1
|
Vibhatabandhu P, Leelakun P, Yottiam A, Kanokkantapong V, Srithongouthai S. Integration of microplastics and heavy metals in the potential ecological risk index: Spatial pollution assessment of sediments in the inner Gulf of Thailand. CHEMOSPHERE 2025; 376:144280. [PMID: 40054285 DOI: 10.1016/j.chemosphere.2025.144280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
Microplastics (MPs) are emerging coastal pollutants that finally accumulate in surface sediment. The ecological risk of MPs has been individually assessed although the other pollutants also be contaminated and may cause the risk to the ecosystem. In addition to contamination from other pollutants, the ecological risk of the considered area should include the risk factor from MPs. This study examines the spatial distribution of MPs and heavy metals (HMs) in surface sediments within the inner Gulf of Thailand and evaluates their coordinated potential ecological risk. Microplastics were identified using microscopic FTIR, with an average abundance of 1381.97 ± 2254.33 pieces/kg, peaking in the Tha Chin River. MP types included polypropylene (PP), polyethylene (PE), and various others, primarily in the 16-100 μm size range. Principal component analysis revealed distinct spatial distribution patterns for MPs based on type and size. The vertical distribution in sediment showed that MP abundance decreased with increasing depth from the surface. Heavy metal contamination showed higher concentrations in river estuaries, with As, Cr, Cu, and Zn frequently exceeding standard guidelines. Significant positive correlations were found between most MP types and HMs, suggesting synergistic contamination from anthropogenic sources. The ecological risk factor for MPs (ErMPs = 0.33-70.22) was integrated into the potential ecological risk index (RI). The combined pollution index for MPs and HMs indicated low pollution loading (PLIsite = 0.25-1.68, PLIarea = 0.67) and low to moderate ecological risk (RI = 34.09-134.32). This study revealed the distribution of type-size-MPs and presented the first realized risk-scale approach for comprehensive risk assessment.
Collapse
Affiliation(s)
- Pathompong Vibhatabandhu
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Patcha Leelakun
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Anutsara Yottiam
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Sarawut Srithongouthai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Adjama I, Dave H. Tackling microplastic contamination in sewage sludge: Optimizing organic matter degradation, quantifying microplastic presence, and evaluating ecological risks for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179201. [PMID: 40138911 DOI: 10.1016/j.scitotenv.2025.179201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The omnipresence of Microplastics (MPs) is a growing global concern. Using sewage sludge as fertilizer for soil amendment can be a potential source of MPs in agricultural soil if sludge contains MPs. Sludge is a complex matrix rich in organic matter, which hinders MPs separation. For maximal organic matter degradation, in this study, the application of Fenton reagents optimized for (Fe2+/H2O2) molar ratios, i.e., 1/2, 1/4, 1/6, 1/8, and 1/10. The results show that a molar ratio of 1/2 of Fe2+/H2O2 can remove 86.6 % of the organic matter in the sewage sludge. The greenness of the optimized method was assessed and compared to available methods using AGREEprep software. The method achieved a greenness score of 0.61, significantly higher than the highest score of 0.45 among the previously reported optimized methods. This optimized method was used in the analysis of MPs in sewage sludge from 14 sewage treatment plants in Ahmedabad. Also, the ecological risks due to the application of such sludge in agriculture were assessed. MPs analysis reveals variability in MPs contamination ranging from 2.43 to 22.72 × 103 units/kg of sludge. Small-sized MPs (0.05-0.25 mm) constitute the highest proportion (65 %), predominantly comprising fibers and fragments. From a chemical composition point of view, six different types of MPs are identified, among which PU, Nylon, HDPE, and PP are the most abundant. Ecological risk assessment indicated extreme hazards in terms of the potential ecological risk index being higher than 1200 for all the sludge samples due to the abundance of MPs, specifically of PU and Nylon.
Collapse
Affiliation(s)
- Irédon Adjama
- School of Doctoral Studies & Research (SDSR), National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Hemen Dave
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Ellos DMC, Chien MF, Inoue C, Nakano H, Isobe A, Onda DFL, Watanabe K, Bacosa HP. Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant. TOXICS 2025; 13:227. [PMID: 40137554 PMCID: PMC11946039 DOI: 10.3390/toxics13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Mesoplastics are emerging environmental pollutants that can pose a threat to the environment. Researching mesoplastics is crucial as they bridge the gap between macroplastics and microplastics by determining their role in plastic fragmentation and pathways, as well as their ecological impact. Investigating mesoplastic sources will help develop targeted policies and mitigation strategies to address plastic pollution. These pollutants are found across aquatic, terrestrial, and agricultural ecosystems. Unlike microplastics, mesoplastics are reviewed in the scientific literature. This paper focuses on existing published research on mesoplastics, determining the trends and synthesizing key findings related to mesoplastic pollution. Research primarily focused on marine and freshwater ecosystems, with surface water and beach sediments being the most studied compartments. Mesoplastics research often offers baseline data, with increased publications from 2014 to 2024, particularly in East Asia. However, certain ecosystems and regions remain underrepresented. Also, mesoplastics can disrupt ecosystems by degrading biodiversity, contaminating soils and waters, and affecting food chains. Mesoplastics can also become vectors for additives and pathogenic microorganisms, highlighting their environmental risks. Various factors influence mesoplastics' prevalence, including anthropogenic and non-anthropogenic activities. With this, future research should expand into less-studied ecosystems and regions, explore mesoplastic interactions with pollutants and organisms, and promote public awareness, education, and policy measures to reduce plastic use and mitigate pollution globally.
Collapse
Affiliation(s)
- Dioniela Mae C. Ellos
- Department of Environmental Science, School of Interdisciplinary Studies, Iligan Institute of Technology, Mindanao State University, Andres Bonifacio Avenue, Iligan 9200, Philippines;
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-20 Aoba-ku, Sendai 980-8579, Japan; (M.-F.C.); (C.I.)
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-20 Aoba-ku, Sendai 980-8579, Japan; (M.-F.C.); (C.I.)
| | - Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; (H.N.); (A.I.)
- Center for Ocean Plastic Studies, Kyushu University, CU Research Building 14th Floor, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan; (H.N.); (A.I.)
- Center for Ocean Plastic Studies, Kyushu University, CU Research Building 14th Floor, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok 10330, Thailand
| | - Deo Florence L. Onda
- The Marine Science Institute, University of the Philippines, Velasquez Street, Diliman, Quezon City 1101, Philippines;
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan;
| | - Hernando P. Bacosa
- Department of Environmental Science, School of Interdisciplinary Studies, Iligan Institute of Technology, Mindanao State University, Andres Bonifacio Avenue, Iligan 9200, Philippines;
| |
Collapse
|
4
|
Mariano G, Magro C, Urbanski BQ, Nogueira MG. Microplastic contamination in the highly polluted Tietê River (São Paulo, Brazil): an unsustainable human-nature relationship. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:387. [PMID: 40074977 DOI: 10.1007/s10661-025-13829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Most domestic and industrial waste, along with plastic litter from São Paulo city, flows into the Tietê River. Microplastics (MPs) from water column and sediment samples of the Tietê River, a marginal lagoon, and Peixe River (tributary) were analyzed to verify microplastic contamination downstream the São Paulo metropolitan region. Water samples were collected after the rainy season (April 2021) and during the dry season (August 2021), with a plankton net. Sediment samples were collected only in April 2021, with a dredge. Samples were submitted to wet peroxidation (H2O2 + Fe (II) at 70 °C) and then passed through metal sieves (minimum 0.053 mm, maximum 4 mm). Microscopic counting characterized microplastic size, form, and color. µFTIR analysis was performed to verify particle chemical composition. For water, there was an increasing gradient of MPs: Peixe River < Tietê lagoon < Tietê River. For sediments, contamination in the main river and the marginal lagoon is of the same magnitude (105 MPs/kg). Size, form, and color proportions were similar when comparing the water and sediment. Small-sized transparent and blue fibers predominated. The main types of polymers were PET (23.5%), followed by HDPE, polyester, and polyethylene (14.7% each). The lentic condition of the lagoon did not increase particles in the sediment when compared to the main river. Contamination in the Tietê River water column was higher after the rains in São Paulo even 300 km downstream. Integrated water-sediment analyses were important to understand distinct processes on both spatial and temporal scales.
Collapse
Affiliation(s)
- Gabriel Mariano
- Department of Biodiversity and Biostatistics, Institute of Biosciences, State University of São Paulo, Botucatu, São Paulo, Brazil.
| | - Camila Magro
- Department of Biodiversity and Biostatistics, Institute of Biosciences, State University of São Paulo, Botucatu, São Paulo, Brazil
| | - Bruna Quirici Urbanski
- Department of Biodiversity and Biostatistics, Institute of Biosciences, State University of São Paulo, Botucatu, São Paulo, Brazil
| | - Marcos Gomes Nogueira
- Department of Biodiversity and Biostatistics, Institute of Biosciences, State University of São Paulo, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Wei W, Zhang Y, Wang L, Xing Q, Xiang J, Zhang Y, Peng Q, Chen Y, Hu Y, Ma Y, Mo L. Microplastic Pollution and Its Ecological Risks in the Xisha Islands, South China Sea. TOXICS 2025; 13:205. [PMID: 40137532 PMCID: PMC11946236 DOI: 10.3390/toxics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
China is facing increasing marine microplastic pollution. Despite the fact that the South China Sea is the largest marine area in China, the ecological danger and present state of microplastic contamination in this region have not been systematically and comprehensively investigated. This study analyzed the abundance, distribution, and characteristics of microplastics in different environmental media and biological samples from the Xisha Islands in the South China Sea, and then the ecological risk assessment of microplastic pollution in this area was conducted. The findings indicated that the quantities of sediments, soil, water, fish, and birds were 41.56 ± 19.12 items/kg, 92.94 ± 111.05 items/kg, 2.89 ± 1.92 items/L, 2.57 ± 2.12 items/ind, and 1.702 ± 1.50 items/ind, respectively. By evaluating the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI), the PLI of the Xisha Islands in the South China Sea as a whole indicated that the hazard level was slightly polluted, the PHI was at a high-risk level, and the PERI samples were at no risk, except for the soil and seawater, which were at a medium-risk level.
Collapse
Affiliation(s)
- Wenchao Wei
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Resources & Environment of Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhang
- Hainan Medical University—The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China;
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Jun Xiang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| | - Yuquan Zhang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qifei Peng
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yongfu Chen
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yufeng Hu
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yini Ma
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China; (W.W.); (L.W.); (Q.X.); (J.X.); (Y.Z.); (Q.P.); (Y.C.); (Y.H.)
| |
Collapse
|
6
|
Chaudhary M, Rawat S, Suthar S. Microplastic in upper Himalayan Ganga river: Occurrence, seasonal dynamics and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178824. [PMID: 39952209 DOI: 10.1016/j.scitotenv.2025.178824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Ganga river supports about 500 million population in the Gangetic Plain. Still, the occurrence of toxic pollutants in the Ganga river is an emerging concern, questioning its ecological health. This study is the first to quantify the microplastic (MP) and its characteristics, seasonal dynamics (pre-monsoon and post-monsoon), and environmental risk in the 19 sites (sample size, n = 228) in the upper Himalayan stretch of Ganga (Devprayag, Zone-I; Rishikesh, Zone-II; Haridwar, Zone-III) with multiples sampling (6 months). Average MP particles were found in the range of 100-1550 particles/L in water and 50-1300 particles/kg in sediment samples. MP flux showed an increased trend (Zone-I < Zone-II < Zone-III) while the river flows from the foothills of the Himalayas to densely populated bank cities. MP-sized 500 μm to 5 mm were dominant in sediment (45.68 %) and water (52.73 %) during pre-monsoon. MP-sized 500 μm to 5 mm, 250 μm to 500 μm, and 50 μm to 250 μm were found to be 45.68 %, 27.57 %, and 26.75 % in water and 52.73 %, 23.03 %, and 24.24 % in sediments, respectively with abundance during post-monsoon. μATR-FTIR analysis revealed polyethylene, polyamides and polystyrene as dominant polymers and no drastic change occurred in polymer types between studied seasons. The fibers were the predominant particle type, followed by fragments and films across the studied stretch of the Ganga river. The pollution load index suggested that Zone-I and Zone-II fall under hazard category 1 while Zone-III in category 2. Polymer hazard index and potential ecological risk index data suggested an extreme pollution level of MP in a studied stretch of the Ganga river. This study emphasizes the adverse impacts of beach activities, tourist accommodations, and open waste disposals on river health, highlighting the urgent action required for effective plastic waste management. We urged a comprehensive study on MPs in the Ganga river basin, which serves as pathways and sinks for these particles into the ocean.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India
| | - Suman Rawat
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, India.
| |
Collapse
|
7
|
Yang Z, Nagashima H, Hasegawa N, Futai N, Koike Y, Arakawa H. Onboard measurement of polyethylene microplastics on a research vessel using Raman micro-spectroscopy: A preliminary study for testing feasibility. MARINE POLLUTION BULLETIN 2025; 212:117588. [PMID: 39864352 DOI: 10.1016/j.marpolbul.2025.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Microplastic pollution in marine environments poses significant environmental risks due to its widespread presence. Traditional micro-imaging measurement of microplastics often rely on post-cruise laboratory analyses. In this study, we explored the feasibility of onboard microplastic measurement using Raman spectroscopy, with a focus on polyethylene (PE). A measurement system was developed, and two concentration estimation approaches were proposed. To evaluate recovery and validate the methodology, artificial microplastic samples were prepared, yielding a recovery rate of 94.8 % ± 10.4 %. Environmental samples were then analyzed using the developed system, with results validated against conventional Fourier-transform infrared (FTIR) spectroscopy. The estimated PE concentration was 583 pieces/m3 (95% confidence interval: [2, 1542] pieces/m3) using the direct approach and 1453 pieces/m3 (95% credible interval: [291, 92,837] pieces/m3) using the Bayesian approach. Both estimates were consistent with the 333 pieces/m3 obtained through validation with FTIR, indicating adequate accuracy. However, the wide confidence intervals highlight the need for improved precision. While challenges remain, this study provides a comprehensive experimental procedure and introduces a robust data analysis framework, which could offer a foundational methodology for future onboard microplastic measurement research.
Collapse
Affiliation(s)
- Zijiang Yang
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Hiroya Nagashima
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Natsuo Hasegawa
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Nobuyuki Futai
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Yoshikazu Koike
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
| | - Hisayuki Arakawa
- Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
8
|
Kabir AHME, Michon E, Mingelbier M, Robert D, Soubaneh YD, Xie H, Lu Z. Microplastics in the benthic fish from the Canadian St. Lawrence River and Estuary: Occurrence, spatial distribution and ecological risk assessment. MARINE POLLUTION BULLETIN 2025; 212:117509. [PMID: 39765182 DOI: 10.1016/j.marpolbul.2024.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 03/05/2025]
Abstract
Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem. This study addressed knowledge gaps by analyzing microplastics in the gastrointestinal tracts (GIT) and gills of Channel Catfish (Ictalurus punctatus) and Atlantic Tomcod (Microgadus tomcod) in the SLRE. Forty-two fish from ten stations were examined using KOH digestion, density separation, wet-peroxidation, and spectroscopy. Results indicated an average abundance of 3.0 ± 0.4 (mean ± SE) microplastic particles per individual fish. Most detected particles were small microplastics (<809 μm) and fibers, with blue and transparent colors. Major polymers identified included polyethylene terephthalate and polyethylene. While catfish showed higher microplastic abundances per individual than tomcod, data based on GIT weight do not support microplastic biomagnification in this predator-prey relationship. Catfish from downstream of Québec City showed elevated levels of microplastics and more variations in their characteristics compared to average abundance found from a site located 50 km upstream. Urban activity may increase microplastic accumulation in downstream benthic fish and others. This highlights the need for further studies on the migratory capacities of fish species. Ecological risk assessment revealed medium to high-risks for the catfish stations close to the Québec City due to the prevalence of smaller microplastics <809 μm and highly toxic polymers (polymethyl methacrylate, polyvinylchloride, polyurethane, acrylonitrile butadiene styrene). This study provides a baseline for monitoring plastic pollution in the SLRE fish and assessing ecological risks.
Collapse
Affiliation(s)
- A H M Enamul Kabir
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| | - Elisa Michon
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Marc Mingelbier
- Direction des Habitats Aquatiques et de la Prévention des Risques, Ministère de l'Environnement, de la Lutte Contre les Changements Climatiques, de la Faune et des Parcs du Québec, Québec City, Québec G1S 4X4, Canada
| | - Dominique Robert
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Youssouf D Soubaneh
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Huixiang Xie
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Zhe Lu
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
9
|
El-Masry SM, Khedre AM, Mustafa AN. Seasonal variations and risk assessment of microplastic contamination in agricultural soil and associated macroinvertebrates in Egypt. Sci Rep 2025; 15:6590. [PMID: 39994349 PMCID: PMC11850816 DOI: 10.1038/s41598-025-88715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Contamination by microplastics (MPs) has the potential to rank among the world's most significant environmental issues. Despite the fact that MP contamination is a global problem, little is known about the time variation of MPs in agricultural soil and its faunal communities which represent a key role to risk assessment. This study represents a first field investigation regarding the MP concentrations in agricultural ecosystem in Egypt. Our study investigates the seasonal fluctuations of MPs in soil and its common fauna in a citrus orchard (Citrus sinensis) in Egypt's Sohag Governorate. Moreover, this work aimed to identify how feeding strategies and body size of the selected fauna affect the no. of MPs ingested. The greatest mean concentration of MPs in soil was observed in summer (664 ± 90.20 items/kg) dry weight. However the lowest was recorded in autumn (354 ± 70.92 items/kg). Aporrectodea caliginosa (earthworms) was more contaminated with MPs (6.84 ± 2.5 item/individual annually) than Anisolabis maritima (earwigs) (2.06 ± 0.86 item/individual annually). When comparing between taxa without considering the size of the organisms, earwigs showed higher MPs concentrations (ranged from 117.93 ± 5.23 to 244.38 ± 4.57 items/gm wet weight) than the earthworms (ranged from 25.62 ± 2.43 to 51.66 ± 4.05 items/gm wet weight). Our results found that blue and red colors were the predominant colors in the soil and the selected fauna. Also, polyester fibers (PES) were the most popular type of microplastics, followed by fractions of polyethylene (PE) and polypropylene (PP). Interestingly, the reduction in the MP particles in the present taxa was observed compared to those in the soil. Pollution load index (PLI) value varied across seasons, with the lowest recorded in autumn due to reduced MPs abundance. The Hazard (H) index indicates a moderate risk (level III) due to high polyester abundance and a low hazard score (4) across all seasons. Our results represent a starting point for further studies on the impact of MPs on soil organisms in various agricultural soils.
Collapse
Affiliation(s)
- Safa M El-Masry
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Azza M Khedre
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Asmaa N Mustafa
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
10
|
Du L, Pan B, Han X, Li D, Meng Y, Liu Z, Xiong X, Li M. Enhanced ecological risk of microplastic ingestion by fish due to fragmentation and deposition in heavily sediment-laden river. WATER RESEARCH 2025; 278:123306. [PMID: 40015218 DOI: 10.1016/j.watres.2025.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The widespread occurrence of microplastics (MPs) in rivers has aroused increasing concerns. However, there remains a significant gap about its effect on fish with different species, especially in highly-sediment-laden rivers. Here, through a large-scale investigation of microplastics in the Yellow River, our research highlighted effects of heavily sediments on MPs contamination in fish gut. MPs were 100 % tested in water, sediment and fish gut samples, with MPs in the lower reach 2∼3 times larger than that of the upper reach. Most of the microplastics were small (<1 mm), fibrous and blue fragments, composed of polyethylene, polypropylene, and polyethylene terephthalate. Feeding habitat and environment significantly controlled MPs ingestion by fish (p < 0.05), of which filter feeders and species with broader dietary preferences exhibited higher ingestion abundance, omnivorous fish abundance up to 24.9 items/individual. Heavily sediment load accelerated the fragmentation and deposition of MPs (p < 0.05), leading to the generation of more and smaller MPs particles, increasing ecological risks to aquatic organisms. Downstream, smaller sediment size and higher organic matter content also facilitated microplastic accumulation. The prevalence of highly toxic polyvinyl chloride polymers was emerged as the major contributor to environmental risks. Our results suggested that the contribution and ecological risks of small microplastics are worth attention in the mid and lower reaches of the Yellow River.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Baozhu Pan
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xu Han
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Dianbao Li
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Yueting Meng
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Zhiqi Liu
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Ming Li
- Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
11
|
Miao L, Chen Y, Adyel TM, Luo D, Zheng Q, Huang Y, Su L, Qian Y, Deng X, Yao Y, Kong M, Hou J. Microplastics in the third pole of the world: Abundance and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137642. [PMID: 39983644 DOI: 10.1016/j.jhazmat.2025.137642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Microplastics (MPs) pose a threat to the Tibetan Plateau's ecosystems. Previous studies focused mainly on lakes and specific river segments, lacking a basin-wide analysis. This study systematically examined the abundance, composition, and spatial distribution of MPs in surface waters, sediments, and sewage treatment plant tailwater in the Yarlung Zangbo River Basin (water samples through 100 µm sieve). MPs showed regional characteristics, with fibrous and fragmented forms, transparent and colored particles, and high proportions of PP and PE. Abundance was heterogeneous, higher downstream due to human activities. MPs levels in surface waters (390-1890 n/m³) and sediments (26-370 n/kg) were lower than in other regions. Sewage treatment plant tailwater was a significant MPs entry point. MPs abundance correlated with water bodies and sediments in the mainstream but less so in tributaries. It is proposed that MPs potentially originate from sources such as sewage discharge, tourism, cultivation, plastic ageing, and atmospheric transport. Water quality parameters influenced MP distribution, suggesting point source pollution impacts. MPs abundance decreased with altitude. Risk assessment showed class I PLI for surface water and sediments but high PHI and PERI for specific polymers, with the Nianchu River at highest risk. PVC and PA plastics require enhanced management.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Yongyu Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China
| | - Qianqian Zheng
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China
| | - Yuxuan Qian
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
12
|
Mendrik F, Hackney CR, Cumming VM, Waller C, Hak D, Dorrell R, Hung NN, Parsons DR. The transport and vertical distribution of microplastics in the Mekong River, SE Asia. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136762. [PMID: 39642727 DOI: 10.1016/j.jhazmat.2024.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Rivers are primary vectors of plastic debris to oceans, but sources, transport mechanisms, and fate of fluvial microplastics (<5 mm) remain poorly understood, impeding accurate predictions of microplastic flux, ecological risk and socio-economic impacts. We report on microplastic concentrations, characteristics and dynamics in the Mekong River, one of the world's largest and polluting rivers, in Cambodia and Vietnam. Sampling throughout the water column at multiple localities detected an average of 24 microplastics m-3 (0.073 mg l-1). Concentrations increased downstream from rural Kampi, Cambodia (344 km from river mouth; 2 microplastics m-3, 0.006 mg l-1), to Can Tho, Vietnam (83 km from river mouth; 64 microplastics m-3, 0.182 mg l-1) with most microplastics being fibres (53 %), followed by fragments (44 %) and the most common polymer being polyethylene terephthalate (PET) or polyester. Pathways of microplastic pollution are expected to be from urban wastewater highlighting the need for improved wastewater treatment in this region. On average, 86 % of microplastics are transported within the water column and consequently we identified an optimum sampling depth capturing a representative flux value, highlighting that sampling only the water surface substantially biases microplastic concentration predictions. Additionally, microplastic abundance does not linearly follow discharge changes during annual monsoonal floods or mirror siliciclastic sediment transport, as microplastic concentrations decrease rapidly during higher monsoon flows. The findings reveal complex microplastic transport in large rivers and call for improved sampling methods and predictive models to better assess environmental risk and guide policy.
Collapse
Affiliation(s)
- Freija Mendrik
- Energy and Environment Institute, University of Hull, UK.
| | | | | | | | - Danet Hak
- Department of Civil Engineering, Institute of Technology of Cambodia, Cambodia
| | - Robert Dorrell
- Energy and Environment Institute, University of Hull, UK
| | | | - Daniel R Parsons
- International Centre for Informatics and Disaster Resilience, Loughborough University, UK
| |
Collapse
|
13
|
Ahmed ASS, Billah MM, Ali MM, Guo L, Akhtar S, Bhuiyan MKA, Islam MS. Microplastic characterization and factors influencing its abundance in coastal wetlands: insights from the world's largest mangrove ecosystem, Sundarbans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5435-5456. [PMID: 39928085 DOI: 10.1007/s11356-025-36044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Water and sediment samples were collected from 20 sampling sites within two major river systems within the world's largest mangrove ecosystem. The primary objectives of the study were to determine MPs' abundance, composition, and potential ecological risks and to identify the factors influencing their distribution and characteristics. Results revealed MP abundances, ranging from 2 to 53 items/m3 in water and 17 to 177 items/kg in sediment. The most prevalent types of MPs were films, fragments, foams, and fibers, with the most abundant fragments. Transparent MPs of various colors, such as red, green, blue, white, and yellow, were commonly observed. Additionally, sizes of MPs ranged from < 0.5 to 5 mm, with particles < 0.5 mm dominating in water and 4-5 mm particles prevailing in sediment. Six major polymers were identified, including polystyrene (PS), polyamide (PA), Polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and ethylene propylene diene monomer (EPDM), with PS being the most abundant in both river systems. Linear mixed effect models showed that factors, such as distance from Mongla port and water velocity impacted MP abundance in water, while distance from Mongla port, total organic carbon (TOC), and total phosphorus (TP) contents affected their distribution in sediment. The Shannon-Weaver Index revealed a higher MP diversity in the Shela River compared to the Pasur. Overall, the pollution load index (PLI) and polymeric hazard index (PHI) indicated that MPs impacted both river systems, but the finding from the ecological risk index (ERI) was negligible at the individual sites. Our study recommends the long-term monitoring of MP abundance and implementation of strict regulations to reduce MPs in aquatic environments and proposes various engineering and biotechnological approaches for effective MP remediation. Further research is needed to identify both point and non-point sources of MPs and develop comprehensive strategies and policies to mitigate plastic pollution in the mangrove ecosystem.
Collapse
Affiliation(s)
- Abu Sayeed Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Via S. Alberto 163, 48123, Ravenna, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-E-Bangla Agricultural University, Dhaka, Bangladesh
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI, 53204, USA
| | | | - Md Khurshid Alam Bhuiyan
- Institute of Marine Research (INMAR), Department of Biology, Faculty of Marine and Environmental Science, University of Cádiz, Puerto Real Campus, Puerto Real, Avda. República Saharaui S/N, 11510, Cádiz, Spain
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| |
Collapse
|
14
|
Islam T, Cheng H. Characterization and risk assessment of microplastics in shoreline sediments of the Yellow River Delta. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106933. [PMID: 39731874 DOI: 10.1016/j.marenvres.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
As the intersection of river, sea, and land, river deltas are hotspots for the accumulation of microplastics (MPs). This study investigated the abundance and characteristics of MPs in surface sediments from shoreline area of the Yellow River Delta in northern China, elucidated their sources, and assessed their risk. The MPs isolated from sediment samples were detected and characterized using optical microscopy and micro-Fourier transform infrared spectroscopy (μ-FTIR). The results showed that MPs were abundant (360-2160 items/kg) in the area, and occurred mainly in small sizes (<250 μm), as fibers (20.2-50.0%), filament (4.8-21.5%), and granules (8.5-20.6%), and in transparent (27.8-40.3%), blue (11.2-31.6%), or black (7.9-26.5%) color. Polyethylene terephthalate (26.08%), polyethylene (20.47%), polypropylene (13.49%), and polyvinyl chloride (10.71%) were the dominant polymer types for the MPs. The pollution load indices (1-6) indicated that all sampling sites were polluted by MPs, while the polymeric hazard indices (65.14-91.44) suggested that MPs pollution of the area was in medium range. Overall, the ecological risk indices (91.44-475.38) of the sampling sites indicated that MPs in shoreline sediments of the Yellow River Delta posed low to considerable potential ecological risk. While the dominance of polymers with medium polymeric risk scores rendered the MPs in the shoreline sediments with relatively low risk, the majority of MPs occurred in small sizes, which complicates the actual risk posed by MPs in shoreline sediments of the Yellow River Delta and deserves attention.
Collapse
Affiliation(s)
- Tariqul Islam
- Institute of Ocean Research, Peking University, Beijing 100871, China; College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Hefa Cheng
- Institute of Ocean Research, Peking University, Beijing 100871, China; College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Klangnurak W, Prachumwong S, Alfonso MB, Nakano H, Chavanich S, Viyakarn V, Jandang S. Occurrence of microplastics in Russell's snapper (Lutjanus russellii) and associated prey species in the Central Gulf of Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5955-5970. [PMID: 39964405 PMCID: PMC11913927 DOI: 10.1007/s11356-025-36068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Microplastic (MP) contamination in fish may occur via their feeding behavior and ingestion of contaminated prey. This study investigated the presence of MPs in the predator Lutjanus russellii (Russell's snapper) and its prey along the Chumphon coast of the Central Gulf of Thailand. Stomach contents of L. russellii were analyzed to identify its prey species. Prey species were then sampled from the same geographical area as the predator specimens for subsequent MP analysis. The dietary habits of L. russellii classify it as a generalist carnivore, consuming a diverse range of food items, including zooplankton, crustaceans, and small fish. No significant correlation was observed between MP abundance and the weight or length of the predator fish (general linear model, p > 0.05). Black and red fibers were the predominant MP types in both predator and prey, though MP sizes varied among the sampled species. In predator stomachs, the most common polymers were acrylonitrile butadiene styrene (ABS; 26.32%), polyethylene terephthalate (PET; 21.05%), and polyester (PES; 10.53%). Conversely, prey samples were dominated by PES (17.58%), PET (15.38%), and ABS (13.19%). Notably, similarities in MP characteristics (shape, color, average size, and certain polymer types) were observed between L. russellii and Portunus sp. The detection of smaller PET fibers in L. russellii compared to Portunus sp. (Mann-Whitney U-test, p ≤ 0.05) suggests the transfer of MPs to L. russellii through the ingestion of hard-shelled crustacean prey. This study underscores the importance of examining predator-prey interactions to better understand MP contamination pathways in marine ecosystems, particularly in regions like the Gulf of Thailand, where plastic pollution is prevalent. Further research is required to assess the long-term ecological implications of MP transfer within marine food chains.
Collapse
Affiliation(s)
- Wanlada Klangnurak
- Department of Animal Production Technology and Fishery, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Siriluk Prachumwong
- Department of Animal Production Technology and Fishery, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - María Belén Alfonso
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, Chulalongkorn University Research Building 14th floor, Pathumwan, Bangkok, 10330, Thailand
| | - Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, Chulalongkorn University Research Building 14th floor, Pathumwan, Bangkok, 10330, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Klum Watcharobol Building 3rd Floor, Pathumwan, Bangkok, 10330, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Institute Building III 9th Floor, Pathumwan, Bangkok, 10330, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Klum Watcharobol Building 3rd Floor, Pathumwan, Bangkok, 10330, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Institute Building III 9th Floor, Pathumwan, Bangkok, 10330, Thailand
| | - Suppakarn Jandang
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan.
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, Chulalongkorn University Research Building 14th floor, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Bhaduri RN, Sinha S, Guererro AM, Jackson SL, Alemán EA, Chatterjee S. Microplastic contamination and environmental risks in the Beas River, western Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125387. [PMID: 39586456 DOI: 10.1016/j.envpol.2024.125387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The Western Himalayan mountains, with several riverine systems, are considered one of the most fragile environments in the world. Among them is Beas, a primary river that provides essential ecosystem benefits to thousands of indigenous people in North India. One of the major pollutants, microplastics (MPs), are ubiquitous contaminants, yet their occurrence in the Beas and ecological risk factors remain largely unexplored. Due to extensive tourism and urban-related burdens, the usage and release of enormous amounts of plastics and MPs into the Beas are apparent. Here, we investigated the extent of MPs pollution and subsequent environmental risks in water and sediments from Beas along a stretch of 300 km. Our results showed that MPs were abundant and widely distributed, with the abundance range (mean ± SE) being 46-222 (112.27 ± 12.43) items/L in water and 36-896 (319.47 ± 49.25) items/kg in sediment samples. We found significant differences in MPs' abundance in water but not sediments among the five sampling sites. There was a significant positive correlation between population size and the abundance of MPs, with the highest abundance in populated Kullu and the lowest loads at the remote Dhundi Glacier. Fibers and film were common morphotypes; most items measured <1 mm. Of the eleven polymers identified, the majority were polyethylene. The pollution load index ranged up to 4.99 (low-risk category); however, the polymer hazard index exceeded 1000 (highest-risk category), and the potential ecological risk index was 13,761 (extreme-risk category) at selected sites. This study fills a crucial knowledge gap and raises concerns about the possible impact on human health, as many riparian residents depend on Beas as their primary source of potable water. Our findings may assist governmental agencies in formulating comprehensive eco-friendly policies and advancing environmentally sustainable strategies in vulnerable locales adjoining the Beas waterway.
Collapse
Affiliation(s)
- Ritindra N Bhaduri
- Department of Biological Sciences, California State University Stanislaus, One University Circle, Turlock, CA, 95382, USA.
| | - Sougata Sinha
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand-175005, Himachal Pradesh, India
| | - Angelina M Guererro
- Department of Biological Sciences, California State University Stanislaus, One University Circle, Turlock, CA, 95382, USA
| | - Sonja L Jackson
- Department of Biological Sciences, California State University Stanislaus, One University Circle, Turlock, CA, 95382, USA
| | - Elvin A Alemán
- Department of Chemistry, California State University Stanislaus, One University Circle, Turlock, CA, 95382, USA
| | - Subhankar Chatterjee
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
17
|
Han Z, Jiang J, Ni X, Xia J, Yan C, Cui C. Occurrence and risk of microplastics and hexabromocyclododecane in urban drinking water systems: From source water to tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177966. [PMID: 39657333 DOI: 10.1016/j.scitotenv.2024.177966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The widespread presence of microplastics (MPs) in drinking water systems and their risk of releasing additives have caused widespread concern. However, current research on the migration and risks of MPs and additives in the complete drinking water supply chain remains inadequate. In this study, micro-Raman spectrometer was used to track the entire transport process of MPs from the water source to the tap water, with concentrations ranging from 805 to 4960 items/L, and polyethylene and Polyethylene terephthalate were dominant. The removal efficiency of MPs at the drinking water treatment plant was 85.0 ± 5.2 %. However, chlorination increased the proportion of polystyrene by 40.1 ± 5.3 %. Chlorination increases the surface roughness and carbonyl index of polystyrene standards, and promotes the release of hexabromocyclododecane (HBCD) (482.0 ng/g-2208.7 ng/g). The non-carcinogenic risk index of HBCD ingestion through drinking water remains well below 1 for residents. Complete water treatment processes significantly reduce the risks posed by MPs, achieving reductions of 54.3 % in the pollution load index and 82.1 % in the potential ecological risk index. The estimated daily intake of MPs ingested by residents through tap water ranges from 33.4 to 45.6 items/kg/d. This study investigated the occurrence of MPs in the complete drinking water supply chain and the risk of chlorine disinfection for HBCD release, which could help develop more effective MPs control measures and risk management strategies.
Collapse
Affiliation(s)
- Ziwei Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiali Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
18
|
Guo Y, Liu L, Fan Y, Du S, Chen Y, Duan Y, Han R, Xu S, Wen G, Zhou W, Zhang H, Yang P, Zhang L, Liang Z, Wang Y, Zhang B. Polyethylene terephthalate nanoplastics affect potassium accumulation in foxtail millet (Setaria italica) seedlings. BMC PLANT BIOLOGY 2024; 24:1253. [PMID: 39725935 DOI: 10.1186/s12870-024-06007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution. RESULTS In this study, we examined the impact of PET micro- and nanoplastics on foxtail millet seedling growth and potassium accumulation. Additionally, we measured reactive oxygen species (ROS) production, antioxidant enzyme activities, and the expression levels of the corresponding enzyme-encoding genes. Our findings indicated that the germination and seedling growth of foxtail millet were not significantly affected by exposure to PET plastics. However, the ROS levels in foxtail millet increased under these conditions. This increase in ROS led to the upregulation of several genes involved in K+ uptake and transport (SiHAK1, SiHAK2, SiAKT2/3, SiHKT2;2, SiHKT1;1, SiGORK, and SiSKOR), thereby increasing K+ accumulation in foxtail millet leaves. Further research revealed that higher K+ concentrations in plant leaves were correlated with increased expression of the antioxidant-related genes SiCAT1, SiPOD1, and SiSOD3, as well as increased activities of the corresponding antioxidant enzymes. This response helps mitigate the excessive accumulation and damage caused by ROS in plant cells after PET nanoplastic treatment, suggesting a potential stress response mechanism in foxtail millet against nanoplastic pollution. CONCLUSIONS Our research indicates that PET nanoplastic treatment induces the expression of genes related to K+ uptake in foxtail millet through ROS signaling, leading to increased K+ accumulation in the leaves. This process mitigates the ROS damage caused by PET nanoplastic treatment by increasing the expression and activity of genes encoding antioxidant enzymes. The present research has unveiled the K+ accumulation-related response mechanism of foxtail millet to PET nanoplastic treatment, contributing significantly to our understanding of both the potassium absorption regulation mechanism in plants and the broader impact of plastic pollution on agricultural crops. This discovery not only highlights the complexity of plant responses to environmental stressors but also underscores the importance of considering such responses when evaluating the ecological and agricultural implications of plastic pollution.
Collapse
Affiliation(s)
- Yue Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Liwen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Yimin Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Shan Du
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Chen
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yanqi Duan
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Rui Han
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Sicheng Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Guotian Wen
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Weijuan Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Haiying Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030006, Shanxi, China
| | - Pu Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
19
|
Nguyen TT, Bui VH, Lebarillier S, Vu TK, Wong-Wah-Chung P, Fauvelle V, Malleret L. Spatial and seasonal abundance and characteristics of microplastics along the Red River to the Gulf of Tonkin, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177778. [PMID: 39616918 DOI: 10.1016/j.scitotenv.2024.177778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to examine the occurrence of microplastics in surface water and sediment samples collected from Hanoi to the Ba Lat estuary along the Red River, the second-largest river in Vietnam (surface area: 156,451 km2). 21 stations were sampled during the dry (March 2023) and rainy (September 2023) seasons. The analytical procedure involved: digestion with hydrogen peroxide, flotation with potassium carbonate, and overflow filtration. The filters were analyzed by microscopy (Nikon SMZ645) to describe shapes and colors and by μ-FTIR (PerkinElmer Spotlight 400) to determine polymer types and abundances. Results showed that microplastic quantities throughout the river ranged from 10 to 203 items.m-3 in surface water and from 653 to 8069 and 990 to 21,610 items.kg-1 dried weight (d.w.) in sediment during the rainy and dry seasons, respectively. MPs were classified into two main shape groups: fiber and fragment, with fibers being predominant, representing 82.0 % and 75.5 % of microplastics in water and sediment, respectively. The primary colors identified were white/transparent, black, and blue. Particles between 13 and 200 μm were the predominant size class, accounting for 64.1 % and 72.4 % of the microplastics in water and sediment, respectively. Polyethylene, polypropylene, and polyethylene terephthalate were the main polymers, accounting for 71.5 % and 72.2 % of the microplastics in water and sediment, as revealed by μ-FTIR analyses. Overall, in the Red River, the MP pollution load is moderate, but the type of particles detected represents a high to dangerous polymer risk, resulting in a very high potential ecological risk on the river.
Collapse
Affiliation(s)
- Thi Thao Nguyen
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France; Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Van Hoi Bui
- Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Stéphanie Lebarillier
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France
| | - Toan Khanh Vu
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France; Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Pascal Wong-Wah-Chung
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France
| | - Vincent Fauvelle
- Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Laure Malleret
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France.
| |
Collapse
|
20
|
Kang Q, Zhang Y, Kang S, Gao T, Zhao Y, Luo X, Guo J, Wang Z, Zhang S. Characteristics of soil microplastics and ecological risks in the Qilian Mountains region, Northeast Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125016. [PMID: 39341408 DOI: 10.1016/j.envpol.2024.125016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) pollution has become a vital global environmental issue. However, comprehensive understanding of the ecological risks of MPs in soils of Northeast Tibetan Plateau still requires further study. In this study, we used the Agilent 8700 Laser Direct Infrared (LDIR) spectroscopy to analyze the characteristics of 10-1000 μm MPs in soils of different vegetation types throughout the Qilian Mountains basin, and to comprehensively explore the ecological risks of MPs in various ecological environments. The results indicate that MPs abundance is highest in soil of shrub areas (26,369 ± 32,147 items kg-1-dry weight (dw)), followed by woodland (22,215 ± 22,544 items kg-1-dw), desert (17,769 ± 9,040 items kg-1-dw), grassland (16,462 ± 12,872 items kg-1-dw), and forest (15,662 ± 13,857 items kg-1-dw). MPs in soils of different vegetation types show similar physical and chemical characteristics, with the shape dominated by fragments (93%-96%), followed by fibers and a few beads, with dominant sizes of 10-30 μm (63%-76%), and polymers dominated by polyamide (PA) and polyethylene terephthalate (PET). Additionally, the environmental risks posed by the fundamental characteristics of MPs have been quantified through the Pollution Load Index (PLI), Pollution Hazard Index (PHI), and Potential Ecological Risk Index (PERI) models. According to the PLI assessment, the current levels of MPs in the environment have not yet imposed significant burdens on the ecosystem. However, the results of PHI and PERI indicate a higher risk of MPs pollution in the Qilian Mountains. This study offers vital information for MPs pollution in the whole Qilian Mountains regions and their potential environmental risks in remote areas' soil.
Collapse
Affiliation(s)
- Qiangqiang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yujiao Zhao
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuncun Zhang
- Key Laboratory of Petroleum Resources Exploration and Evaluation, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
21
|
Estherrani JRBT, Jeyakumar SSL, Merlin JP, Christopher JJ, Rajalakshmi E, Sivanantham D, Rodríguez-González F, Arreola-Mendoza L, Ponniah JM. Presence of microplastics during high rainfall events in the Cauvery River (South India): Ecological risk and cultural practices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:38. [PMID: 39648254 DOI: 10.1007/s10661-024-13421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Rivers directly support the development of a region/country; however, globally, these aquatic regions are impacted by recent human activity. During a rainfall event, we monitored the baseline information on the spatial variability of microplastics (MPs) in the Cauvery River in South India. Forty surface water samples from two selected sites were collected between 27 September and 16 October 2022 during the commencement of monsoon which indicates 69 and 43 pieces L-1 of MPs, respectively. SEM and FTIR analysis on the surface morphotypes (cracks, grooves, pits) and elemental (Si, Ti, Mg, Cu, Ta) presence/adsorption of these elements' (in particle) surface indicates surface deformation of fibers, which is mainly due to external input/forces. Fragments of polymers establish a high degree of deterioration indicating its longer trajectory in the aquatic environment. The origin of extended fiber ranges between 631.65 and 5639.9 µm, which is being associated with laundry activities for textiles, household items, and fishing gear. Toxicity and ecological risk assessment suggest significant degree of weathered MPs due to photo-oxidation process and aging owing to exposition of intense UV light. This research serves as a strong illustration of the multiple pressures from urban development and cultural practices that have a bigger influence on the river ecosystem like Cauvery River and regular monitoring.
Collapse
Affiliation(s)
| | - Sakthi Selva Lakshmi Jeyakumar
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520 Barrio la Laguna Ticomán, C.P.07340, Del. Gustavo A. Madero, México
| | - Johnson Princy Merlin
- Post Graduate & Research Department of Chemistry, Bishop Heber College, 6200 017, Triuchirappalli, Tamil Nadu, India
| | - Johnraj John Christopher
- Post Graduate & Research Department of Chemistry, Bishop Heber College, 6200 017, Triuchirappalli, Tamil Nadu, India
| | - Elangovan Rajalakshmi
- Post Graduate & Research Department of Chemistry, Bishop Heber College, 6200 017, Triuchirappalli, Tamil Nadu, India
| | - Dhineshkumar Sivanantham
- Post Graduate & Research Department of Chemistry, Bishop Heber College, 6200 017, Triuchirappalli, Tamil Nadu, India
| | - Francisco Rodríguez-González
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Carretera Yautepec-Jojutla Km. 6 Calle CEPROBI No. 8 Col. San Isidro, Yautepec, Morelos, México
| | - Laura Arreola-Mendoza
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520 Barrio la Laguna Ticomán, C.P.07340, Del. Gustavo A. Madero, México
| | - Jonathan Muthuswamy Ponniah
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520 Barrio la Laguna Ticomán, C.P.07340, Del. Gustavo A. Madero, México.
| |
Collapse
|
22
|
Bian W, Zeng Y, Li Y, Na G, Mu J, Lv S, Liu M. Microplastic pollution in tropical coral reef ecosystems from the coastal South China Sea and their impacts on corals in situ. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135898. [PMID: 39307014 DOI: 10.1016/j.jhazmat.2024.135898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Coral reefs possess extremely high ecological value in tropical and subtropical waters worldwide. Microplastics as emerging and pervasive pollutants pose a great threat to the health of coral ecosystems. However, in situ studies on microplastics pollution and its impacts in coral ecosystems globally are limited. The occurrence characteristics of microplastics in the environment mediums and reef-dwelling organisms were investigated in coral reef areas from the southern Hainan Island, and the impacts of microplastics on corals in situ were evaluated in this study. Average microplastics abundance was 9.48 items L-1 in seawater, 190.00 items kg-1 in sediment, 0.36 items g-1 in coral, 1.50 items g-1 in shellfish, 0.48 items g-1 in fish gill, and 1.71 items g-1 in fish gastrointestinal tract. The prevalent microplastics in the above samples were characterized as being less than 1000 µm in size, fibrous, and transparent, with predominant polymer types as polyethylene terephthalate, polypropylene, polyethylene, and rayon. The microplastic enrichment capacity of different corals varied (Pocillopora > Acropora > Sinularia). Notably, microplastics were more abundant on the surface of corals compared to their interiors, with distinct characteristics observed, including larger-sized (>500 µm) and fiber-shaped polyethylene terephthalate microplastics on the surface and smaller-sized (20-200 µm) fragmented polyethylene microplastics within coral interiors. Furthermore, the investigation showed species-specific impacts of microplastics on corals in situ, including photosynthetic activity of photosymbionts and antioxidant and immune activities of corals. Furthermore, the ecological risks of microplastics were minor across most environmental media in the studied areas, with exceptions in the bottom seawater and surface sediment of YLW, which exhibited extreme and medium risk levels, respectively. Coral risk levels were generally medium, except for dangerous levels in DDH and high levels in LHT. The potential sources of microplastics in the marginal reefs of southern Hainan Island were primarily tourism, residential, and fishing activities.
Collapse
Affiliation(s)
- Weijie Bian
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yingxu Zeng
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yurui Li
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China
| | - Guangshui Na
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jun Mu
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China
| | - Shuguo Lv
- Hainan Academy of Environmental Science, Haikou 571126, China
| | - Min Liu
- Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
23
|
Wang D, Zhang L, Li W, Chang M, Liu X, Zhang Z, Tian ZQ. The influence of water conservancy project on microplastics distribution in river ecosystem: A case study of Lhasa River Basin in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136472. [PMID: 39547040 DOI: 10.1016/j.jhazmat.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Water conservancy projects affect the migration, suspension, and deposition of microplastic (MP). However, its impact on MP pollution of river ecosystem remains elusive. Herein, we investigated the MP characteristics and the influence of water conservancy projects on MPs in the Lhasa River Basin of the Qinghai-Tibet Plateau, China. The results demonstrated that the MPs concentration in surface water decreased from upstream to downstream, as more MPs in surface water were settling down and stored in reservoir sediments in the midstream. It is postulated that reservoir sedimentation of MPs occurs at a greater rate due to the barrier effect of reservoirs, steady hydrodynamics, and weak salinity-induced buoyancy. To evaluate the ecological risk of the Lhasa River Basin, the pollution load index, the polymer hazard index, and the potential ecological risk index were analyzed. The upstream exhibits elevated polymer hazard index values (>100), and the potential ecological risk index values in the Lhasa River Basin showed ecological risk similar to those of pollution load index values. This research represents the initial exploration of MP distribution within the entire Lhasa River basin, providing a foundational framework for investigating the impact of water conservancy projects on MP migration.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Le Zhang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wangwang Li
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Meng Chang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Hubei Hongshan Laboratory, Wuhan 430062, PR China.
| | - Zhi-Quan Tian
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
24
|
Zlateva I, Ricker M, Slabakova V, Slavova K, Doncheva V, Staneva J, Stanev E, Popov I, Gramcianinov C, Raykov V. Analysis of terrestrial and riverine sources of plastic litter contributing to plastic pollution in the Western Black Sea using а lagrangian particle tracking model. MARINE POLLUTION BULLETIN 2024; 209:117108. [PMID: 39393224 DOI: 10.1016/j.marpolbul.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The present case study aims to understand the complex dynamics and implications of plastic pollution along the Bulgarian Black Sea coast through a detailed assessment of plastic marine litter. This includes examining the density of floating litter and indicators like the Pollution Load Index. The study identifies primary sources of plastic pollution, focusing on rivers and land-based settings through the Probability of Plastic Emissions. The OpenDrift Lagrangian model was used to track litter sources and patterns of transportation. Findings show that major sources include Varna, Bourgas, the Kamchia River, and transboundary transport via the Danube. These sources significantly impact the southwestern region due to anti-clockwise surface currents and eddies. Validation against field data confirmed that the Lagrangian simulations accurately reflect in-situ distribution.
Collapse
Affiliation(s)
- Ivelina Zlateva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria.
| | - Marcel Ricker
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria
| | - Krasimira Slavova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria
| | - Valentina Doncheva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria
| | - Joanna Staneva
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Emil Stanev
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany; Department of Meteorology and Geophysics, Faculty of Physics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Ivan Popov
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria
| | - Carolina Gramcianinov
- Institute of Coastal Systems - Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Violin Raykov
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, 40 Parvi May Str., 9000 Varna, Bulgaria
| |
Collapse
|
25
|
Tavşanoğlu ÜN, Koraltan İ, Basaran Kankılıç G, Çırak T, Ertürk Ş, Ürker O, Güçlü P, Ünlü H, Çağan AS, Deniz Yağcıoğlu K, Akyürek Z. Assessing microplastic pollution in a river basin: A multidisciplinary study on circularity, sustainability, and socio-economic impacts. ENVIRONMENTAL RESEARCH 2024; 262:119819. [PMID: 39173820 DOI: 10.1016/j.envres.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Plastic pollution has emerged as a significant environmental challenge worldwide, posing serious threats to ecosystems and human health. This study seeks to explore the interplay among circularity, sustainability, and the release of microplastics within the freshwater ecosystems situated along the western Black Sea coast- Düzce, Türkiye. Employing a multidisciplinary approach that integrates environmental science, economics, and policy analysis, the research examines the current state of plastic pollution in the region, considering diverse land uses and socio-economic lifestyles. Conducted over four different seasons, the current study identifies the prevailing types of microplastics in the region. Fibers dominate, comprising 86.7% in each season, followed by film and fragments at 7.7% and 7.0%, respectively. Notably, polyethylene (PE) and polypropylene (PP) emerges as the primary polymer types. The distribution of polymer types varies across different land uses within the region, emphasizing the influential role of land use in shaping the abundance polymer composition. The comprehensive assessment of pollution, as reflected in the overall pollution load index (PLI) of the Melen River indicating a concerning level of pollution (PLI>1). Finally, the study unveiled the relationship between socio-economic activities as well as the seasonal precipitation patterns, and microplastic contamination in the region. This underscored the importance of site-specific mitigation measures on reducing the amount of microplastics. Lastly, incorporating sustainable practices within the circular economy framework fosters a harmonious balance between economic development and environmental protection in Türkiye.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye.
| | - İdris Koraltan
- Institute of Natural and Applied Sciences, Akdeniz University, Dumlupınar Avenue, 07258, Antalya, Türkiye
| | | | - Tamer Çırak
- Alternative Energy Sources Technology Program, Aksaray University, Bahçesaray, 68100, Aksaray, Türkiye
| | - Şeyma Ertürk
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye
| | - Okan Ürker
- Department of Environmental Health, Çankırı Karatekin University, Taşmescit Street, 18200, Çankırı, Türkiye
| | - Pembe Güçlü
- Department of Business Administration, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Hülya Ünlü
- Department of Economics, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Ali Serhan Çağan
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye; Wildlife Programme, Kastamonu University, Mehmet Yetkin Street, 37800, Araç, Kastamonu, Türkiye
| | - Kıymet Deniz Yağcıoğlu
- Department of Geology Engineering, Ankara University, Dögol Street, 0600, Ankara, Türkiye
| | - Zuhal Akyürek
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye; Department of Civil Engineering, Üniversiteliler Street, 06800, Ankara, Türkiye Ankara, Türkiye
| |
Collapse
|
26
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
27
|
Fardullah M, Hossain MT, Islam MS, Islam MR, Rahman MR, Akther K, Uddin A, Morshed S, Sultana N, Alam MA, Bahadur NM, Robel FN. Occurrence and spatial distribution of microplastics in water and sediments of Hatiya Island, Bangladesh and their risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122697. [PMID: 39362167 DOI: 10.1016/j.jenvman.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
This research has evaluated the MPs distribution, characteristics, and potential threats of MPs in surface water and sediments from Hatiya Island. The results showed that the abundance of MPs was 139 ± 44 items/m3 in surface water and 493 ± 80 items/kg dw in sediments, indicating higher levels of MPs contamination in sediment samples. Fibers were the predominant kind of microplastics, and microscopic sizes (0.3-1.5 mm) MPs were generally more frequent and largely present in both the surface water and sediments. Fourier-transform infrared spectroscopy (FTIR) confirmed that polyethylene terephthalate was the major polymer component of microplastics in surface water, whereas polyethylene was the most abundant polymer in sediments. MPs contamination risk was examined based on multiple risk assessment models. Nemerow pollution index (NPI) and pollutant load index (PLI) show minimal pollution levels of MPs. But potential hazard index (PHI), potential ecological risk factor (Er), and potential ecological risk index (RI), indicate severe MPs contamination due to the presence of polyurethane, polycarbonate, polyvinyl chloride, epoxy that were hazardous MPs and exhibited a critical concern for MPs risk. These statistics will help to understand the environmental difficulties generated by MPs and which hazard is waiting for mankind in the future.
Collapse
Affiliation(s)
- Md Fardullah
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Md Tanvir Hossain
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Mohammad Saimon Islam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Md Rafiqul Islam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Md Rakibur Rahman
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Khadigha Akther
- Department of Applied Mathematics, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Azad Uddin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30170, Venice, Italy.
| | - Shamsul Morshed
- Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh.
| | - Nahid Sultana
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Ashraful Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Newaz Mohammed Bahadur
- Department of Chemistry, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Fataha Nur Robel
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
28
|
Yoon S, Lee J, Jang T, Choi JH, Ko M, Kim HO, Ha SJ, Lim KS, Park JA. Assessing the abundance, sources, and potential ecological risk assessment of microplastics using their particle and mass units in Uiam Lake, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124654. [PMID: 39098638 DOI: 10.1016/j.envpol.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) enter lakes through various pathways, including effluents from wastewater treatment plants (WWTPs), surface runoff, and improperly disposed of plastic waste. In this study, the extent of MPs pollution in Uiam Lake in fall of 2022 and spring of 2023 was assessed by determining both the number (n/m3) and mass concentrations (μg/m3) of MPs. Moreover, the correlation between water quality parameters and MP properties was analyzed, and an ecological risk assessment was conducted. MPs abundance was higher in spring than in fall, probably due to the lifting of coronavirus disease-19 restrictions, melting of ice, higher rainfall, and faster wind speed. Fragment was the dominant shape of the MPs collected, while polyvinyl chloride (PVC) and polyester/polyethylene terephthalate were the frequently detected polymer types of MPs in fall and spring, respectively. There was a moderate positive correlation between the number concentration of MPs and the total nitrogen, total phosphorus (T-P), and total organic carbon levels; in contrast, there was no significant relationship between the mass concentration of MPs and all water quality parameters. However, the abundance (μg/m3) of PVC and polymethyl methacrylate MPs were positively correlated with T-P and electrical conductivity. The pollution load index, polymer hazard index, and potential ecological risk index (PERI) were generally higher when the mass unit of MPs was used due to the presence of large-sized MPs composed of highly hazardous polymers (e.g., polyurethane, PVC, and alkyd). For instance, the PERI value of the WWTP effluent was at the very high level (>1200) in both seasons, regardless of the abundance unit of MPs. Therefore, WWTP effluents may have increased the ecological toxicity of MPs pollution in Uiam Lake.
Collapse
Affiliation(s)
- Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Hyuk Choi
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
29
|
Wang Z, Liu L, Zhou G, Yu H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Chen J. Impact of microplastics on microbial community structure in the Qiantang river: A potential source of N 2O emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124755. [PMID: 39151781 DOI: 10.1016/j.envpol.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, 15008, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
30
|
Wang Y, Zhu Y, Guo G, An L, Fang W, Tan Y, Jiang J, Bing X, Song Q, Zhou Q, He Z. A comprehensive risk assessment of microplastics in soil, water, and atmosphere: Implications for human health and environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117154. [PMID: 39378647 DOI: 10.1016/j.ecoenv.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) are pervasive across ecosystems, likely posing significant environmental and health risks based on more and more evidence. In this study, we searched through the Web of Science Core Collection and obtained 1039 papers for visualization and analysis. In order to discuss the chemical composition, migration, transformation and potential risk of MPs, 135 sets of relevant data in soil, water, and atmosphere were collected in China as a typical region, which is a hotspot region for investigation of MPs. The results showed that the primary polymer categories of MPs in the environment to be polypropylene, polyethylene, and polystyrene. The soil contains a significant quantity of MPs, averaging at 12,107.42 items·kgdw-1, while water contains averaging at 97,271.18 items m-3. The total pollution load indexes for all three environments are at risk level I. Based on current risk assessment methods, the potential ecological risk of MPs is low. However, based on the polymer components, migration and transformation patterns, and especially the complexes with other pollutants, it indicates an increasing indirect risk. Interactions with some other pollutants are likely amplify the ecological and health risks associated with MPs. Aggregative results showed that the present risk assessment models could not assess the risks of MPs well. Thus, we suggested develop a risk assessment methodology for MPs based on relevant research progress. Some factors such as the size and form of MPs, sources and distribution, bioaccumulation, social acceptance and economic costs could be considered adding in the present risk assessment models. Finally, promotion of development and application of green chemically synthesized bioplastics such as using synthetic biology to help degrade plastics would be an alternative and sustainable option to relieve the adverse environmental and health concerns of MPs.
Collapse
Affiliation(s)
- Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui An
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen Fang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingshuai Song
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Qihao Zhou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
31
|
Meng L, Zheng S, Zhao Y, Liu T, Liang J, Zhu M, Sun X. Seasonal microplastic ingestion by carnivorous chaetognaths in Jiaozhou Bay, China: Field evidence revealing microplastic trophic transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135532. [PMID: 39154478 DOI: 10.1016/j.jhazmat.2024.135532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) are widely distributed in marine environments and ingested by marine organisms, especially zooplankton. Chaetognaths, typical carnivorous zooplankton, are pivotal in the food chain from secondary producers, such as copepods, to higher trophic level species. However, little is known about their MP ingestion. In this study, based on field observation data, for the first time, we studied seasonal characteristics and risks of MPs ingested by chaetognaths in Jiaozhou Bay and assessed effects of key prey copepods on MP ingestion by chaetognaths. MP/chaetognath values in February, May, August, and November were 0.19, 0.17, 0.15, and 0.39, respectively, showing no significant seasonal variation. Chaetognaths predominantly ingested MPs that were fiberous in shape, 101-400 µm in size and polyester in polymer type, with no significant seasonal variations. The risk of MP load in chaetognaths was low, but there are higher polymeric hazards and potential ecological risks. MP/chaetognath values were positively correlated with the copepod abundance and MP/copepod values. The characteristics of MPs ingested by chaetognaths were also highly similar to those of MPs ingested by copepods. However, the overall risk of biomagnification in the copepod-chaetognath food chain was low. This study provided field evidence for MP transfer in the planktonic food chain.
Collapse
Affiliation(s)
- Liujiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yongfang Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tao Liu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mingliang Zhu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Mehboob M, Dris R, Tassin B, Gasperi J, Khan MU, Malik RN. Microplastic assessment in remote and high mountain lakes of Gilgit Baltistan, Pakistan. CHEMOSPHERE 2024; 365:143283. [PMID: 39255855 DOI: 10.1016/j.chemosphere.2024.143283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Microplastic (MP) pollution is a critical environmental challenge worldwide, however limited research is reported in remote lakes of Pakistan. This study assessed MPs (>5 mm) prevalence, distribution and risk perspective in water and sediment of eight remote and high-altitude lakes (>1500 m above sea level) of Gilgit Baltistan, Pakistan. The lakes exhibited an average abundance of 152.6 ± 104.6 to 12.1 ± 7 MP/kg of dry sediments and 2 ± 0.9 to 17.1 ± 17.2 MP/L of surface water. MPs <200 μm dominated in both matrices. Surface water predominantly contained polyester and polypropylene, while polypropylene and polyethylene dominated in sediments. The gradient of elevation did not show any pronounced impact on the fiber loading or MP count in both matrices. Backward air mass trajectory revealed that air masses vastly travelled from western-Asia, Arabian sea and Bay of Bengal with an average transmission distance of 2500-3500 km (500 m a.s.l) that can be a potential deposition MP source in the area. Pollution Load Index of the lakes were >1 exhibiting pollution. All other lakes except Batura and Borith manifested a moderate hazard index. Naltar lake along with aforementioned two lakes also manifested high polymer toxicity. Further research should emphasize understanding the mechanisms and biotic interactions in high-mountain ecosystems.
Collapse
Affiliation(s)
- Maryem Mehboob
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Rachid Dris
- LEESU, Ecole des Ponts, Université Paris Est Creteil, F-94010, Creteil, France
| | - Bruno Tassin
- LEESU, Ecole des Ponts, Université Paris Est Creteil, F-94010, Creteil, France
| | - Johnny Gasperi
- GERS-LEE, Universite Gustave Eiffel, F-44344, Bouguenais, France
| | - Muhammad Usman Khan
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat N Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
33
|
Saikia KK, Handique S. Microplastics abundance and potential ecological risk assessment in sediment, water and fish of Deepor Beel-a Ramsar Wetland of the Brahmaputra plain, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:977. [PMID: 39316144 DOI: 10.1007/s10661-024-13138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs) are increasingly recognized as environmental contaminants with complex impacts on fish and other aquatic organisms. This study determined the microplastics abundance and the induced-ecological risks of microplastics in water, sediment, and commonly harvested fishes of a Ramsar site, Deepor Beel of Assam, India. Six samples of water and sediment were collected with nine individuals of two commonly harvested fish species Puntius sophore (Pool Barb) and Gudusia chapra (Indian River Shad). The abundance of microplastics in water and sediments were analyzed through organic matter digestion using hydrogen peroxide (H2O2, 30%) and sodium chloride (NaCl) for density separation. Potassium hydroxide (KOH, 10%) was used for digestion of fish gut. The microplastics were identified visually and chemically characterized through micro-Raman spectroscopy. Total 467 microplastic particles in water and sediment, and 62 particles in fish were identified. An average concentration of 0.55 ± 0.06 particles/L in water, 4.03 ± 0.41 particles/100 g in sediment samples, 3.83 ± 2.26 particles/individual in Puntius sophore, and 6.5 ± 3.40 particles/individual in Gudusia chapra were detected. Fibers accounted to the major shape of microplastic in water (54%) and sediment (50%), whereas fragments (65%) were the major shapes detected in both fishes. The color composition includes blue, black, red, green, brown, yellow, and transparent. Fiber particles size ranged between 150 and 1782 µm, fragments within 85-325 µm, and sphere within 85-220 µm. Chemical characterization of microplastics revealed polymer types including polypropylene (PP = 27%), polyvinyl chloride (PVC = 25%), acrylonitrile-butadiene-styrene (ABS = 18%), polycarbonate (PC = 13%), polyethylene (12%), and polystyrene (PS = 5%). PHI levels were at hazard level III and V for water and sediment samples and at level IV for both fish species. The PLI at hazard level I indicated low pollution levels, whereas the PERI were within danger and extreme danger levels. This study is the first report in abundances of microplastics and the ecological risk assessment of microplastics in surface waters, sediments and fishes of Deepor Beel wetland.
Collapse
Affiliation(s)
- Kundil Kumar Saikia
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Sumi Handique
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
34
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
35
|
Junaid M, Liu S, Liao H, Yue Q, Wang J. Environmental nanoplastics quantification by pyrolysis-gas chromatography-mass spectrometry in the Pearl River, China: First insights into spatiotemporal distributions, compositions, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135055. [PMID: 38941826 DOI: 10.1016/j.jhazmat.2024.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs, size <1000 nm) are ubiquitous plastic particles, potentially more abundant than microplastics in the environment; however, studies highlighting their distribution dynamics in freshwater are rare due to analytical limitations. Here, we investigated spatiotemporal levels of nine polymers of NPs in surface water samples (n = 30) from the full stretch of the Pearl River (sites, n = 15) using pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Six polymers were detected, including polystyrene (PS), polyvinyl chloride (PVC), nylon/polyamide 66 (PA66), polyester (PES), poly(methyl methacrylate) (PMMA) and polyethylene (PE), where three polymers showed high detection frequencies; PS (100 % in winter and summer), followed by PVC (73 % in winter and 87 % in summer) and PA66 (53 % in winter and 67 % in summer). The spatiotemporal distribution revealed the sites related to aquaculture (AQ) and shipping (SHP) showed higher NP levels than those of human settlement (HS) and wastewater treatment plants (WWTPs) (p = 0.004), and relatively high average levels of NPs in the urban sites compared to rural sites (p = 0.04), albeit showed no obvious seasonal differences (p = 0.78). For instance, the average PS levels in the Pearl River were in the following order: AQ 411.55 µg/L > SHP 81.75 µg/L > WWTP 56.66 µg/L > HS 47.75 µg/L in summer and HS 188.1 µg/L > SHP 103.55 µg/L > AQ 74.7 µg/L > WWTP 62.1 µg/L in winter. Source apportionment showed a higher contribution through domestic plastic waste emissions among urban sites, while rural sites showed an elevated contribution via aquaculture, agriculture, and surface run-off to the NP pollution. Risk assessment revealed that NPs at SHP and AQ sites posed a higher integrated risk in terms of pollution load index (PLI) than those at WWTP and HS sites. Regarding polymer hazard index (HI), 80 % of sampling sites in summer and 60 % of sampling sites in winter posed level III polymer risk, with PVC posing the highest risk. This study provides novel insights into the seasonal contamination and polymer risks of NP in the Pearl River, which will help to regulate the production and consumption of plastics in the region. ENVIRONMENTAL IMPLICATIONS: The contamination dynamics of field nanoplastics (NPs) in freshwater resources remain little understood, mainly attributed to analytical constraints. This study aims to highlight the spatiotemporal distribution of NPs in the Pearl River among various land use types, urban-rural comparison, seasonal comparison, their compositional profiles, potential sources, interaction with environmental factors, and ecological and polymer hazard assessments of investigated polymers in the full stretch of the Pearl River from Liuxi Reservoir to the Pearl River Delta (PRD) region. This study, with a comparatively large number of samples and NP polymers, will offer novel insights into the contamination profiles of nano-sized plastic particles in one of the important freshwater riverine systems in China.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Hongping Liao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
36
|
Cui S, Yu W, Han X, Hu T, Yu M, Liang Y, Guo S, Ma J, Teng L, Liu Z. Factors influencing the distribution, risk, and transport of microplastics and heavy metals for wildlife and habitats in "island" landscapes: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134938. [PMID: 38901262 DOI: 10.1016/j.jhazmat.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Collapse
Affiliation(s)
- Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - XingZhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Hu
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Mengqi Yu
- Forest Pest Control and Quarantine Station of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Songtao Guo
- The College of Life Sciences, Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an 710069, China
| | - Jinlian Ma
- Inner Mongolia Helan Mountain National Natural Nature Reserve Administration, Alxa League, 750306, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| |
Collapse
|
37
|
Liang T, Ho YW, Wang Q, Wang P, Sun S, Fang JKH, Liu X. Distribution and risk assessment of microplastics in water, sediment and brine shrimps in a remote salt lake on the Tibetan Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134959. [PMID: 38925053 DOI: 10.1016/j.jhazmat.2024.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Microplastics (MPs) are pervasive environmental contaminants that have infiltrated even the most remote ecosystems. Despite their widespread distribution, the transfer patterns and impacts of MPs in remote lakes remain poorly understood. This study aimed to address the knowledge gap regarding the pathways and consequences of MP pollution in these isolated environments. Focusing on Kyêbxang Co, a remote salt lake in Tibet, this study investigated the transfer patterns, sources and ecological impacts of MPs, providing insights into their mobility and fate in pristine ecosystems. Water, sediment and biota (brine shrimp) samples from Kyêbxang Co, collected during the summer of 2020, were analyzed using µ-Raman spectroscopy to determine MP abundances, polymer types and potential sources. Findings indicated significant MP contamination in all examined media, with concentrations highlighting the role of runoff in transporting MPs to remote locations. The majority of detected MPs were small fragments (<0.5 mm), constituting over 93 %, with polypropylene being the predominant polymer type. The presence of a halocline may slow the descent of MPs, potentially increasing the exposure and ingestion risk to brine shrimp. Despite the currently low ecological risk estimated for MPs, this study underscores the need for long-term monitoring and development of a comprehensive ecological risk assessment model for MPs.
Collapse
Affiliation(s)
- Ting Liang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Qi Wang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Pengfei Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Shichun Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China; Research Institute for Future Food, Research Institute for Land and Space, and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
38
|
Suyamud B, Pan X, Yu Y, Yuan W, Liu Y, Yang Y. First-of-Its-Kind: Nationwide meta-analysis of microplastic pollution and risk assessment in Thailand. CHEMOSPHERE 2024; 364:143041. [PMID: 39117079 DOI: 10.1016/j.chemosphere.2024.143041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Thailand ranks as the sixth largest contributor to global microplastic pollution, which is exacerbated by extensive plastic use. Despite rising concerns, no comprehensive review is available on microplastic contamination and its potential risk in Thailand. This review synthesised data on microplastic abundance and characteristics within the country from 118 peer-reviewed publications (2017-2024). We found predominant microplastic presence in crustaceans (1.69-160.15 items/g), followed by Mollusca (0.03-9.5 items/g) and fishes (0.01-28.17 items/g), with higher abundances in wastewater (4 × 102 to 6.09 × 105 items/m3) compared to that in freshwater (1.44-2.92 × 106 items/m3) and seawater (2.70 × 10-1 to 6.25 × 104 items/m3). Marine sediments (48.3-2.13 × 104 items/kg) also showed significantly higher microplastic concentrations than terrestrial sediments (3-2.92 × 103 items/kg). Predominant microplastics were identified as fibers (59.36% and 35.05% for biological and environmental samples, respectively) and fragments (24.14%, 30.68%) in blue (25.95%, 18.64%), and colourless/transparent (20.01%, 14.47%), primarily composed of polyethylene terephthalate (19.46%, 9.19%), nylon (3.23%, 9.99%), polypropylene (19.78%, 24.23%), and polyethylene (14.81%, 11.66%). The potential ecological risk was low in all ecosystems except for wastewater. Shrimp and fish were more susceptible to microplastics compared to other studies in the region. Additionally, the sources, transport, and pathways of microplastic pollution in Thailand's aquatic territories and the current measures and policies implemented by the government to address plastic pollution are discussed. This review has compiled up-to-date insights into the prevalence, distribution, and risks associated with microplastics, which is instrumental in formulating effective strategies for contaminant control and ultimately reducing plastic pollution.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China.
| | - Yongxiang Yu
- Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Yi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
39
|
Razeghi N, Hamidian AH, Abbasi S, Mirzajani A. Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54815-54831. [PMID: 39214944 DOI: 10.1007/s11356-024-34847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran
- Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, 714545, Iran
| | - Alireza Mirzajani
- Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran
| |
Collapse
|
40
|
Tang-Siri J, Vibhatabandhu P, Srithongouthai S. Occurrence of microplastics and ecological risk assessment during tidal changes in the Chao Phraya River estuary, Thailand. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106647. [PMID: 39032189 DOI: 10.1016/j.marenvres.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
River estuaries are specific transition zones that connect coastal and terrestrial environments and are recognized as primary conveyors for land-derived plastics to open oceans. The present study is the first to investigate tidal effects on microplastics (MPs) in the Chao Phraya River estuary. MPs (16-5000 μm) were collected from the water column during the changes in tidal current in order to analyze abundance, characteristics, and ecological risk. The abundance of MPs varied from 1.37 to 4.51 pieces/L and an average of 4.0 ± 3.8 pieces/L were found during the tidal cycle, which implied moderate to relatively high contamination when compared to other estuaries. Moreover, the average abundance of MPs during the low tide period was comparatively higher than that in other tidal phenomena. Morphological characteristics revealed that shape of fragments, shade of blue, size of 16-100 μm and PTFE is dominant in the MPs. The pollution load index (PLICPRE) was 5.98, which denoted that the Chao Phraya River estuary is polluted with MPs at a low contamination level. In contrast, the risk index (RICPRE) of MPs in the water column during the tidal cycle was 318.8, which indicated that the estuarine ecosystem of the Chao Phraya River is under considerable risk. In the present study, an ecological risk assessment was conducted for the Chao Phraya River estuary, which provides basic reference data for the management of pollution control related to MPs in the Chao Phraya River basin.
Collapse
Affiliation(s)
- Jiradet Tang-Siri
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pathompong Vibhatabandhu
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarawut Srithongouthai
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit (RU) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
41
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
42
|
Chang M, Sun P, Zhang L, Liu Y, Chen L, Ren H, Wu B. Changes in characteristics and risk of freshwater microplastics under global warming. WATER RESEARCH 2024; 260:121960. [PMID: 38908311 DOI: 10.1016/j.watres.2024.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Microplastics present a significant threat to freshwater ecosystems. However, the impact of global warming on their characteristics and associated risks remains uncertain. This study collected 2793 sample sites from literature and datasets to create a new risk assessment and rank methodology, known as the Multi-characteristics Potential Ecological Risk Index (MPERI), which incorporates various microplastic characteristics, such as concentration, size distribution, color, shape, and polymer diversity. Using regression random forest models (RRF), this study predicted that a 10 °C increase would raise microplastic concentration from 12,465.34 ± 68,603.87 to 13,387.17 ± 60,692.96 particles/m3. The percentage of small-size microplastics initially decreased (from 69.10 % to 68.72 %) and then increased (from 68.72 % to 68.78 %), while the diversity of color, shape, and polymer decreased by 0.29 %, 3.24 %, and 0.17 %, respectively. Furthermore, global warming could increase the rank of microplastic risks from high (405.25 ± 528.9) to dangerous (535.37 ± 582.03) based on the MPERI method. Most countries would experience an increase in risk values, with Indonesia and Vietnam transitioning from low to medium risk, and China and Malaysia transitioning from high to dangerous risk. The feature importance assessment of the RRF model indicated that concentration was the most influential variable in determining the change in risk values. While other microplastic characteristics had a lesser impact compared to concentration, they still influenced the risk ranking. This study highlights the role of global warming in shaping microplastic risks.
Collapse
Affiliation(s)
- Mengjie Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peipei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Luo W, Fu H, Lu Q, Li B, Cao X, Chen S, Liu R, Tang B, Yan X, Zheng J. Microplastic pollution differences in freshwater river according to stream order: Insights from spatial distribution, annual load, and ecological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121836. [PMID: 39018841 DOI: 10.1016/j.jenvman.2024.121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Microplastic (MP) pollution has become a pressing concern in global freshwater ecosystems because rivers serve as essential channels for the transport of terrestrial debris to the ocean. The current researches mostly focus on the large catchments, but the impact on the small catchments remains underexplored. In this study, we employed Strahler's stream order classification to delineate the catchment structure of the Beijiang River in South China. The distribution pattern of MP contamination and the factors influencing the distribution pattern, were assessed across the streams at different orders. We found that the Beijiang River was moderately polluted compare to other rivers in China, with an average MP abundance of 2.15 ± 1.65 items/L. MP abundance ranged from 3.17 to 1.45 items/L in the streams at different orders, and significantly decreased with increasing stream order (R2 = 0.93). This highlights the key role of small rivers as the channels for the transport of MPs from watersheds to main streams. The high abundance of PP and PE fibers, the high correlation between the stream order and the resin proportion (R2 = 0.89), and the significant correlation between MP abundance and proximity to urban centers (P = 0.02), indicated that MP pollution across the streams at different orders was predominantly influenced by anthropogenic activities, rather than natural environmental factors. By integrating MP data with hydrographic information, the annual MP loads for the streams at Orders 1 to Order 5 were estimated to be 4.63, 39.38, 204.63, 503.06, and 1137.88 tons/yr, respectively. Additionally, an ecological risk assessment indicates that MP pollution led to a low risk in the Beijiang River. Our findings deepen the understanding of MP pollution within freshwater river networks, and emphasize the crucial role of tributary systems in transporting MPs to main river channels.
Collapse
Affiliation(s)
- Weikeng Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongyu Fu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Qiyuan Lu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Bowen Li
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Xue Cao
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Sifan Chen
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ruijuan Liu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Xiao Yan
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
44
|
Das N, Chowdhury GW, Siddique AB, Riya SC, Fazal MA, Sobhan F, Sarker S. The silent threat of plastics along the coastal frontiers of Bangladesh: Are we concerned enough? MARINE POLLUTION BULLETIN 2024; 205:116567. [PMID: 38875968 DOI: 10.1016/j.marpolbul.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Globally plastic pollution is posing a significant threat to the health and integrity of coastal ecosystems. This study aimed to provide a comprehensive overview of plastic pollution in the coastal areas of Bangladesh by examining land-based macroplastic distribution, exploring microplastic (MP) contamination in the coastal aquatic ecosystem and enhancing our understanding of the potential risks associated with MP contamination. Citizen science based monitoring approach using the android application was applied to understand the land-based plastic pollution in the coastal area of Bangladesh. From December 2022 to December 2023, a total of about 3600 photographs of plastic items from 215 citizen scientists were received from the coastal area of Bangladesh covering 580 km long coast line. Polymer Hazard Index (PHI) and Pollution Load Index (PLI) were also calculated to understand the risk of plastic pollution in sediment, water, aquatic organism, dried fish and sea salt. A total of 43 land-based plastic items reported from the coastal area of Bangladesh. Among these plastic items single use items contributed 58.2 % while disposable plastic items contributed 41.8 %. A strong spatial variability in the distribution of these plastic items was observed. PHI and PLI values suggested hazard category-I for MP contamination in sediment, sea salt, water, commercial fishery resources and dry fish. This study highlighted that coastal land area, sea salt, dried fish, water, sediment and organisms are contaminated with plastics which might have the potential threats to human health. Findings from this study will serve as reference data and also baseline for future research to combat the plastic pollution.
Collapse
Affiliation(s)
- Nabanita Das
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | | - Abu Bokkar Siddique
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shashowti Chowdhury Riya
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Azizul Fazal
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Faisal Sobhan
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Subrata Sarker
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
45
|
Gao S, Zhang S, Sun J, He X, Xue S, Zhang W, Li P, Lin L, Qu Y, Ward-Fear G, Chen L, Li H. Nanoplastic pollution changes the intestinal microbiome but not the morphology or behavior of a freshwater turtle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173178. [PMID: 38750733 DOI: 10.1016/j.scitotenv.2024.173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Humans produce 350 million metric tons of plastic waste per year, leading to microplastic pollution and widespread environmental contamination, particularly in aquatic environments. This subsequently impacts aquatic organisms in myriad ways, yet the vast majority of research is conducted in marine, rather than freshwater systems. In this study, we exposed eggs and hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to 80-nm polystyrene nanoplastics (PS-NPs) and monitored the impacts on development, behavior and the gut microbiome. We demonstrate that 80-nm PS-NPs can penetrate the eggshell and move into developing embryos. This led to metabolic impairments, as evidenced by bradycardia (a decreased heart rate), which persisted until hatching. We found no evidence that nanoplastic exposure affected hatchling morphology, growth rates, or levels of boldness and exploration, yet we discuss some potential caveats here. Exposure to nanoplastics reduced the diversity and homogeneity of gut microbiota in P. sinensis, with the level of disruption correlating to the length of environmental exposure (during incubation only or post-hatching also). Thirteen core genera (with an initial abundance >1 %) shifted after nanoplastic treatment: pathogenic bacteria increased, beneficial probiotic bacteria decreased, and there was an increase in the proportion of negative correlations between bacterial genera. These changes could have profound impacts on the viability of turtles throughout their lives. Our study highlights the toxicity of environmental NPs to the embryonic development and survival of freshwater turtles. We provide insights about population trends of P. sinensis in the wild, and future directions for research.
Collapse
Affiliation(s)
- Shuo Gao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shufang Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahui Sun
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xinni He
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaoshuai Xue
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyi Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Longhui Lin
- Herpetological Research Center, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanfu Qu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Georgia Ward-Fear
- School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lian Chen
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Hong Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
46
|
Chen CF, Albarico FPJB, Wang MH, Lim YC, Chen CW, Dong CD. Potential risks of accumulated microplastics in shells and soft tissues of cultured hard clams (Meretrix taiwanica) and associated metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135088. [PMID: 39018596 DOI: 10.1016/j.jhazmat.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) pose risks to both aquatic ecosystems and human health. This study investigated MPs in the shells and soft tissues of hard clams (Meretrix taiwanica) cultured in the inland waters of Taiwan. This study further developed two novel risk indices for assessing the potential ecological and health consequences of MPs. Moreover, the metal concentrations in the clam's soft tissues and the associated consumption health risks were investigated. Clamshells contained significant amounts of MPs with an average abundance of 16.6 ± 6.9 MPs/ind., which was higher than in the soft tissues (2.7 ± 1.7 MPs/ind.). The distribution and sizes of MPs in shells and soft tissues were similar, primarily small-sized (<2 mm, >99 %), blue (>65 %), and fibrous (>99 %). Dominant MP polymer types included rayon (83.5 %), polyethylene terephthalate (11.8 %), and polyacrylonitrile (3.6 %). The proposed MP potential ecological risk index indicates a higher potential ecological MP risk in soft tissues (302-423) than in shells (270-278) of the clams. The MP potential hazard risk index showed that the risk of exposure to MP through shellfish consumption decreased with age. The total hazard index (THI) value suggested negligible health hazards from metal exposure through shellfish consumption. Moreover, there was no significant correlation between MPs and metal concentrations in soft tissues, suggesting that metals bound to MPs contribute minimally to the total accumulated metals in clam's soft tissues. This study confirms the presence of MPs in clam shells and provides a novel tool to assess the potential ecological and health risks associated with MPs in shellfish.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
47
|
Lee H, Kim J, Choi A, Kim G, Kim S, Mezgebe B, Sahle-Demessie E, Han C. Establishing freshwater sediment sample pretreatment methods for monitoring microplastics and its challenges. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 491:152059. [PMID: 39872980 PMCID: PMC11770418 DOI: 10.1016/j.cej.2024.152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microplastics (MPs) have been detected in various environmental matrices, drinking water, and food, and their presence is an ecological and human health concern. Most research on MPs has focused solely on their detection and analysis. However, sample pretreatment methods are critical for accurate MP analysis and must be properly established. In particular, freshwater sediment contains more impurities than other environment samples, thus requiring more elaborate sample pretreatment. Therefore, research on this media and corresponding pretreatment needs to be performed. Herein, we present a sample pretreatment method for analyzing MPs in freshwater sediments. Detailed factors in arriving at this pretreatment process were evaluated and discussed. Using this established pretreatment method, a total average recovery of six types of standard MPs (HDPE, LDPE, PS, PP, PET, and PVC) for sizes of ≥ 100 μm, 20-100 μm, and 1-20 μm was 94.0%, 90.2%, and 82.5%, respectively. After recovery validation, a modular pretreatment device was developed and combined with the established pretreatment method. The developed device performs density separation and organic matter removal, resulting in about 80% recovery of standard MPs. In addition, natural freshwater sediment samples were prepared using an established pretreatment method, and MPs in streams were analyzed using FTIR, TED-GC-MS, and Pyr-GC-MS. The device affords a low-cost, simple, efficient tool for sample pretreatment steps and easy MP recovery. Thus, it has great potential to simplify sample pretreatment steps for easy MP monitoring, especially for freshwater sediment samples.
Collapse
Affiliation(s)
- Haesung Lee
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Jungyeon Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Ayoung Choi
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Gwangmin Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sanghyeon Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Bineyam Mezgebe
- Office of Research and Development, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
- Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| |
Collapse
|
48
|
Phan NT, Thanh Thao LX, Do VM, Nguyen DD. Assessment of microplastic presence in coastal environments and organisms of Da Nang, Vietnam. MARINE POLLUTION BULLETIN 2024; 204:116516. [PMID: 38833951 DOI: 10.1016/j.marpolbul.2024.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the presence of microplastics (MPs) in seawater, sediments, and organisms along the coastal areas of Da Nang, Vietnam. The results obtained revealed MP concentrations ranging from 111 to 304 MPs/L in seawater and 2267 to 4600 MPs/kg in sediment. In organisms such as oysters, mussels, crabs, snails, and fish, MP levels ranged from 1.8 to 17.3 MPs/g (wet weight). Fiber MPs were found to be predominant across seawater, sediment, and organisms. The study identified eight, ten, and eleven types of MPs in seawater, sediment, and organisms, respectively, with Nylon, Polytetrafluoroethylene (PTFE), and Ethylene vinyl alcohol (EVOH) being the most prevalent. Notably, MP concentrations were significantly higher in benthic organisms such as oysters, mussels, and crabs compared to fish (t-test, p < 0.05), suggesting habitat dependency. Similar concentrations, shapes, and types of MPs in seawater, sediments, and organisms demonstrate a tendency for MP accumulation in aquatic organisms within the marine environment.
Collapse
Affiliation(s)
- Nhu-Thuc Phan
- Faculty of Environment, The University of Danang - University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Viet Nam.
| | - Le Xuan Thanh Thao
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., 100000 Ha Noi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - Van Manh Do
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., 100000 Ha Noi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
49
|
Zheng S, Zhou B, Guo N, Li N, Wu J, Chen Y, Han Z. Optimization and application of pretreatment method of microplastics detection in municipal solid waste landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:260-270. [PMID: 38776828 DOI: 10.1016/j.wasman.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The landfill is one of the most important sources of microplastics (MPs). The pretreatment method is a precondition of microplastics study for the presence of complex substances in landfills. Therefore, it is essential to examine the impact of different pretreatment methods on the microplastics detection. A literature review and a comparison experiment on digestion solutions were performed to establish a comprehensive identification method for MPs in landfills. When exposed to of 30 % H2O2, minimal mass reduction of PE, PP and PET were 4.00 %, 3.00 % and 3.00 % respectively, and the least surface damage was observed in MPs, while exhibiting the most optimal peak value for infrared spectral characteristics. It is demonstrated that the effect of 30 % H2O2 dissolution was superior compared to 10 % KOH and 65 % HNO3. The method was subsequently utilized to investigate the distribution of MPs in a landfill. The dominant MPs were polyethylene (PE, 18.56-23.91 %), polyethylene terephthalate (PET, 8.80-18.66 %), polystyrene (PS, 10.31-18.09 %), and polypropylene (PP, 11.60-14.91 %). The comprehensive identification method of "NaCl density separation + 30 % H2O2 digestion + NaI density separation + sampling microscope + Mirco-FTIR" is suitable for the detection of MPs in landfills.
Collapse
Affiliation(s)
- Saqi Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Baiyu Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Nanfei Guo
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; YangJiang Nuclear Power Co.,Ltd., Yangjiang 529500, China
| | - Naying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jialun Wu
- Chengdu Ecological Environment Monitoring Center Station of Sichuan Province, Chengdu 610041, China
| | - Yong Chen
- Chengdu Ecological Environment Monitoring Center Station of Sichuan Province, Chengdu 610041, China
| | - Zhiyong Han
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
50
|
Cao Y, Bian J, Han Y, Liu J, Ma Y, Feng W, Deng Y, Yu Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. TOXICS 2024; 12:463. [PMID: 39058115 PMCID: PMC11281104 DOI: 10.3390/toxics12070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
In order to visualize the content and development patterns of microplastic biodegradation research, the American Chemical Society (ACS), Elsevier, Springer Link, and American Society for Microbiology (ASM) were searched for the years 2012-2022 using Citespace and VOSvivewer for bibliometrics and visual analysis. The biodegradation processes and mechanisms of microplastics were reviewed on this basis. The results showed a sharp increase in the number of publications between 2012 and 2022, peaking in 2020-2021, with 62 more publications than the previous decade. The University of Chinese Academy of Sciences (UCAS), Northwest A&F University (NWAFU), and Chinese Academy of Agricultural Sciences (CAAS) are the top three research institutions in this field. Researchers are mainly located in China, The United States of America (USA), and India. Furthermore, the research in this field is primarily concerned with the screening of functional microorganisms, the determination of functional enzymes, and the analysis of microplastic biodegradation processes and mechanisms. These studies have revealed that the existing functional microorganisms for microplastic biodegradation are bacteria, predominantly Proteobacteria and Firmicutes; fungi, mainly Ascomycota; and some intestinal microorganisms. The main enzymes secreted in the process are hydrolase, oxidative, and depolymerization enzymes. Microorganisms degrade microplastics through the processes of colonization, biofilm retention, and bioenzymatic degradation. These studies have elucidated the current status of and problems in the microbial degradation of microplastics, and provide a direction for further research on the degradation process and molecular mechanism of functional microorganisms.
Collapse
Affiliation(s)
- Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Jing Bian
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yuping Ma
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yuxin Deng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yaojiang Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| |
Collapse
|