1
|
Davila-Arenas CE, Doig L, Ji X, Panigrahi B, Ezugba I, Liber K. Toxicity Evaluation of Water and Pore Water from a Pilot-Scale Pit Lake in the Alberta Oil Sands Region to Daphnia Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:1-15. [PMID: 38825619 DOI: 10.1007/s00244-024-01071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
Significant amounts of tailings and oil sands process-affected water (OSPW) are generated by bitumen extraction in the Alberta Oil Sands region. These by-products are potentially toxic to aquatic organisms and require remediation. The study site was Lake Miwasin, a pilot-scale pit lake integrated into broader reclamation efforts. It consists of treated tailings overlaid with blended OSPW and freshwater, exhibiting meromictic conditions and harboring aquatic communities. This study assessed the potential toxicity of Lake Miwasin surface water (LMW) and pore water (LMP) using saline-acclimated Cladocera, including lab strains of Daphnia magna and Daphnia pulex and native Daphnia species collected in brackish Humboldt Lake (HL) and Lake Miwasin (LM). The pore water evaluation was used to represent a worst-case water quality scenario during pond stratification. Additionally, the inclusion of native organisms incorporated site-specific adaptations and regional sensitivity into the toxicity evaluation. Our results showed that LMW did not display acute or chronic toxicity to lab species and native Daphnia sp. (HL). Conversely, LMP was acutely toxic to both lab species and native D. pulex (LM). In chronic tests (12 days exposure), LMP negatively affected reproduction in D. pulex (lab), with reductions in the number of offspring. Limited ability to acclimated organisms to the high salinity levels of LMP resulted in a shortened exposure duration for the chronic toxicity test. In addition to salinity being identified as a stressor in LMP, toxicity identification evaluation (TIE) phase I findings demonstrated that the observed toxicity for D. magna (lab) and D. pulex (LM, native) might be attributed to ammonia and metals in LMP. Further investigations are required to confirm the contributions of these stressors to LMP toxicity.
Collapse
Affiliation(s)
| | - Lorne Doig
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Immanuela Ezugba
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada.
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
2
|
Leshuk TC, Young ZW, Wilson B, Chen ZQ, Smith DA, Lazaris G, Gopanchuk M, McLay S, Seelemann CA, Paradis T, Bekele A, Guest R, Massara H, White T, Zubot W, Letinski DJ, Redman AD, Allen DG, Gu F. A Light Touch: Solar Photocatalysis Detoxifies Oil Sands Process-Affected Waters Prior to Significant Treatment of Naphthenic Acids. ACS ES&T WATER 2024; 4:1483-1497. [PMID: 38633367 PMCID: PMC11019557 DOI: 10.1021/acsestwater.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.
Collapse
Affiliation(s)
- Timothy
M. C. Leshuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Zachary W. Young
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Brad Wilson
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Stantec, Waterloo, Ontario, Canada N2L 0A4
| | - Zi Qi Chen
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Danielle A. Smith
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- P&P
Optica, Waterloo, Ontario, Canada N2 V 2C3
| | - Greg Lazaris
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Department
of Mining and Materials Engineering, McGill
University, Montreal, Quebec, Canada H3A 0C5
| | - Mary Gopanchuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sean McLay
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Corin A. Seelemann
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Composite Biomaterials Systems Lab, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Theo Paradis
- Canadian
Natural Resources Ltd., Calgary, Alberta, Canada T2P 4J8
| | - Asfaw Bekele
- Imperial
Oil Ltd., Calgary, Alberta, Canada T2C 5N1
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Rodney Guest
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
| | - Hafez Massara
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
- Trans-Northern Pipelines Inc., Richmond Hill, Ontario, Canada L4B 3P6
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, Canada V6C 0B3
| | - Warren Zubot
- Syncrude Canada Ltd., Fort McMurray, Alberta, Canada T9H 0B6
| | - Daniel J. Letinski
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Aaron D. Redman
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - D. Grant Allen
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
| | - Frank Gu
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
3
|
Zhang Y, Shotyk W, Pelletier R, Zaccone C, Noernberg T, Mullan-Boudreau G, Martin JW. Sources, spatial-distributions and fluxes of PAH-contaminated dusts in the Athabasca oil sands region. ENVIRONMENT INTERNATIONAL 2023; 182:108335. [PMID: 38006772 DOI: 10.1016/j.envint.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) has increased in northern Alberta, Canada, due to industrial development in the Athabasca oil sands region (AOSR). However, the sources, summertime deposition fluxes and associated spatial patterns are poorly characterized, and the magnitude of contamination has not been directly contrasted with comparable measurements around large Canadian cities. PAHs were measured in Sphagnum moss collected from 30 bogs in the AOSR and compared with reference moss collected from various remote, rural and near-urban sites in Alberta and Ontario. At all 39 locations, strong correlations between depositional fluxes of PAHs and accumulation rates of ash (n = 117, r = 0.877, p < 0.001) implied that the main source of PAHs to moss was atmospheric deposition of particles. Average PAH concentrations at near-field AOSR sites (mean [SD], 62.4 [24.3] ng/g) were significantly higher than at far-field AOSR sites (44.9 [20.8] ng/g; p = 0.038) or the 7 reference sites in Alberta (20.6 [3.5] ng/g; p < 0.001). In fact, average PAH concentrations across the entire AOSR (7,850 km2) were approximately twice as high as in London, Ontario, or near petroleum upgrading and major traffic corridors in Edmonton, Alberta. A chemical mass balance model estimated that both delayed petcoke (33 % of PAHs) and fine tailings (38 % of PAHs) were the major sources of PAHs in the AOSR. Over the 2015 summer growing season, we estimate that 101-110 kg of PAHs (on 14,300-17,300 tonnes of PAH-containing dusts) were deposited to the AOSR within a 50 km radius of surface mining. Given that the highest PAH deposition was to the northern quadrant of the AOSR, which includes the First Nations community of Fort MacKay, further dust control measures should be considered to protect human and environmental health in the region.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Rick Pelletier
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Gillian Mullan-Boudreau
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden.
| |
Collapse
|
4
|
Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, Ylitalo GM, Scholz NL. Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105810. [PMID: 33823483 DOI: 10.1016/j.aquatox.2021.105810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling. Here we exposed Pacific herring (Clupea pallasi) embryos to oiled gravel effluent yielding ΣPAC concentrations as low as ~ 1 μg/L (64 ng/g in tissues). Upon hatching in clean seawater, and following the depuration of tissue PACs (as evidenced by basal levels of cyp1a gene expression), the ventricles of larval herring hearts showed a concentration-dependent reduction in posterior growth (ballooning). This was followed weeks later in feeding larvae by abnormal trabeculation, or formation of the finger-like projections of interior spongy myocardium, and months later with hypertrophy (overgrowth) of the spongy myocardium in early juveniles. Given that heart muscle cell differentiation and migration are driven by Ca2+-dependent intracellular signaling, the observed disruption of ventricular morphogenesis was likely a secondary (downstream) consequence of reduced calcium cycling and contractility in embryonic cardiomyocytes. We propose defective trabeculation as a promising phenotypic anchor for novel morphometric indicators of latent cardiac injury in oil-exposed herring, including an abnormal persistence of cardiac jelly in the ventricle wall and cardiomyocyte hyperproliferation. At a corresponding molecular level, quantitative expression assays in the present study also support biomarker roles for genes known to be involved in muscle contractility (atp2a2, myl7, myh7), cardiomyocyte precursor fate (nkx2.5) and ventricular trabeculation (nrg2, and hbegfa). Overall, our findings reinforce both proximal and indirect roles for dysregulated intracellular calcium cycling in the canonical fish early life stage crude oil toxicity syndrome. More work on Ca2+-mediated cellular dynamics and transcription in developing cardiomyocytes is needed. Nevertheless, the highly specific actions of ΣPAC mixtures on the heart at low, parts-per-billion tissue concentrations directly contravene classical assumptions of baseline (i.e., non-specific) crude oil toxicity.
Collapse
Affiliation(s)
- John P Incardona
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Barbara L French
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James Cameron
- Earth Resources Technology, under contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Karen A Peck
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Cathy A Laetz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Mary Beth Hicks
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Greg Hutchinson
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Sarah E Allan
- National Oceanic and Atmospheric Administration, Office of Response and Restoration, Anchorage, AK, USA
| | - Daryle T Boyd
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
5
|
Grung M, Meland S, Ruus A, Ranneklev S, Fjeld E, Kringstad A, Rundberget JT, Dela Cruz M, Christensen JH. Occurrence and trophic transport of organic compounds in sedimentation ponds for road runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141808. [PMID: 32882565 DOI: 10.1016/j.scitotenv.2020.141808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Sedimentation ponds have been shown to accumulate several groups of contaminants, most importantly polycyclic aromatic compounds (PACs) and metals. But also, other urban organic pollutants have shown to be present, including polybrominated diphenyl ethers (PBDEs), organophosphate compounds (OPCs) and benzothiazoles (BTs). This investigation aimed at determining the occurrence of these four groups of contaminants in sedimentation ponds and determine their transport from water/sediment to organisms. PACs, including alkylated PACs, PBDEs; OPCs and BTs were determined in water, sediment, plants, dragonfly larvae and fish from two sedimentation ponds and one reference site. Fish were analysed for PAC metabolites. Overall, higher concentrations of all four pollutant groups were detected in water and sediment from sedimentation ponds compared to two natural lakes in rural environments (reference sites). The concentration difference was highest in sediments, and >20 higher concentration was measured in sedimentation ponds (3.6-4.4 ng/g ww) compared to reference (0.2 ng/g ww) for sum BDE6. For PACs and PBDEs a clear transport from water/sediment to organisms were observed. Fish were the highest trophic level organism (3.5-5) in our study, and all four pollutant groups were detected in fish. For PBDEs a trophic biomagnification (TMF) was found both in sedimentation ponds and reference, but higher concentrations in all matrices were measured in sedimentation ponds. TMF was not calculated for PACs since they are metabolised by vertebrates, but a transfer from water/sediment to organisms was seen. For BTs and OPCs, no consistent transfer to plants and dragonfly larvae could be seen. One OPC and two BTs were detected in fish, but only in fish from sedimentation ponds. It is therefore concluded that sedimentation ponds are hotspots for urban and traffic related contaminants, of which especially PACs and PBDEs are transferred to organisms living there.
Collapse
Affiliation(s)
- Merete Grung
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Sondre Meland
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Sissel Ranneklev
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Eirik Fjeld
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Alfhild Kringstad
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Jan Thomas Rundberget
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Majbrit Dela Cruz
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Yang F, Li G, Sang N. Embryonic exposure to soil samples from a gangue stacking area induces thyroid hormone disruption in zebrafish. CHEMOSPHERE 2019; 236:124337. [PMID: 31330433 DOI: 10.1016/j.chemosphere.2019.07.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The total accumulative stockpiles of gangue from long-term coal mining exceed 1 billion tons and occupy 182 square kilometers, and 50 million tons of additional gangue are generated per year in Shanxi, a major energy province in China. The objective of this study was to examine whether exposure to village soils affected by gangue stacking would disrupt thyroid hormone system homeostasis and eventually affect endocrine system and development, using zebrafish (Danio rerio) as a model organism. The zebrafish embryos were exposed to village soil leachates at 0, 1:9, 1:3 and 1:1 from 1 to 120 h postfertilization (hpf), and the sample caused a dose-dependent increase in the mortality and malformation rate, and decrease in the heart rate, hatching rate and body length of zebrafish larvae. Importantly, the soil leachate alleviated the whole-body triiodothyronine (T3) and thyroxine (T4) levels at higher concentrations, and altered the expression of the hypothalamic-pituitary-thyroid (HPT) axis-regulating genes crh, trh, tshβ, nis, tg, nkx2.1, pax8, hhex, ttr, dio1, dio2, ugt1ab, trα, and trβ and the PAH exposure-related genes ahr2 and cyp1a. These findings highlight the potential risk of thyroid hormone disruption and developmental toxicity from soil samples around coal gangue stacking areas.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
7
|
Vehniäinen ER, Haverinen J, Vornanen M. Polycyclic Aromatic Hydrocarbons Phenanthrene and Retene Modify the Action Potential via Multiple Ion Currents in Rainbow Trout Oncorhynchus mykiss Cardiac Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2145-2153. [PMID: 31237719 DOI: 10.1002/etc.4530] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in aqueous environments. They affect cardiovascular development and function in fishes. The 3-ring PAH phenanthrene has recently been shown to impair cardiac excitation-contraction coupling by inhibiting Ca2+ and K+ currents in marine warm-water scombrid fishes. To see if similar events take place in a boreal freshwater fish, we studied whether the PAHs phenanthrene and retene (an alkylated phenanthrene) modify the action potential (AP) via effects on Na+ (INa ), Ca2+ (ICaL ), or K+ (IKr , IK1 ) currents in the ventricular myocytes of the rainbow trout (Oncorhynchus mykiss) heart. Electrophysiological characteristics of myocytes were measured using whole-cell patch clamp. Micromolar concentrations of phenanthrene and retene modified the shape of the ventricular AP, and retene profoundly shortened the AP at low micromolar concentrations. Both PAHs increased INa and reduced ICaL and IKr , but retene was more potent. Neither of the PAHs had an effect on IK1 . Our results show that phenanthrene and retene affect cardiac function in rainbow trout by a mechanism that involves multiple cardiac ion channels, and the final outcome of these changes (shortening of AP) is opposite to that observed in scombrid fishes (prolongation of AP). The results also show that retene and aryl hydrocarbon receptor (AhR) agonist have an additional mechanism of toxicity besides the previously known AhR-mediated, transcription-dependent one. Environ Toxicol Chem 2019;38:2145-2153. © 2019 SETAC.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
8
|
Chronic toxicity of oil sands tailings pond sediments to early life stages of fathead minnow ( Pimephales promelas). Heliyon 2019; 5:e02509. [PMID: 31687598 PMCID: PMC6819858 DOI: 10.1016/j.heliyon.2019.e02509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023] Open
Abstract
In this study fathead minnow (Pimephales promelas) embryo-larval stages were exposed to two oil sands tailings pond sediments which had previously been shown to decrease the survival of embryo-larval larval stages of walleye (Sander vitreus) and northern pike (Esox lucius). Fathead minnow are standard test species and we wanted to compare their sensitivity to the other two species. Fathead minnow larvae were exposed for 20 days (5 days in the egg stage and 15 days in the larval stage) with daily renewal of sediments and waters. Sediments contained polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs (APAHs). Results from an earlier study showed that Sediment 1 contained 173 μg/g total PAHs + APAHs (97 % alkylated), and sediment 2 contained 401 μg/g total PAHs + APAHs (95 % alkylated). Fathead minnow larvae exposed to oil sands tailings pond sediments had decreased survival, decreased weight, and increased deformities. Fathead minnow survival was unaffected at the embryo stage and at hatch. Most deaths occurred at the larval stages 1–8 days after hatching, showing the importance of exposing the fish for at least a week after hatch. Toxicity was seen at 0.2 g/L of sediment, which was equivalent to the addition of 35 and 80 μg total PAHs + APAHs to 1 L of overlying water for sediment 1 and 2, respectively. When compared to embryo-larval northern pike and walleye results from previous studies, all three species of fish responded more strongly to sediment 2 compared to sediment 1. For effects on lethality, fathead minnow were equally sensitive to pike, but walleye were 5–28 times more sensitive to the lethal effects of the sediments compared to both fathead minnow and pike. The study (and comparisons to our previous studies) shows the difference in sensitivity between a model laboratory species (fathead minnow) and some species of wild fish that are highly relevant to the oil sands area of Alberta.
Collapse
|
9
|
Lyons DD, Philibert DA, Zablocki T, Qin R, Huang R, Gamal El-Din M, Tierney KB. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:959-968. [PMID: 30029330 DOI: 10.1016/j.envpol.2018.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Taylor Zablocki
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
10
|
Parrott JL, Marentette JR, Hewitt LM, McMaster ME, Gillis PL, Norwood WP, Kirk JL, Peru KM, Headley JV, Wang Z, Yang C, Frank RA. Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:264-274. [PMID: 29289775 DOI: 10.1016/j.scitotenv.2017.12.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 05/05/2023]
Abstract
UNLABELLED To assess the toxicity of winter-time atmospheric deposition in the oil sands mining area of Northern Alberta, embryo-larval fathead minnow (Pimephales promelas) were exposed to snowmelt samples. Snow was collected in 2011-2014 near (<7km) oil sands open pit mining operations in the Athabasca River watershed and at sites far from (>25km) oil sands mining. Snow was shipped frozen back to the laboratory, melted, and amended with essential ions prior to testing. Fertilized fathead minnow eggs were exposed (<24h post-fertilization to 7-16days post-hatch) to a range of 25%-100% snowmelt. Snow samples far from (25-277km away) surface mining operations and upgrading facilities did not affect larval fathead minnow survival at 100%. Snow samples from sites near surface mining and refining activities (<7km) showed reduced larval minnow survival. There was some variability in the potencies of snow year-to-year from 2011 to 2014, and there were increases in deformities in minnows exposed to snow from 1 site on the Steepbank River. Although exposure to snowmelt from sites near oil sands surface mining operations caused effects in larval fish, spring melt water from these same sites in late March-May of 2010, 2013 and 2014 showed no effects on larval survival when tested at 100%. Snow was analyzed for metals, total naphthenic acid concentrations, parent PAHs and alkylated PAHs. Naphthenic acid concentrations in snow were below those known to affect fish larvae. Concentrations of metals in ion-amended snow were below published water quality guideline concentrations. Compared to other sites, the snowmelt samples collected close to mining and upgrading activities had higher concentrations of PAHs and alkylated PAHs associated with airborne deposition of fugitive dusts from mining and coke piles, and in aerosols and particles from stack emissions. CAPSULE Snow collected close to oil sands surface mining sites is toxic to larval fathead minnows in the lab; however spring melt water samples from the same sites do not reduce larval fish survival.
Collapse
Affiliation(s)
- J L Parrott
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada.
| | - J R Marentette
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - L M Hewitt
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - M E McMaster
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - P L Gillis
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - W P Norwood
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - J L Kirk
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| | - K M Peru
- National Hydrology Research Centre, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon S7N 3H5, SK, Canada
| | - J V Headley
- National Hydrology Research Centre, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon S7N 3H5, SK, Canada
| | - Z Wang
- Environment and Climate Change Canada, River Road, Ottawa K1A 0H2 1A1, ON, Canada
| | - C Yang
- Environment and Climate Change Canada, River Road, Ottawa K1A 0H2 1A1, ON, Canada
| | - R A Frank
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington L7S 1A1, ON, Canada
| |
Collapse
|
11
|
Raine JC, Turcotte D, Romanowski L, Parrott JL. Oil sands tailings pond sediment toxicity to early life stages of northern pike (Esox lucius). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:567-575. [PMID: 29268228 DOI: 10.1016/j.scitotenv.2017.12.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The Athabasca River in Alberta flows through natural sources of eroding oil sands bitumen and oil sands mining operations that may result in low level contamination of surface waters. Northern pike (Esox lucius) are apex predators and important food and game fish species native to the Athabasca River system. This species has the potential to be exposed to both natural and anthropogenic sources of contamination from oil sands related materials throughout its life cycle. Pike are difficult to rear in the laboratory and little information exists on the toxicity of oil sands related materials to this key indigenous fish species. In this study, the potential effects of two sediment samples collected from different areas of one tailings pond in the Athabasca oil sands area are assessed in a daily renewal bioassay on early life stages of northern pike. Gametes were collected from spawning wild pike captured from a reference site outside of the oil sands area. Fertilized eggs were exposed to control water or increasing concentrations of tailings pond sediments for 21days, coinciding with initiation of exogenous feeding and completion of yolk absorption. Developing fish were examined for survival and changes in body weight, length, and development. Embryos exhibited increased developmental abnormalities and decreased growth and survival with increasing sediment concentration. Both sediment samples had similar levels of naphthenic acids and similar types of PAHs, with alkylated PAHs dominating. However, concentrations of total and alkylated PAHs differed between sediment samples and were related to increasing developmental abnormalities and decreased growth and survival. This is consistent with developmental changes observed with exposure to PAHs in other fish species. These results provide information on the effects of tailings pond sediments comprising mixtures of PAHs and alkylated PAHs on the development and survival of a key species in the northern aquatic ecosystem.
Collapse
Affiliation(s)
- J C Raine
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada.
| | - D Turcotte
- National Hydrology Research Centre, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - L Romanowski
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; National Hydrology Research Centre, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | - J L Parrott
- Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
12
|
Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos. Sci Rep 2018; 8:2830. [PMID: 29434264 PMCID: PMC5809384 DOI: 10.1038/s41598-018-21209-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 11/08/2022] Open
Abstract
After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.
Collapse
|