1
|
Zhou Z, Ding F, Li Y. Study of mercury bioavailability using isotope dilution and BCR sequential extraction in the sediment of Yellow Sea and East China Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134712. [PMID: 38795492 DOI: 10.1016/j.jhazmat.2024.134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Mercury (Hg) emitted from East Asian has increased the risk of Hg in China Marginal Seas for decades. However, the speciation of Hg (especially the bioavailable Hg) in these regions remains unclear. To address this problem, we analyzed total Hg (THg) and methylmercury (MeHg) in the sediment and porewater of Yellow sea (YS) and East China Sea (ECS) and determined the speciation of Hg using both improved BCR sequential extraction and isotope dilution (ID) techniques. Nearshore areas of YS and ECS exhibited higher THg levels in sediments and porewater, suggesting the significant contribution of terrestrial inputs. The spatial distribution of MeHg showed similar trends with THg, but the sites with higher MeHg concentrations did not align with those of THg. The improved BCR sequential extraction method showed the residual fraction dominated Hg content (∼44 %) in both systems, with a minor bioavailable carbonate fraction (1 %). The Spearman correlation analysis indicates that Eh and pH are the two factors significantly affected Hg bioavailability in the sediment. The bioavailability of Hg (estimated by the BCR method) showed a significant positive correlation with MeHg levels in the sediment (R²=0.47, P < 0.05), suggesting that BCR can be used to estimate the potential of Hg methylation in the sediment. However, the extent of bioavailable Hg in BCR and ID method were 1.15 ± 0.38 % and 29.5 ± 14.8 %, respectively, implying that Hg bioavailability may be underestimated by BCR techniques compared to ID methods (T-test, P < 0.01).
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengju Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Yang H, Yang X, Zhang Q, Lu D, Wang W, Zhang H, Yu Y, Liu X, Zhang A, Liu Q, Jiang G. Precisely Identifying the Sources of Magnetic Particles by Hierarchical Classification-Aided Isotopic Fingerprinting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9770-9781. [PMID: 38781163 DOI: 10.1021/acs.est.4c02702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuezhi Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qinghua Zhang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Binner H, Sullivan T, Jansen MAK, McNamara ME. Metals in urban soils of Europe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158734. [PMID: 36108828 DOI: 10.1016/j.scitotenv.2022.158734] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Metal contamination of soils is widespread across Europe and is of great concern as it may impact food production, the supply of drinking water and human health (European Environment Agency, 2014; Panagos et al., 2013). Most research to date on soil metal contamination has focussed on agricultural soils (Tóth et al., 2016a). Current knowledge of the extent of urban soil metal contamination in Europe, however, is limited, especially for soils in recreational areas, which is particularly concerning as these areas may have a high footfall. Here, we conducted a systematic analysis of metal contamination in European urban soils based on 174 peer-reviewed studies spanning 143 urban sites and 29 European countries. The results show that reporting of data on urban soil metals is highly heterogeneous across the study area. Over half of all studies are from only five countries (Italy, Spain, UK, Poland and Serbia) and no data are available for 14 other European countries. The metals that most commonly exceed national safety thresholds are Pb, Zn, Cu, Cr and Ni. Elevated levels of these metals are usually attributed to anthropogenic sources, primarily traffic and industry. Some 22 % of urban sites studied show anthropogenic enrichment; this phenomenon is most common in Italy, Serbia and Finland. In contrast, 44 % of urban sites studied show geogenic metal enrichment; this is most common in Italy, the UK and Serbia. The dataset is subject to a sample size bias, whereby soil metal enrichment is identified more frequently in regions with more data. Future studies should focus on key knowledge gaps, such as urban soils in locations with current or historical heavy industrialisation and locations in central and eastern Europe. Study methods should be standardised to facilitate comparison of soil metal data from different studies and European safety thresholds should be identified for key elements.
Collapse
Affiliation(s)
- H Binner
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland; Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland.
| | - T Sullivan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland; Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland.
| | - M A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland; Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland.
| | - M E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland; Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland.
| |
Collapse
|
4
|
Marzouk ER, Donner E, von der Kammer F, Bailey EH, Shetaya WH, Young SD, Lombi E. Assessing the Lability and Environmental Mobility of Organically Bound Copper by Stable Isotope Dilution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5580-5589. [PMID: 35438975 DOI: 10.1021/acs.est.2c00964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals. However, its application to study the lability of NOM-Cu required development of a robust separation and detection approach so that free Cu ions can be discriminated from (the also soluble) NOM-Cu. We developed a SID protocol (with enriched 65Cu) to quantify the labile pool of NOM-Cu using size exclusion chromatography coupled to a UV detector (for the identification of different NOM molecular weights) and ICP-MS (for 65Cu/63Cu ratio measurement). The Cu isotopic-exchange technique was first characterized and verified using standard NOM (SR-NOM) before applying the developed technique to an "organic-rich" podzol soil extract. The developed protocol indicated that, in contrast to the common knowledge, significant proportions of SR-NOM-Cu (25%) and soil organic-Cu (55%) were not labile, i.e., permanently locked into inaccessible organic structures. These findings need to be considered in defining Cu interactions with the reactive pool of NOM using geochemical models and risk evaluation protocols in which complexed Cu has always been implicitly assumed to be fully labile and exchangeable with free Cu ions.
Collapse
Affiliation(s)
- Ezzat R Marzouk
- Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai 45516, Egypt
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Frank von der Kammer
- University of Vienna, Department of Environmental Geosciences, Althanstraße 14 UZAII, A-1090 Vienna, Austria
| | - Elizabeth H Bailey
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, Loughborough LE12 5RD, U.K
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Scott D Young
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, Loughborough LE12 5RD, U.K
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
5
|
Dong Q, Liu Y, Liu G, Guo Y, Yang Q, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123975. [PMID: 33265016 DOI: 10.1016/j.jhazmat.2020.123975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
The newly introduced Cd (CdN) has different environmental fates than legacy Cd (CdL) and how to distinguish them in soil under different amendments is crucial for understanding natural aging and engineered remediation of Cd pollution in soil. In this study, enriched stable isotope tracer (112Cd) was introduced to distinguish the fate of CdN and CdL in paddy soil under pH adjustment and quicklime, slaked lime, and biochar amendments. The behaviors of CdN and CdL were studied during 56 days of flooding incubation through overlying water analysis, sequential extraction fractionation and lability (exchangeable pool probed by 110Cd isotopic spike) assessment. The results showed that soil pH is the main driving factor controlling the partition of both CdN and CdL in overlying water. During the incubation, CdN transformed quickly from soluble fraction to residual fraction under all treatments. In addition, at the end of the incubation, CdN concentrations in residual fraction were much higher than that of CdL, suggesting a more thorough aging of CdN than CdL. The labile CdN (ECdN) under pH adjustment and biochar amendment decreased during incubation and ECdN% was essentially the same with that of ECdL% after 28 days, indicating the aging equilibrium of exchangeable pool of CdN.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Yang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Golui D, Datta SP, Dwivedi BS, Meena MC, Ray P, Trivedi VK. A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. ENVIRONMENTAL EARTH SCIENCES 2021; 80:667. [PMID: 34603536 PMCID: PMC8475353 DOI: 10.1007/s12665-021-09988-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/16/2021] [Indexed: 05/16/2023]
Abstract
UNLABELLED Safe levels of extractable pollutant elements in soil have not been universally established. Prediction of metal solubility in polluted soils and the subsequent transfer of these metals from soil pore water to the human food supply via crops are required for effective risk assessment from polluted soils. Thus an attempt has been made to develop a novel approach to protect human health from exposure to toxic metals through assessing risk from metal polluted soils utilised for agriculture. In this study, we assess the relative efficacy of various forms of 'free ion activity model' (FIAM) for predicting the concentration of cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) in spinach and wheat as example crops, thereby providing an assessment of risk to human health from consumption of these crops. Free metal ion activity in soil solution was estimated using the Windermere Humic Aqueous Model VII (WHAM-VII) and the Baker soil test. Approximately 91, 81, 75, 94 and 70% of the variability in Cd, Pb, Ni, Zn and Cu content, respectively, of spinach could be described by a FIAM using an estimate of the free ion activity of the metals provided by WHAM-VII. Owing to the different concentration of ethylenediamine tetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA) used in the present experiment, higher prediction coefficients were obtained using EDTA (0.05 M), rather than DTPA (0.005 M), as the metal extractant in an integrated solubility-FIAM model. Out of three formulations, the FIAM, based on free ion activity of metals in soil pore water, determined from solution extracted with Rhizon samplers, was distinctly superior to the other formulations in predicting metal uptake by spinach and wheat. A safe level of extractable metal in soil was prescribed using a hazard quotient derived from predicted plant metal content and estimated dietary intake of wheat and spinach by a human population. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12665-021-09988-7.
Collapse
Affiliation(s)
- Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| | - S. P. Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| | - B. S. Dwivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| | - M. C. Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| | - P. Ray
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| | - V. K. Trivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
7
|
Mao L, Yan N, Kong H, Ye H, Li F. Ecological risk assessment of trace metals in sediments under reducing conditions based on isotopically exchangeable pool. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:171-180. [PMID: 33357161 DOI: 10.1080/10934529.2020.1857154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Determination of potential mobility of toxic trace metals in sediments under changing redox condition is important in ecological risk assessment. Current methods are limited in risk prediction in such dynamic environment. In this study, we have discussed the general disagreement from widely used methods (sediment quality guideline (SQGs), potential ecological risk index (PERI), risk assessment code (RAC) using BCR fraction information). In addition, the stable isotopic dilution method (IDM) was also modified to quantify metal lability in a microcosm experiment mimicking river bank sediment turning into anaerobic. The isotopically exchangeable Cd, Cu, Pb, and Zn quantified by IDM (%E incub) was used in the RAC to reveal the trend of risk during this process. Strong risks from Cd are suggested by the PERI and RAC as a result of high toxicity and mobility of the element, while SQGs suggests medium risk for Cu, Pb, and Zn in certain samples. The disagreement between the results of RAC assessed by metal lability (%E dry) and by BCR metal fractionation reflects the effect of sediment properties and source of metal contamination. The RAC based on the non-residual fractions is likely to overestimate the potential risk for most metals even there is a significant change in sediment Eh. The RAC assessed by %E incub reveals that the variability in risk in response to the reducing Eh is not consistent. Large fluctuation in %E incub for Cd (28.5%, 49.5%), Pb (27.6%, 18.2%), and Cu (14.4%, 24.7%) can shift the risks to a higher level in certain range of Eh in two sediments. In sediment with lower contents of metal binding phases (e.g. mineral oxides, organic matters), the release of metals can be more significant, thus higher ecological risk in changing redox condition.
Collapse
Affiliation(s)
- Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Nanxia Yan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Kong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua Ye
- Shanghai Textile Architectural Design Research Institute Co., Ltd, Shanghai, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Huang JH, Shetaya WH, Osterwalder S. Determination of (Bio)-available mercury in soils: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114323. [PMID: 32311621 DOI: 10.1016/j.envpol.2020.114323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Despite the mercury (Hg) control measures adopted by the international community, Hg still poses a significant risk to ecosystem and human health. This is primarily due to the ability of atmospheric Hg to travel intercontinentally and contaminating terrestrial and aquatic environments far from its natural and anthropogenic point sources. The issue of Hg pollution is further complicated by its unique physicochemical characteristics, most noticeably its multiple chemical forms that vary in their toxicity and environmental mobility. This meant that most of the risk evaluation protocols developed for other metal(loid)s are not suitable for Hg. Soil is a major reservoir of Hg and a key player in its global cycle. To fully assess the risks of soil Hg it is essential to estimate its bioavailability and/or availability which are closely linked to its toxicity. However, the accurate determination of the (bio)-available pools of Hg in soils is problematic, because the terms 'bioavailable' and 'available' are ill-defined. In particular, the term 'bioavailable pool', representing the fraction of Hg that is accessible to living organisms, has been consistently misused by interchanging with other intrinsically different terms e.g. mobile, labile, reactive and soluble pools. A wide array of physical, chemical, biological and isotopic exchange methods were developed to estimate the (bio)-available pools of Hg in soil in an attempt to offer a plausible assessment of its risks. Unfortunately, many of these methods do not mirror the (bio)-available pools of soil Hg and suffer from technical drawbacks. In this review, we discuss advantages and disadvantages of methods that are currently applied to quantify the (bio)-availability of Hg in soils. We recommended the most feasible methods and give suggestions how to improve the determination of (bio)-available Hg in soils.
Collapse
Affiliation(s)
- Jen-How Huang
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland.
| | - Waleed H Shetaya
- Air Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland
| |
Collapse
|
9
|
Kaninga BK, Chishala BH, Maseka KK, Sakala GM, Lark MR, Tye A, Watts MJ. Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1069-1094. [PMID: 31134395 DOI: 10.1007/s10653-019-00326-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals are of environmental significance due to their effect on human health and the ecosystem. One of the major exposure pathways of Heavy metals for humans is through food crops. It is postulated in the literature that when crops are grown in soils which have excessive concentrations of heavy metals, they may absorb elevated levels of these elements thereby endangering consumers. However, due to land scarcity, especially in urban areas of Africa, potentially contaminated land around industrial dumps such as tailings is cultivated with food crops. The lack of regulation for land-usage on or near to mine tailings has not helped this situation. Moreover, most countries in tropical Africa have not defined guideline values for heavy metals in soils for various land uses, and even where such limits exist, they are based on total soil concentrations. However, the risk of uptake of heavy metals by crops or any soil organisms is determined by the bioavailable portion and not the total soil concentration. Therefore, defining bioavailable levels of heavy metals becomes very important in HM risk assessment, but methods used must be specific for particular soil types depending on the dominant sorption phases. Geochemical speciation modelling has proved to be a valuable tool in risk assessment of heavy metal-contaminated soils. Among the notable ones is WHAM (Windermere Humic Aqueous Model). But just like most other geochemical models, it was developed and adapted on temperate soils, and because major controlling variables in soils such as SOM, temperature, redox potential and mineralogy differ between temperate and tropical soils, its predictions on tropical soils may be poor. Validation and adaptation of such models for tropical soils are thus imperative before such they can be used. The latest versions (VI and VII) of WHAM are among the few that consider binding to all major binding phases. WHAM VI and VII are assemblages of three sub-models which describe binding to organic matter, (hydr)oxides of Fe, Al and Mn and clays. They predict free ion concentration, total dissolved ion concentration and organic and inorganic metal ion complexes, in soils, which are all important components for bioavailability and leaching to groundwater ways. Both WHAM VI and VII have been applied in a good number of soils studies with reported promising results. However, all these studies have been on temperate soils and have not been tried on any typical tropical soils. Nonetheless, since WHAM VII considers binding to all major binding phases, including those which are dominant in tropical soils, it would be a valuable tool in risk assessment of heavy metals in tropical soils. A discussion of the contamination of soils with heavy metals, their subsequent bioavailability to crops that are grown in these soils and the methods used to determine various bioavailable phases of heavy metals are presented in this review, with an emphasis on prospective modelling techniques for tropical soils.
Collapse
Affiliation(s)
- Belinda K Kaninga
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia
- Department of Soil Science, School of Agricultural Sciences, University of Zambia, P.O box 32379, Lusaka, Zambia
| | - Benson H Chishala
- Department of Soil Science, School of Agricultural Sciences, University of Zambia, P.O box 32379, Lusaka, Zambia
| | - Kakoma K Maseka
- Copperbelt University, Jambo Drive, Riverside, Kitwe, Zambia
| | - Godfrey M Sakala
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia
| | - Murray R Lark
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK
| | - Andrew Tye
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK.
| |
Collapse
|
10
|
Mao L, Liu L, Yan N, Li F, Tao H, Ye H, Wen H. Factors controlling the accumulation and ecological risk of trace metal(loid)s in river sediments in agricultural field. CHEMOSPHERE 2020; 243:125359. [PMID: 31765905 DOI: 10.1016/j.chemosphere.2019.125359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 05/10/2023]
Abstract
There is an increasing concern of ecological risk from toxic trace metals in sediments to aquatic environment in agricultural field. However, the knowledge of factors that control the accumulation and risk of trace metals in such environment is limited. In this study, we conducted source apportionment of 9 trace metal(loid)s in river sediments on Chongming Islands, China, where there had been >120 years of agricultural practice. The influence from sediment properties on metal accumulation and mobility were also discussed. The results indicate that anthropogenic metal input generally elevated Cd, Sb, Pb and Zn concentrations as their average values were 3.3, 2.6, 1.6 and 1.6 times of the background respectively. Significantly high As (max = 28.2 mg/kg) and Cu (max = 145.6 mg/kg) were also found in some individual sites. Positive matrix factorization analysis suggests that atmospheric deposition contributed 53.5% and 54.7% of the total Sb and Pb respectively, while most anthropogenic Cd, Cu, As and Zn was agriculture-derived. Amorphous Fe, Mn and Al oxides and organic matter were the most important binding phases which favour trace metal accumulation. Fractionation information from BCR sequential extraction suggests high potential mobility of Cd (>37% in acid extractable fraction). Fe/Mn oxides bound As, Cd, Cu, Pb and Zn (reducible fraction), which comprised 15-26% of the total, increased the ecological risk in anoxic sediments. The potential ecological risk index and risk assessment code identified more than 74% of the sampling sites as high to extremely high ecological risk because of the high toxicity and mobility of Cd.
Collapse
Affiliation(s)
- Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Libo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Nanxia Yan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hua Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
11
|
Golui D, Datta SP, Dwivedi BS, Meena MC, Trivedi VK. Prediction of free metal ion activity in contaminated soils using WHAM VII, baker soil test and solubility model. CHEMOSPHERE 2020; 243:125408. [PMID: 31770700 DOI: 10.1016/j.chemosphere.2019.125408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
Bioavailability and ecotoxicity of metals in contaminated soils depend largely on their solubility. The present investigation was carried out to predict the free ion activity of Zn2+, Cu2+, Ni2+, Pb2+ and Cd2+ in contaminated soils as a function of pH, organic carbon content and extractable metal concentration. Twenty-five composite soil samples were collected from various locations which had a history of receiving sewage sludge (Keshopur and IARI, Delhi), municipal solid waste (Kolkata, West Bengal), polluted river water (Madanpur, Delhi) and industrial effluents (Debari, Rajasthan and Sonepat, Haryana). Four composite soil samples were also collected from adjacent fields which had not received contaminated amendments. Free ion activities (-log10 values), viz. pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ as measured by the Baker soil test, were 10.1 ± 1.12, 13.4 ± 1.23, 12.9 ± 0.85, 11.6 ± 0.74 and 12.6 ± 2.26, respectively. Free metal ion activities were also determined using the geochemical speciation model WHAM-VII following extraction of soil solution with porous Rhizon samplers from the rhizosphere of growing plants. pH dependent Freundlich model based on soil properties could explain the variation in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ to the extent of 84, 52, 73, 60 and 70%, respectively, in the case of data from Rhizon samplers coupled with speciation modelling. Whereas, C-Q model could explain 84, 57, 82, 72 and 74% variability in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+, respectively, based on soil properties and free metal ion activity as determined with integrated use of Rhizon-WHAM-VII. Modelling approach was superior compared to that based on the Baker soil test solution.
Collapse
Affiliation(s)
- Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - S P Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India.
| | - B S Dwivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - M C Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| | - V K Trivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110 012, India
| |
Collapse
|
12
|
Qu C, Chen W, Hu X, Cai P, Chen C, Yu XY, Huang Q. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. ENVIRONMENT INTERNATIONAL 2019; 131:104995. [PMID: 31326822 DOI: 10.1016/j.envint.2019.104995] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
The mineral-organo composites control the speciation, mobility and bioavailability of heavy metals in soils and sediments by surface adsorption and precipitation. The dynamic changes of soil mineral, organic matter and their associations under redox, aging and microbial activities further complicate the fate of heavy metals. Over the past decades, the wide application of advanced instrumental techniques and modelling has largely extended our understanding on heavy metal behavior within mineral-organo assemblages. In this review, we provide a comprehensive summary of recent progress on heavy metal immobilization by mineral-humic and mineral-microbial composites, with a special focus on the interfacial reaction mechanisms of heavy metal adsorption. The impacts of redox and aging conditions on heavy metal speciations and associations with mineral-organo complexes are discussed. The modelling of heavy metals adsorption and desorption onto synthetic mineral-organo composites and natural soils and sediments are also critically reviewed. Future challenges and prospects in the mineral-organo interface are outlined. More in-depth investigations are warranted, especially on the function and contribution of microorganisms in the immobilization of heavy metals at the complex mineral-organo interface. It has become imperative to use the state-of-the-art methodologies to characterize the interface and develop in situ analytical techniques in future studies.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiping Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengrong Chen
- School of Environment and Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|