing efficiency was not significantly different between groups. Neither prevalence nor average parasite load significantly differed between CCR-exposed and reference turtles, although parasite load increased with turtle size. Regardless of site, temperature had a significant impact on turtle metabolic rates; as temperature increased, turtle metabolic rates increased. The effect of temperature on turtle metabolic rates was less pronounced for CCR-exposed turtles, which resulted in CCR-exposed turtles having lower metabolic rates than reference turtles at 30 and 35 °C. Our results demonstrate that turtles accumulate CCR from their environment and that accumulation of CCR is associated with changes in turtle physiological functions when additional stressors are present.
Collapse
Affiliation(s)
- Jarad P Cochran
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA; Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA.
| | - David L Haskins
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Naya A Eady
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA; College of Arts and Sciences, Trinity Washington University, Washington D.C, 20017, USA
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA
| | - Melissa A Pilgrim
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA; Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
15
|
Finger JW, Hamilton MT, Kelley MD, Zhang Y, Kavazis AN, Glenn TC, Tuberville TD. Dietary Selenomethionine Administration and Its Effects on the American Alligator (Alligator mississippiensis): Oxidative Status and Corticosterone Levels. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:37-44. [PMID: 29737374 DOI: 10.1007/s00244-018-0530-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is an essential nutrient which in excess causes toxicity. The disposal of incompletely combusted coal, which often is rich in Se, into aquatic settling basins is increasing the risk of Se exposure worldwide. However, very few studies have looked at the physiological effects of Se exposure on long-lived, top trophic vertebrates, such as the American alligator (Alligator mississippiensis). During a 7-week period, alligators were fed one of three dietary treatments: mice injected with deionized water or mice injected with water containing 1000 or 2000 ppm selenomethionine (SeMet). One week after the last feeding alligators were bled within 3 min of capture for plasma corticosterone (CORT). A few days later, all alligators were euthanized and whole blood and tail tissue were harvested to measure oxidative damage, an antioxidant-associated transcription factor, and antioxidant enzymes [glutathione peroxidase-1 (GPX1), superoxide dismutase-1 (SOD1), and SOD2] by Western blotting. There was a dose-dependent increase in baseline CORT levels in alligators administered SeMet. Except for blood SOD2 levels, SeMet treatment had no effect (p > 0.05 for all) on oxidative status: oxidative damage, GPX1, SOD1, and muscle SOD2 levels were similar among treatments. Our results illustrate that high levels of Se may act as a stressor to crocodilians. Future studies should investigate further the physiological effects of Se accumulation in long-lived, top-trophic vertebrates.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA.
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| | - Meghan D Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
16
|
Haskins DL, Howerth EW, Tuberville TD. Experimentally Induced Selenosis in Yellow-Bellied Slider Turtles ( Trachemys scripta scripta). Vet Pathol 2018; 55:473-477. [PMID: 29291674 DOI: 10.1177/0300985817750454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selenosis, or selenium toxicosis, occurs in wildlife and livestock, usually because of excessive intake of selenium via selenium-containing plants. Although it is known that wild slider turtles can accumulate large amounts of selenium, little is known about how selenium exposure may affect these reptiles. In this study, the authors report histopathologic changes in yellow-bellied sliders ( Trachemys scripta scripta) caused by experimental exposure to selenomethionine. Microscopic changes in kidney and claw tissue were most significant and resembled those reported in birds. Turtles in the selenium treatment groups had acute tubular degeneration and regeneration in the kidney, with hyaline droplets in the high-dose animals, and changes in the claws ranging from epidermal hyperplasia with disorganization and intercellular edema to ulceration, and accumulation of seroheterophilic exudate between the epidermis and cornified layer. Although selenium burdens in this study are comparable with values found in wild slider turtles, more data are needed to determine if similar histopathologic abnormalities arise in wild animals exposed to high levels of selenium.
Collapse
Affiliation(s)
- David L Haskins
- 1 Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.,2 D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Elizabeth W Howerth
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
17
|
Haskins DL, Hamilton MT, Stacy NI, Finger JW, Tuberville TD. Effects of selenium exposure on the hematology, innate immunity, and metabolic rate of yellow-bellied sliders (Trachemys scripta scripta). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1134-1146. [PMID: 28780652 DOI: 10.1007/s10646-017-1839-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 05/06/2023]
Abstract
Selenium (Se) is a naturally occurring essential element that can be toxic to vertebrates at high concentrations. Despite studies that have documented that wild reptile species can accumulate copious amounts of Se, little is known regarding specific toxicologic effects of Se. In this study, 70 juvenile yellow-bellied sliders (Trachemys scripta scripta) were exposed to one of three seleno-L-methionine (SetMet) treatments (control, n = 24; 15 mg/kg, n = 23; and 30 mg/kg, n = 23) via weekly oral gavage for 5 weeks. At the conclusion of the experiment, kidney, liver, muscle, and blood samples were collected for quantitative Se analysis. Turtles in the SeMet treatment groups accumulated significantly higher amounts of Se in all tissue types relative to controls (all p < 0.001). Turtles in the 30 mg/kg SeMet group also accumulated significantly higher amounts of Se compared to the 15 mg/kg group (all p < 0.001). Although toxicity thresholds for reptiles have not been established, Se concentrations in liver tissue from both SeMet treatment groups exceeded reported avian toxicity thresholds for liver tissue. Neither oxygen consumption nor innate bactericidal capacity were impacted by SeMet exposure. However, turtles in the 30 mg/kg SeMet group exhibited anemia, which has been reported in other vertebrates exposed to Se. Furthermore, juvenile T. s. scripta in the 30 mg/kg SeMet group experienced 17% mortality compared to 0% in the 15 mg/kg treatment and control groups. To our knowledge, this study is the first to report dose-dependent Se-associated anemia and mortality in a chelonian species.
Collapse
Affiliation(s)
- David L Haskins
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA.
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA.
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Nicole I Stacy
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - John W Finger
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|